Properties

Label 6642.2.a.bu.1.4
Level $6642$
Weight $2$
Character 6642.1
Self dual yes
Analytic conductor $53.037$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6642,2,Mod(1,6642)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6642.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6642, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6642 = 2 \cdot 3^{4} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6642.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-7,0,7,5,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.0366370225\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 11x^{4} + 58x^{3} - 12x^{2} - 60x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 738)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.08538\) of defining polynomial
Character \(\chi\) \(=\) 6642.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +0.571825 q^{5} -1.74317 q^{7} -1.00000 q^{8} -0.571825 q^{10} -3.95017 q^{11} -1.77039 q^{13} +1.74317 q^{14} +1.00000 q^{16} -5.91394 q^{17} -4.80043 q^{19} +0.571825 q^{20} +3.95017 q^{22} +6.31937 q^{23} -4.67302 q^{25} +1.77039 q^{26} -1.74317 q^{28} +9.23101 q^{29} -1.86357 q^{31} -1.00000 q^{32} +5.91394 q^{34} -0.996788 q^{35} +4.03784 q^{37} +4.80043 q^{38} -0.571825 q^{40} -1.00000 q^{41} -4.20700 q^{43} -3.95017 q^{44} -6.31937 q^{46} -10.3004 q^{47} -3.96136 q^{49} +4.67302 q^{50} -1.77039 q^{52} -4.65229 q^{53} -2.25881 q^{55} +1.74317 q^{56} -9.23101 q^{58} +15.0256 q^{59} -12.9575 q^{61} +1.86357 q^{62} +1.00000 q^{64} -1.01235 q^{65} -1.67811 q^{67} -5.91394 q^{68} +0.996788 q^{70} -13.2197 q^{71} +1.36938 q^{73} -4.03784 q^{74} -4.80043 q^{76} +6.88581 q^{77} +14.2153 q^{79} +0.571825 q^{80} +1.00000 q^{82} +14.6290 q^{83} -3.38174 q^{85} +4.20700 q^{86} +3.95017 q^{88} -0.353146 q^{89} +3.08609 q^{91} +6.31937 q^{92} +10.3004 q^{94} -2.74501 q^{95} +14.0488 q^{97} +3.96136 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} + 7 q^{4} + 5 q^{5} + q^{7} - 7 q^{8} - 5 q^{10} + 10 q^{11} - 4 q^{13} - q^{14} + 7 q^{16} + 13 q^{17} - q^{19} + 5 q^{20} - 10 q^{22} + 15 q^{23} + 14 q^{25} + 4 q^{26} + q^{28} + 30 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.571825 0.255728 0.127864 0.991792i \(-0.459188\pi\)
0.127864 + 0.991792i \(0.459188\pi\)
\(6\) 0 0
\(7\) −1.74317 −0.658856 −0.329428 0.944181i \(-0.606856\pi\)
−0.329428 + 0.944181i \(0.606856\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.571825 −0.180827
\(11\) −3.95017 −1.19102 −0.595510 0.803348i \(-0.703050\pi\)
−0.595510 + 0.803348i \(0.703050\pi\)
\(12\) 0 0
\(13\) −1.77039 −0.491018 −0.245509 0.969394i \(-0.578955\pi\)
−0.245509 + 0.969394i \(0.578955\pi\)
\(14\) 1.74317 0.465882
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.91394 −1.43434 −0.717170 0.696898i \(-0.754563\pi\)
−0.717170 + 0.696898i \(0.754563\pi\)
\(18\) 0 0
\(19\) −4.80043 −1.10129 −0.550647 0.834738i \(-0.685619\pi\)
−0.550647 + 0.834738i \(0.685619\pi\)
\(20\) 0.571825 0.127864
\(21\) 0 0
\(22\) 3.95017 0.842179
\(23\) 6.31937 1.31768 0.658840 0.752283i \(-0.271047\pi\)
0.658840 + 0.752283i \(0.271047\pi\)
\(24\) 0 0
\(25\) −4.67302 −0.934603
\(26\) 1.77039 0.347202
\(27\) 0 0
\(28\) −1.74317 −0.329428
\(29\) 9.23101 1.71416 0.857078 0.515187i \(-0.172278\pi\)
0.857078 + 0.515187i \(0.172278\pi\)
\(30\) 0 0
\(31\) −1.86357 −0.334707 −0.167354 0.985897i \(-0.553522\pi\)
−0.167354 + 0.985897i \(0.553522\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 5.91394 1.01423
\(35\) −0.996788 −0.168488
\(36\) 0 0
\(37\) 4.03784 0.663817 0.331908 0.943312i \(-0.392307\pi\)
0.331908 + 0.943312i \(0.392307\pi\)
\(38\) 4.80043 0.778733
\(39\) 0 0
\(40\) −0.571825 −0.0904135
\(41\) −1.00000 −0.156174
\(42\) 0 0
\(43\) −4.20700 −0.641562 −0.320781 0.947153i \(-0.603945\pi\)
−0.320781 + 0.947153i \(0.603945\pi\)
\(44\) −3.95017 −0.595510
\(45\) 0 0
\(46\) −6.31937 −0.931741
\(47\) −10.3004 −1.50247 −0.751233 0.660037i \(-0.770541\pi\)
−0.751233 + 0.660037i \(0.770541\pi\)
\(48\) 0 0
\(49\) −3.96136 −0.565909
\(50\) 4.67302 0.660864
\(51\) 0 0
\(52\) −1.77039 −0.245509
\(53\) −4.65229 −0.639041 −0.319520 0.947579i \(-0.603522\pi\)
−0.319520 + 0.947579i \(0.603522\pi\)
\(54\) 0 0
\(55\) −2.25881 −0.304577
\(56\) 1.74317 0.232941
\(57\) 0 0
\(58\) −9.23101 −1.21209
\(59\) 15.0256 1.95616 0.978082 0.208219i \(-0.0667666\pi\)
0.978082 + 0.208219i \(0.0667666\pi\)
\(60\) 0 0
\(61\) −12.9575 −1.65903 −0.829517 0.558481i \(-0.811384\pi\)
−0.829517 + 0.558481i \(0.811384\pi\)
\(62\) 1.86357 0.236674
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.01235 −0.125567
\(66\) 0 0
\(67\) −1.67811 −0.205014 −0.102507 0.994732i \(-0.532686\pi\)
−0.102507 + 0.994732i \(0.532686\pi\)
\(68\) −5.91394 −0.717170
\(69\) 0 0
\(70\) 0.996788 0.119139
\(71\) −13.2197 −1.56889 −0.784446 0.620198i \(-0.787052\pi\)
−0.784446 + 0.620198i \(0.787052\pi\)
\(72\) 0 0
\(73\) 1.36938 0.160274 0.0801368 0.996784i \(-0.474464\pi\)
0.0801368 + 0.996784i \(0.474464\pi\)
\(74\) −4.03784 −0.469389
\(75\) 0 0
\(76\) −4.80043 −0.550647
\(77\) 6.88581 0.784711
\(78\) 0 0
\(79\) 14.2153 1.59935 0.799675 0.600433i \(-0.205005\pi\)
0.799675 + 0.600433i \(0.205005\pi\)
\(80\) 0.571825 0.0639320
\(81\) 0 0
\(82\) 1.00000 0.110432
\(83\) 14.6290 1.60574 0.802870 0.596155i \(-0.203305\pi\)
0.802870 + 0.596155i \(0.203305\pi\)
\(84\) 0 0
\(85\) −3.38174 −0.366801
\(86\) 4.20700 0.453653
\(87\) 0 0
\(88\) 3.95017 0.421090
\(89\) −0.353146 −0.0374334 −0.0187167 0.999825i \(-0.505958\pi\)
−0.0187167 + 0.999825i \(0.505958\pi\)
\(90\) 0 0
\(91\) 3.08609 0.323510
\(92\) 6.31937 0.658840
\(93\) 0 0
\(94\) 10.3004 1.06240
\(95\) −2.74501 −0.281632
\(96\) 0 0
\(97\) 14.0488 1.42644 0.713219 0.700942i \(-0.247237\pi\)
0.713219 + 0.700942i \(0.247237\pi\)
\(98\) 3.96136 0.400158
\(99\) 0 0
\(100\) −4.67302 −0.467302
\(101\) 11.6537 1.15959 0.579795 0.814762i \(-0.303133\pi\)
0.579795 + 0.814762i \(0.303133\pi\)
\(102\) 0 0
\(103\) 10.7908 1.06325 0.531626 0.846979i \(-0.321581\pi\)
0.531626 + 0.846979i \(0.321581\pi\)
\(104\) 1.77039 0.173601
\(105\) 0 0
\(106\) 4.65229 0.451870
\(107\) 9.98635 0.965417 0.482708 0.875781i \(-0.339653\pi\)
0.482708 + 0.875781i \(0.339653\pi\)
\(108\) 0 0
\(109\) −16.6089 −1.59085 −0.795423 0.606054i \(-0.792751\pi\)
−0.795423 + 0.606054i \(0.792751\pi\)
\(110\) 2.25881 0.215369
\(111\) 0 0
\(112\) −1.74317 −0.164714
\(113\) 5.65037 0.531542 0.265771 0.964036i \(-0.414374\pi\)
0.265771 + 0.964036i \(0.414374\pi\)
\(114\) 0 0
\(115\) 3.61358 0.336968
\(116\) 9.23101 0.857078
\(117\) 0 0
\(118\) −15.0256 −1.38322
\(119\) 10.3090 0.945024
\(120\) 0 0
\(121\) 4.60384 0.418531
\(122\) 12.9575 1.17311
\(123\) 0 0
\(124\) −1.86357 −0.167354
\(125\) −5.53127 −0.494732
\(126\) 0 0
\(127\) 4.59502 0.407742 0.203871 0.978998i \(-0.434648\pi\)
0.203871 + 0.978998i \(0.434648\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 1.01235 0.0887892
\(131\) 7.67818 0.670846 0.335423 0.942068i \(-0.391121\pi\)
0.335423 + 0.942068i \(0.391121\pi\)
\(132\) 0 0
\(133\) 8.36796 0.725594
\(134\) 1.67811 0.144966
\(135\) 0 0
\(136\) 5.91394 0.507116
\(137\) −17.1341 −1.46386 −0.731932 0.681378i \(-0.761381\pi\)
−0.731932 + 0.681378i \(0.761381\pi\)
\(138\) 0 0
\(139\) 5.08870 0.431618 0.215809 0.976436i \(-0.430761\pi\)
0.215809 + 0.976436i \(0.430761\pi\)
\(140\) −0.996788 −0.0842439
\(141\) 0 0
\(142\) 13.2197 1.10937
\(143\) 6.99334 0.584812
\(144\) 0 0
\(145\) 5.27852 0.438357
\(146\) −1.36938 −0.113331
\(147\) 0 0
\(148\) 4.03784 0.331908
\(149\) 9.57815 0.784673 0.392336 0.919822i \(-0.371667\pi\)
0.392336 + 0.919822i \(0.371667\pi\)
\(150\) 0 0
\(151\) −11.2568 −0.916065 −0.458033 0.888935i \(-0.651446\pi\)
−0.458033 + 0.888935i \(0.651446\pi\)
\(152\) 4.80043 0.389366
\(153\) 0 0
\(154\) −6.88581 −0.554875
\(155\) −1.06564 −0.0855941
\(156\) 0 0
\(157\) 9.37615 0.748298 0.374149 0.927369i \(-0.377935\pi\)
0.374149 + 0.927369i \(0.377935\pi\)
\(158\) −14.2153 −1.13091
\(159\) 0 0
\(160\) −0.571825 −0.0452067
\(161\) −11.0157 −0.868162
\(162\) 0 0
\(163\) −9.75793 −0.764300 −0.382150 0.924100i \(-0.624816\pi\)
−0.382150 + 0.924100i \(0.624816\pi\)
\(164\) −1.00000 −0.0780869
\(165\) 0 0
\(166\) −14.6290 −1.13543
\(167\) −2.55589 −0.197781 −0.0988904 0.995098i \(-0.531529\pi\)
−0.0988904 + 0.995098i \(0.531529\pi\)
\(168\) 0 0
\(169\) −9.86572 −0.758902
\(170\) 3.38174 0.259367
\(171\) 0 0
\(172\) −4.20700 −0.320781
\(173\) 7.44254 0.565845 0.282923 0.959143i \(-0.408696\pi\)
0.282923 + 0.959143i \(0.408696\pi\)
\(174\) 0 0
\(175\) 8.14586 0.615769
\(176\) −3.95017 −0.297755
\(177\) 0 0
\(178\) 0.353146 0.0264694
\(179\) 20.6356 1.54238 0.771188 0.636607i \(-0.219663\pi\)
0.771188 + 0.636607i \(0.219663\pi\)
\(180\) 0 0
\(181\) 2.50863 0.186465 0.0932324 0.995644i \(-0.470280\pi\)
0.0932324 + 0.995644i \(0.470280\pi\)
\(182\) −3.08609 −0.228756
\(183\) 0 0
\(184\) −6.31937 −0.465870
\(185\) 2.30894 0.169757
\(186\) 0 0
\(187\) 23.3611 1.70833
\(188\) −10.3004 −0.751233
\(189\) 0 0
\(190\) 2.74501 0.199144
\(191\) −16.4651 −1.19138 −0.595688 0.803216i \(-0.703120\pi\)
−0.595688 + 0.803216i \(0.703120\pi\)
\(192\) 0 0
\(193\) −17.3139 −1.24628 −0.623139 0.782111i \(-0.714143\pi\)
−0.623139 + 0.782111i \(0.714143\pi\)
\(194\) −14.0488 −1.00864
\(195\) 0 0
\(196\) −3.96136 −0.282954
\(197\) 22.5592 1.60728 0.803638 0.595119i \(-0.202895\pi\)
0.803638 + 0.595119i \(0.202895\pi\)
\(198\) 0 0
\(199\) 9.81568 0.695815 0.347908 0.937529i \(-0.386892\pi\)
0.347908 + 0.937529i \(0.386892\pi\)
\(200\) 4.67302 0.330432
\(201\) 0 0
\(202\) −11.6537 −0.819954
\(203\) −16.0912 −1.12938
\(204\) 0 0
\(205\) −0.571825 −0.0399380
\(206\) −10.7908 −0.751833
\(207\) 0 0
\(208\) −1.77039 −0.122754
\(209\) 18.9625 1.31166
\(210\) 0 0
\(211\) 8.25850 0.568539 0.284269 0.958744i \(-0.408249\pi\)
0.284269 + 0.958744i \(0.408249\pi\)
\(212\) −4.65229 −0.319520
\(213\) 0 0
\(214\) −9.98635 −0.682653
\(215\) −2.40567 −0.164065
\(216\) 0 0
\(217\) 3.24852 0.220524
\(218\) 16.6089 1.12490
\(219\) 0 0
\(220\) −2.25881 −0.152289
\(221\) 10.4700 0.704286
\(222\) 0 0
\(223\) −17.6663 −1.18302 −0.591511 0.806297i \(-0.701468\pi\)
−0.591511 + 0.806297i \(0.701468\pi\)
\(224\) 1.74317 0.116470
\(225\) 0 0
\(226\) −5.65037 −0.375857
\(227\) 6.16256 0.409024 0.204512 0.978864i \(-0.434439\pi\)
0.204512 + 0.978864i \(0.434439\pi\)
\(228\) 0 0
\(229\) −18.8703 −1.24698 −0.623491 0.781830i \(-0.714286\pi\)
−0.623491 + 0.781830i \(0.714286\pi\)
\(230\) −3.61358 −0.238272
\(231\) 0 0
\(232\) −9.23101 −0.606045
\(233\) 27.5072 1.80205 0.901027 0.433763i \(-0.142814\pi\)
0.901027 + 0.433763i \(0.142814\pi\)
\(234\) 0 0
\(235\) −5.89002 −0.384223
\(236\) 15.0256 0.978082
\(237\) 0 0
\(238\) −10.3090 −0.668233
\(239\) 18.0962 1.17055 0.585273 0.810837i \(-0.300987\pi\)
0.585273 + 0.810837i \(0.300987\pi\)
\(240\) 0 0
\(241\) −12.9959 −0.837140 −0.418570 0.908185i \(-0.637469\pi\)
−0.418570 + 0.908185i \(0.637469\pi\)
\(242\) −4.60384 −0.295946
\(243\) 0 0
\(244\) −12.9575 −0.829517
\(245\) −2.26521 −0.144719
\(246\) 0 0
\(247\) 8.49863 0.540755
\(248\) 1.86357 0.118337
\(249\) 0 0
\(250\) 5.53127 0.349828
\(251\) 15.6586 0.988359 0.494180 0.869360i \(-0.335469\pi\)
0.494180 + 0.869360i \(0.335469\pi\)
\(252\) 0 0
\(253\) −24.9626 −1.56939
\(254\) −4.59502 −0.288317
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 27.0854 1.68954 0.844771 0.535128i \(-0.179737\pi\)
0.844771 + 0.535128i \(0.179737\pi\)
\(258\) 0 0
\(259\) −7.03864 −0.437360
\(260\) −1.01235 −0.0627835
\(261\) 0 0
\(262\) −7.67818 −0.474359
\(263\) 13.2403 0.816430 0.408215 0.912886i \(-0.366151\pi\)
0.408215 + 0.912886i \(0.366151\pi\)
\(264\) 0 0
\(265\) −2.66029 −0.163421
\(266\) −8.36796 −0.513073
\(267\) 0 0
\(268\) −1.67811 −0.102507
\(269\) −9.00627 −0.549122 −0.274561 0.961570i \(-0.588533\pi\)
−0.274561 + 0.961570i \(0.588533\pi\)
\(270\) 0 0
\(271\) 8.43688 0.512504 0.256252 0.966610i \(-0.417512\pi\)
0.256252 + 0.966610i \(0.417512\pi\)
\(272\) −5.91394 −0.358585
\(273\) 0 0
\(274\) 17.1341 1.03511
\(275\) 18.4592 1.11313
\(276\) 0 0
\(277\) −0.111475 −0.00669791 −0.00334896 0.999994i \(-0.501066\pi\)
−0.00334896 + 0.999994i \(0.501066\pi\)
\(278\) −5.08870 −0.305200
\(279\) 0 0
\(280\) 0.996788 0.0595695
\(281\) −7.73748 −0.461580 −0.230790 0.973004i \(-0.574131\pi\)
−0.230790 + 0.973004i \(0.574131\pi\)
\(282\) 0 0
\(283\) −7.71175 −0.458416 −0.229208 0.973377i \(-0.573614\pi\)
−0.229208 + 0.973377i \(0.573614\pi\)
\(284\) −13.2197 −0.784446
\(285\) 0 0
\(286\) −6.99334 −0.413525
\(287\) 1.74317 0.102896
\(288\) 0 0
\(289\) 17.9746 1.05733
\(290\) −5.27852 −0.309966
\(291\) 0 0
\(292\) 1.36938 0.0801368
\(293\) −8.10536 −0.473520 −0.236760 0.971568i \(-0.576086\pi\)
−0.236760 + 0.971568i \(0.576086\pi\)
\(294\) 0 0
\(295\) 8.59201 0.500246
\(296\) −4.03784 −0.234695
\(297\) 0 0
\(298\) −9.57815 −0.554847
\(299\) −11.1878 −0.647004
\(300\) 0 0
\(301\) 7.33351 0.422697
\(302\) 11.2568 0.647756
\(303\) 0 0
\(304\) −4.80043 −0.275324
\(305\) −7.40941 −0.424262
\(306\) 0 0
\(307\) 10.1284 0.578061 0.289031 0.957320i \(-0.406667\pi\)
0.289031 + 0.957320i \(0.406667\pi\)
\(308\) 6.88581 0.392356
\(309\) 0 0
\(310\) 1.06564 0.0605241
\(311\) −17.8551 −1.01247 −0.506234 0.862396i \(-0.668963\pi\)
−0.506234 + 0.862396i \(0.668963\pi\)
\(312\) 0 0
\(313\) −0.424994 −0.0240221 −0.0120110 0.999928i \(-0.503823\pi\)
−0.0120110 + 0.999928i \(0.503823\pi\)
\(314\) −9.37615 −0.529127
\(315\) 0 0
\(316\) 14.2153 0.799675
\(317\) −14.8450 −0.833779 −0.416889 0.908957i \(-0.636880\pi\)
−0.416889 + 0.908957i \(0.636880\pi\)
\(318\) 0 0
\(319\) −36.4641 −2.04159
\(320\) 0.571825 0.0319660
\(321\) 0 0
\(322\) 11.0157 0.613883
\(323\) 28.3894 1.57963
\(324\) 0 0
\(325\) 8.27306 0.458907
\(326\) 9.75793 0.540442
\(327\) 0 0
\(328\) 1.00000 0.0552158
\(329\) 17.9553 0.989909
\(330\) 0 0
\(331\) −27.2787 −1.49937 −0.749686 0.661794i \(-0.769795\pi\)
−0.749686 + 0.661794i \(0.769795\pi\)
\(332\) 14.6290 0.802870
\(333\) 0 0
\(334\) 2.55589 0.139852
\(335\) −0.959584 −0.0524277
\(336\) 0 0
\(337\) 19.9306 1.08569 0.542844 0.839833i \(-0.317347\pi\)
0.542844 + 0.839833i \(0.317347\pi\)
\(338\) 9.86572 0.536625
\(339\) 0 0
\(340\) −3.38174 −0.183400
\(341\) 7.36143 0.398644
\(342\) 0 0
\(343\) 19.1075 1.03171
\(344\) 4.20700 0.226826
\(345\) 0 0
\(346\) −7.44254 −0.400113
\(347\) −18.1282 −0.973174 −0.486587 0.873632i \(-0.661758\pi\)
−0.486587 + 0.873632i \(0.661758\pi\)
\(348\) 0 0
\(349\) 31.4839 1.68529 0.842646 0.538467i \(-0.180996\pi\)
0.842646 + 0.538467i \(0.180996\pi\)
\(350\) −8.14586 −0.435414
\(351\) 0 0
\(352\) 3.95017 0.210545
\(353\) 6.61288 0.351968 0.175984 0.984393i \(-0.443689\pi\)
0.175984 + 0.984393i \(0.443689\pi\)
\(354\) 0 0
\(355\) −7.55936 −0.401209
\(356\) −0.353146 −0.0187167
\(357\) 0 0
\(358\) −20.6356 −1.09063
\(359\) 20.8524 1.10055 0.550275 0.834984i \(-0.314523\pi\)
0.550275 + 0.834984i \(0.314523\pi\)
\(360\) 0 0
\(361\) 4.04413 0.212849
\(362\) −2.50863 −0.131851
\(363\) 0 0
\(364\) 3.08609 0.161755
\(365\) 0.783045 0.0409864
\(366\) 0 0
\(367\) 24.1222 1.25917 0.629584 0.776933i \(-0.283226\pi\)
0.629584 + 0.776933i \(0.283226\pi\)
\(368\) 6.31937 0.329420
\(369\) 0 0
\(370\) −2.30894 −0.120036
\(371\) 8.10972 0.421036
\(372\) 0 0
\(373\) 8.10825 0.419829 0.209915 0.977720i \(-0.432681\pi\)
0.209915 + 0.977720i \(0.432681\pi\)
\(374\) −23.3611 −1.20797
\(375\) 0 0
\(376\) 10.3004 0.531202
\(377\) −16.3425 −0.841681
\(378\) 0 0
\(379\) 22.5064 1.15608 0.578039 0.816009i \(-0.303818\pi\)
0.578039 + 0.816009i \(0.303818\pi\)
\(380\) −2.74501 −0.140816
\(381\) 0 0
\(382\) 16.4651 0.842429
\(383\) 3.44414 0.175987 0.0879936 0.996121i \(-0.471955\pi\)
0.0879936 + 0.996121i \(0.471955\pi\)
\(384\) 0 0
\(385\) 3.93748 0.200673
\(386\) 17.3139 0.881252
\(387\) 0 0
\(388\) 14.0488 0.713219
\(389\) −29.7239 −1.50706 −0.753531 0.657412i \(-0.771651\pi\)
−0.753531 + 0.657412i \(0.771651\pi\)
\(390\) 0 0
\(391\) −37.3724 −1.89000
\(392\) 3.96136 0.200079
\(393\) 0 0
\(394\) −22.5592 −1.13652
\(395\) 8.12868 0.408999
\(396\) 0 0
\(397\) −18.6701 −0.937027 −0.468513 0.883456i \(-0.655210\pi\)
−0.468513 + 0.883456i \(0.655210\pi\)
\(398\) −9.81568 −0.492016
\(399\) 0 0
\(400\) −4.67302 −0.233651
\(401\) −11.3944 −0.569007 −0.284503 0.958675i \(-0.591829\pi\)
−0.284503 + 0.958675i \(0.591829\pi\)
\(402\) 0 0
\(403\) 3.29925 0.164347
\(404\) 11.6537 0.579795
\(405\) 0 0
\(406\) 16.0912 0.798593
\(407\) −15.9502 −0.790620
\(408\) 0 0
\(409\) 11.8888 0.587864 0.293932 0.955826i \(-0.405036\pi\)
0.293932 + 0.955826i \(0.405036\pi\)
\(410\) 0.571825 0.0282404
\(411\) 0 0
\(412\) 10.7908 0.531626
\(413\) −26.1921 −1.28883
\(414\) 0 0
\(415\) 8.36522 0.410632
\(416\) 1.77039 0.0868005
\(417\) 0 0
\(418\) −18.9625 −0.927487
\(419\) −5.48672 −0.268044 −0.134022 0.990978i \(-0.542789\pi\)
−0.134022 + 0.990978i \(0.542789\pi\)
\(420\) 0 0
\(421\) −5.04657 −0.245955 −0.122977 0.992409i \(-0.539244\pi\)
−0.122977 + 0.992409i \(0.539244\pi\)
\(422\) −8.25850 −0.402017
\(423\) 0 0
\(424\) 4.65229 0.225935
\(425\) 27.6359 1.34054
\(426\) 0 0
\(427\) 22.5871 1.09306
\(428\) 9.98635 0.482708
\(429\) 0 0
\(430\) 2.40567 0.116012
\(431\) 3.54756 0.170880 0.0854399 0.996343i \(-0.472770\pi\)
0.0854399 + 0.996343i \(0.472770\pi\)
\(432\) 0 0
\(433\) −3.74015 −0.179740 −0.0898702 0.995953i \(-0.528645\pi\)
−0.0898702 + 0.995953i \(0.528645\pi\)
\(434\) −3.24852 −0.155934
\(435\) 0 0
\(436\) −16.6089 −0.795423
\(437\) −30.3357 −1.45115
\(438\) 0 0
\(439\) −10.8710 −0.518845 −0.259423 0.965764i \(-0.583532\pi\)
−0.259423 + 0.965764i \(0.583532\pi\)
\(440\) 2.25881 0.107684
\(441\) 0 0
\(442\) −10.4700 −0.498006
\(443\) −9.75286 −0.463372 −0.231686 0.972791i \(-0.574424\pi\)
−0.231686 + 0.972791i \(0.574424\pi\)
\(444\) 0 0
\(445\) −0.201938 −0.00957277
\(446\) 17.6663 0.836523
\(447\) 0 0
\(448\) −1.74317 −0.0823570
\(449\) −37.7704 −1.78249 −0.891247 0.453518i \(-0.850169\pi\)
−0.891247 + 0.453518i \(0.850169\pi\)
\(450\) 0 0
\(451\) 3.95017 0.186006
\(452\) 5.65037 0.265771
\(453\) 0 0
\(454\) −6.16256 −0.289223
\(455\) 1.76470 0.0827305
\(456\) 0 0
\(457\) −16.2991 −0.762440 −0.381220 0.924484i \(-0.624496\pi\)
−0.381220 + 0.924484i \(0.624496\pi\)
\(458\) 18.8703 0.881750
\(459\) 0 0
\(460\) 3.61358 0.168484
\(461\) −8.27402 −0.385360 −0.192680 0.981262i \(-0.561718\pi\)
−0.192680 + 0.981262i \(0.561718\pi\)
\(462\) 0 0
\(463\) 19.3692 0.900164 0.450082 0.892987i \(-0.351395\pi\)
0.450082 + 0.892987i \(0.351395\pi\)
\(464\) 9.23101 0.428539
\(465\) 0 0
\(466\) −27.5072 −1.27424
\(467\) −20.5070 −0.948950 −0.474475 0.880269i \(-0.657362\pi\)
−0.474475 + 0.880269i \(0.657362\pi\)
\(468\) 0 0
\(469\) 2.92523 0.135074
\(470\) 5.89002 0.271686
\(471\) 0 0
\(472\) −15.0256 −0.691609
\(473\) 16.6184 0.764113
\(474\) 0 0
\(475\) 22.4325 1.02927
\(476\) 10.3090 0.472512
\(477\) 0 0
\(478\) −18.0962 −0.827701
\(479\) −5.43080 −0.248140 −0.124070 0.992273i \(-0.539595\pi\)
−0.124070 + 0.992273i \(0.539595\pi\)
\(480\) 0 0
\(481\) −7.14855 −0.325946
\(482\) 12.9959 0.591947
\(483\) 0 0
\(484\) 4.60384 0.209266
\(485\) 8.03345 0.364780
\(486\) 0 0
\(487\) 2.16789 0.0982363 0.0491181 0.998793i \(-0.484359\pi\)
0.0491181 + 0.998793i \(0.484359\pi\)
\(488\) 12.9575 0.586557
\(489\) 0 0
\(490\) 2.26521 0.102332
\(491\) 14.0211 0.632765 0.316383 0.948632i \(-0.397532\pi\)
0.316383 + 0.948632i \(0.397532\pi\)
\(492\) 0 0
\(493\) −54.5916 −2.45868
\(494\) −8.49863 −0.382371
\(495\) 0 0
\(496\) −1.86357 −0.0836769
\(497\) 23.0442 1.03367
\(498\) 0 0
\(499\) 34.8634 1.56070 0.780350 0.625343i \(-0.215041\pi\)
0.780350 + 0.625343i \(0.215041\pi\)
\(500\) −5.53127 −0.247366
\(501\) 0 0
\(502\) −15.6586 −0.698875
\(503\) 16.7032 0.744760 0.372380 0.928080i \(-0.378542\pi\)
0.372380 + 0.928080i \(0.378542\pi\)
\(504\) 0 0
\(505\) 6.66390 0.296540
\(506\) 24.9626 1.10972
\(507\) 0 0
\(508\) 4.59502 0.203871
\(509\) −23.3246 −1.03385 −0.516923 0.856032i \(-0.672923\pi\)
−0.516923 + 0.856032i \(0.672923\pi\)
\(510\) 0 0
\(511\) −2.38706 −0.105597
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −27.0854 −1.19469
\(515\) 6.17047 0.271904
\(516\) 0 0
\(517\) 40.6883 1.78947
\(518\) 7.03864 0.309260
\(519\) 0 0
\(520\) 1.01235 0.0443946
\(521\) 2.52461 0.110605 0.0553027 0.998470i \(-0.482388\pi\)
0.0553027 + 0.998470i \(0.482388\pi\)
\(522\) 0 0
\(523\) 30.7486 1.34454 0.672270 0.740306i \(-0.265319\pi\)
0.672270 + 0.740306i \(0.265319\pi\)
\(524\) 7.67818 0.335423
\(525\) 0 0
\(526\) −13.2403 −0.577303
\(527\) 11.0210 0.480084
\(528\) 0 0
\(529\) 16.9345 0.736282
\(530\) 2.66029 0.115556
\(531\) 0 0
\(532\) 8.36796 0.362797
\(533\) 1.77039 0.0766841
\(534\) 0 0
\(535\) 5.71044 0.246884
\(536\) 1.67811 0.0724832
\(537\) 0 0
\(538\) 9.00627 0.388288
\(539\) 15.6481 0.674009
\(540\) 0 0
\(541\) 23.3972 1.00593 0.502963 0.864308i \(-0.332243\pi\)
0.502963 + 0.864308i \(0.332243\pi\)
\(542\) −8.43688 −0.362395
\(543\) 0 0
\(544\) 5.91394 0.253558
\(545\) −9.49740 −0.406824
\(546\) 0 0
\(547\) 0.850280 0.0363553 0.0181777 0.999835i \(-0.494214\pi\)
0.0181777 + 0.999835i \(0.494214\pi\)
\(548\) −17.1341 −0.731932
\(549\) 0 0
\(550\) −18.4592 −0.787103
\(551\) −44.3128 −1.88779
\(552\) 0 0
\(553\) −24.7797 −1.05374
\(554\) 0.111475 0.00473614
\(555\) 0 0
\(556\) 5.08870 0.215809
\(557\) 28.0828 1.18991 0.594954 0.803760i \(-0.297170\pi\)
0.594954 + 0.803760i \(0.297170\pi\)
\(558\) 0 0
\(559\) 7.44803 0.315018
\(560\) −0.996788 −0.0421220
\(561\) 0 0
\(562\) 7.73748 0.326386
\(563\) −21.6682 −0.913205 −0.456603 0.889671i \(-0.650934\pi\)
−0.456603 + 0.889671i \(0.650934\pi\)
\(564\) 0 0
\(565\) 3.23102 0.135930
\(566\) 7.71175 0.324149
\(567\) 0 0
\(568\) 13.2197 0.554687
\(569\) 46.0885 1.93213 0.966065 0.258300i \(-0.0831624\pi\)
0.966065 + 0.258300i \(0.0831624\pi\)
\(570\) 0 0
\(571\) 26.6870 1.11682 0.558409 0.829566i \(-0.311412\pi\)
0.558409 + 0.829566i \(0.311412\pi\)
\(572\) 6.99334 0.292406
\(573\) 0 0
\(574\) −1.74317 −0.0727585
\(575\) −29.5305 −1.23151
\(576\) 0 0
\(577\) −5.32704 −0.221768 −0.110884 0.993833i \(-0.535368\pi\)
−0.110884 + 0.993833i \(0.535368\pi\)
\(578\) −17.9746 −0.747646
\(579\) 0 0
\(580\) 5.27852 0.219179
\(581\) −25.5008 −1.05795
\(582\) 0 0
\(583\) 18.3773 0.761111
\(584\) −1.36938 −0.0566653
\(585\) 0 0
\(586\) 8.10536 0.334830
\(587\) 29.2750 1.20831 0.604153 0.796868i \(-0.293511\pi\)
0.604153 + 0.796868i \(0.293511\pi\)
\(588\) 0 0
\(589\) 8.94595 0.368611
\(590\) −8.59201 −0.353727
\(591\) 0 0
\(592\) 4.03784 0.165954
\(593\) 11.9055 0.488899 0.244450 0.969662i \(-0.421393\pi\)
0.244450 + 0.969662i \(0.421393\pi\)
\(594\) 0 0
\(595\) 5.89494 0.241669
\(596\) 9.57815 0.392336
\(597\) 0 0
\(598\) 11.1878 0.457501
\(599\) −36.1168 −1.47569 −0.737846 0.674969i \(-0.764157\pi\)
−0.737846 + 0.674969i \(0.764157\pi\)
\(600\) 0 0
\(601\) −10.3361 −0.421618 −0.210809 0.977527i \(-0.567610\pi\)
−0.210809 + 0.977527i \(0.567610\pi\)
\(602\) −7.33351 −0.298892
\(603\) 0 0
\(604\) −11.2568 −0.458033
\(605\) 2.63259 0.107030
\(606\) 0 0
\(607\) −11.1709 −0.453411 −0.226705 0.973963i \(-0.572795\pi\)
−0.226705 + 0.973963i \(0.572795\pi\)
\(608\) 4.80043 0.194683
\(609\) 0 0
\(610\) 7.40941 0.299998
\(611\) 18.2357 0.737738
\(612\) 0 0
\(613\) 15.1214 0.610746 0.305373 0.952233i \(-0.401219\pi\)
0.305373 + 0.952233i \(0.401219\pi\)
\(614\) −10.1284 −0.408751
\(615\) 0 0
\(616\) −6.88581 −0.277437
\(617\) 22.3959 0.901623 0.450812 0.892619i \(-0.351135\pi\)
0.450812 + 0.892619i \(0.351135\pi\)
\(618\) 0 0
\(619\) −31.4893 −1.26566 −0.632830 0.774290i \(-0.718107\pi\)
−0.632830 + 0.774290i \(0.718107\pi\)
\(620\) −1.06564 −0.0427970
\(621\) 0 0
\(622\) 17.8551 0.715923
\(623\) 0.615594 0.0246632
\(624\) 0 0
\(625\) 20.2022 0.808086
\(626\) 0.424994 0.0169862
\(627\) 0 0
\(628\) 9.37615 0.374149
\(629\) −23.8795 −0.952139
\(630\) 0 0
\(631\) 21.9137 0.872369 0.436185 0.899857i \(-0.356329\pi\)
0.436185 + 0.899857i \(0.356329\pi\)
\(632\) −14.2153 −0.565456
\(633\) 0 0
\(634\) 14.8450 0.589570
\(635\) 2.62755 0.104271
\(636\) 0 0
\(637\) 7.01315 0.277871
\(638\) 36.4641 1.44363
\(639\) 0 0
\(640\) −0.571825 −0.0226034
\(641\) 20.8650 0.824117 0.412059 0.911157i \(-0.364810\pi\)
0.412059 + 0.911157i \(0.364810\pi\)
\(642\) 0 0
\(643\) 25.4941 1.00539 0.502694 0.864464i \(-0.332342\pi\)
0.502694 + 0.864464i \(0.332342\pi\)
\(644\) −11.0157 −0.434081
\(645\) 0 0
\(646\) −28.3894 −1.11697
\(647\) −32.0475 −1.25992 −0.629959 0.776628i \(-0.716928\pi\)
−0.629959 + 0.776628i \(0.716928\pi\)
\(648\) 0 0
\(649\) −59.3536 −2.32983
\(650\) −8.27306 −0.324496
\(651\) 0 0
\(652\) −9.75793 −0.382150
\(653\) −6.78054 −0.265343 −0.132672 0.991160i \(-0.542356\pi\)
−0.132672 + 0.991160i \(0.542356\pi\)
\(654\) 0 0
\(655\) 4.39058 0.171554
\(656\) −1.00000 −0.0390434
\(657\) 0 0
\(658\) −17.9553 −0.699971
\(659\) 37.1841 1.44849 0.724243 0.689545i \(-0.242190\pi\)
0.724243 + 0.689545i \(0.242190\pi\)
\(660\) 0 0
\(661\) 49.4999 1.92532 0.962662 0.270708i \(-0.0872577\pi\)
0.962662 + 0.270708i \(0.0872577\pi\)
\(662\) 27.2787 1.06022
\(663\) 0 0
\(664\) −14.6290 −0.567715
\(665\) 4.78501 0.185555
\(666\) 0 0
\(667\) 58.3342 2.25871
\(668\) −2.55589 −0.0988904
\(669\) 0 0
\(670\) 0.959584 0.0370720
\(671\) 51.1842 1.97594
\(672\) 0 0
\(673\) −9.72893 −0.375023 −0.187511 0.982262i \(-0.560042\pi\)
−0.187511 + 0.982262i \(0.560042\pi\)
\(674\) −19.9306 −0.767698
\(675\) 0 0
\(676\) −9.86572 −0.379451
\(677\) −43.0573 −1.65483 −0.827414 0.561593i \(-0.810189\pi\)
−0.827414 + 0.561593i \(0.810189\pi\)
\(678\) 0 0
\(679\) −24.4894 −0.939817
\(680\) 3.38174 0.129684
\(681\) 0 0
\(682\) −7.36143 −0.281884
\(683\) 34.8567 1.33375 0.666877 0.745168i \(-0.267631\pi\)
0.666877 + 0.745168i \(0.267631\pi\)
\(684\) 0 0
\(685\) −9.79770 −0.374351
\(686\) −19.1075 −0.729528
\(687\) 0 0
\(688\) −4.20700 −0.160390
\(689\) 8.23636 0.313780
\(690\) 0 0
\(691\) −23.8259 −0.906380 −0.453190 0.891414i \(-0.649714\pi\)
−0.453190 + 0.891414i \(0.649714\pi\)
\(692\) 7.44254 0.282923
\(693\) 0 0
\(694\) 18.1282 0.688138
\(695\) 2.90985 0.110377
\(696\) 0 0
\(697\) 5.91394 0.224006
\(698\) −31.4839 −1.19168
\(699\) 0 0
\(700\) 8.14586 0.307884
\(701\) 8.27804 0.312657 0.156329 0.987705i \(-0.450034\pi\)
0.156329 + 0.987705i \(0.450034\pi\)
\(702\) 0 0
\(703\) −19.3834 −0.731058
\(704\) −3.95017 −0.148878
\(705\) 0 0
\(706\) −6.61288 −0.248879
\(707\) −20.3144 −0.764003
\(708\) 0 0
\(709\) 6.53669 0.245491 0.122745 0.992438i \(-0.460830\pi\)
0.122745 + 0.992438i \(0.460830\pi\)
\(710\) 7.55936 0.283698
\(711\) 0 0
\(712\) 0.353146 0.0132347
\(713\) −11.7766 −0.441038
\(714\) 0 0
\(715\) 3.99897 0.149553
\(716\) 20.6356 0.771188
\(717\) 0 0
\(718\) −20.8524 −0.778206
\(719\) 40.0246 1.49267 0.746334 0.665572i \(-0.231812\pi\)
0.746334 + 0.665572i \(0.231812\pi\)
\(720\) 0 0
\(721\) −18.8103 −0.700531
\(722\) −4.04413 −0.150507
\(723\) 0 0
\(724\) 2.50863 0.0932324
\(725\) −43.1367 −1.60206
\(726\) 0 0
\(727\) 45.1389 1.67411 0.837054 0.547120i \(-0.184276\pi\)
0.837054 + 0.547120i \(0.184276\pi\)
\(728\) −3.08609 −0.114378
\(729\) 0 0
\(730\) −0.783045 −0.0289818
\(731\) 24.8799 0.920218
\(732\) 0 0
\(733\) −50.2128 −1.85465 −0.927326 0.374254i \(-0.877899\pi\)
−0.927326 + 0.374254i \(0.877899\pi\)
\(734\) −24.1222 −0.890366
\(735\) 0 0
\(736\) −6.31937 −0.232935
\(737\) 6.62881 0.244175
\(738\) 0 0
\(739\) −16.1349 −0.593533 −0.296767 0.954950i \(-0.595908\pi\)
−0.296767 + 0.954950i \(0.595908\pi\)
\(740\) 2.30894 0.0848783
\(741\) 0 0
\(742\) −8.10972 −0.297717
\(743\) 11.9862 0.439732 0.219866 0.975530i \(-0.429438\pi\)
0.219866 + 0.975530i \(0.429438\pi\)
\(744\) 0 0
\(745\) 5.47703 0.200663
\(746\) −8.10825 −0.296864
\(747\) 0 0
\(748\) 23.3611 0.854165
\(749\) −17.4079 −0.636070
\(750\) 0 0
\(751\) 4.09767 0.149526 0.0747630 0.997201i \(-0.476180\pi\)
0.0747630 + 0.997201i \(0.476180\pi\)
\(752\) −10.3004 −0.375617
\(753\) 0 0
\(754\) 16.3425 0.595158
\(755\) −6.43692 −0.234263
\(756\) 0 0
\(757\) −10.8013 −0.392579 −0.196289 0.980546i \(-0.562889\pi\)
−0.196289 + 0.980546i \(0.562889\pi\)
\(758\) −22.5064 −0.817471
\(759\) 0 0
\(760\) 2.74501 0.0995718
\(761\) 13.7238 0.497487 0.248743 0.968569i \(-0.419982\pi\)
0.248743 + 0.968569i \(0.419982\pi\)
\(762\) 0 0
\(763\) 28.9522 1.04814
\(764\) −16.4651 −0.595688
\(765\) 0 0
\(766\) −3.44414 −0.124442
\(767\) −26.6011 −0.960511
\(768\) 0 0
\(769\) 21.7282 0.783539 0.391769 0.920063i \(-0.371863\pi\)
0.391769 + 0.920063i \(0.371863\pi\)
\(770\) −3.93748 −0.141897
\(771\) 0 0
\(772\) −17.3139 −0.623139
\(773\) −24.6477 −0.886517 −0.443258 0.896394i \(-0.646178\pi\)
−0.443258 + 0.896394i \(0.646178\pi\)
\(774\) 0 0
\(775\) 8.70850 0.312819
\(776\) −14.0488 −0.504322
\(777\) 0 0
\(778\) 29.7239 1.06565
\(779\) 4.80043 0.171993
\(780\) 0 0
\(781\) 52.2201 1.86858
\(782\) 37.3724 1.33643
\(783\) 0 0
\(784\) −3.96136 −0.141477
\(785\) 5.36152 0.191361
\(786\) 0 0
\(787\) −23.2123 −0.827430 −0.413715 0.910407i \(-0.635769\pi\)
−0.413715 + 0.910407i \(0.635769\pi\)
\(788\) 22.5592 0.803638
\(789\) 0 0
\(790\) −8.12868 −0.289206
\(791\) −9.84955 −0.350210
\(792\) 0 0
\(793\) 22.9398 0.814615
\(794\) 18.6701 0.662578
\(795\) 0 0
\(796\) 9.81568 0.347908
\(797\) −21.2609 −0.753098 −0.376549 0.926397i \(-0.622889\pi\)
−0.376549 + 0.926397i \(0.622889\pi\)
\(798\) 0 0
\(799\) 60.9159 2.15505
\(800\) 4.67302 0.165216
\(801\) 0 0
\(802\) 11.3944 0.402349
\(803\) −5.40927 −0.190889
\(804\) 0 0
\(805\) −6.29907 −0.222013
\(806\) −3.29925 −0.116211
\(807\) 0 0
\(808\) −11.6537 −0.409977
\(809\) −28.1507 −0.989725 −0.494862 0.868971i \(-0.664782\pi\)
−0.494862 + 0.868971i \(0.664782\pi\)
\(810\) 0 0
\(811\) 12.4579 0.437454 0.218727 0.975786i \(-0.429810\pi\)
0.218727 + 0.975786i \(0.429810\pi\)
\(812\) −16.0912 −0.564691
\(813\) 0 0
\(814\) 15.9502 0.559053
\(815\) −5.57983 −0.195453
\(816\) 0 0
\(817\) 20.1954 0.706548
\(818\) −11.8888 −0.415683
\(819\) 0 0
\(820\) −0.571825 −0.0199690
\(821\) 3.49158 0.121857 0.0609285 0.998142i \(-0.480594\pi\)
0.0609285 + 0.998142i \(0.480594\pi\)
\(822\) 0 0
\(823\) 28.4188 0.990618 0.495309 0.868717i \(-0.335055\pi\)
0.495309 + 0.868717i \(0.335055\pi\)
\(824\) −10.7908 −0.375917
\(825\) 0 0
\(826\) 26.1921 0.911341
\(827\) 50.5457 1.75765 0.878823 0.477147i \(-0.158329\pi\)
0.878823 + 0.477147i \(0.158329\pi\)
\(828\) 0 0
\(829\) 6.29091 0.218492 0.109246 0.994015i \(-0.465156\pi\)
0.109246 + 0.994015i \(0.465156\pi\)
\(830\) −8.36522 −0.290361
\(831\) 0 0
\(832\) −1.77039 −0.0613772
\(833\) 23.4272 0.811706
\(834\) 0 0
\(835\) −1.46152 −0.0505781
\(836\) 18.9625 0.655832
\(837\) 0 0
\(838\) 5.48672 0.189536
\(839\) −6.76167 −0.233439 −0.116719 0.993165i \(-0.537238\pi\)
−0.116719 + 0.993165i \(0.537238\pi\)
\(840\) 0 0
\(841\) 56.2115 1.93833
\(842\) 5.04657 0.173916
\(843\) 0 0
\(844\) 8.25850 0.284269
\(845\) −5.64147 −0.194072
\(846\) 0 0
\(847\) −8.02527 −0.275752
\(848\) −4.65229 −0.159760
\(849\) 0 0
\(850\) −27.6359 −0.947904
\(851\) 25.5166 0.874699
\(852\) 0 0
\(853\) 19.9536 0.683199 0.341600 0.939846i \(-0.389031\pi\)
0.341600 + 0.939846i \(0.389031\pi\)
\(854\) −22.5871 −0.772913
\(855\) 0 0
\(856\) −9.98635 −0.341326
\(857\) 30.9581 1.05751 0.528754 0.848775i \(-0.322660\pi\)
0.528754 + 0.848775i \(0.322660\pi\)
\(858\) 0 0
\(859\) 21.6755 0.739558 0.369779 0.929120i \(-0.379433\pi\)
0.369779 + 0.929120i \(0.379433\pi\)
\(860\) −2.40567 −0.0820326
\(861\) 0 0
\(862\) −3.54756 −0.120830
\(863\) 12.7614 0.434402 0.217201 0.976127i \(-0.430307\pi\)
0.217201 + 0.976127i \(0.430307\pi\)
\(864\) 0 0
\(865\) 4.25583 0.144703
\(866\) 3.74015 0.127096
\(867\) 0 0
\(868\) 3.24852 0.110262
\(869\) −56.1530 −1.90486
\(870\) 0 0
\(871\) 2.97090 0.100665
\(872\) 16.6089 0.562449
\(873\) 0 0
\(874\) 30.3357 1.02612
\(875\) 9.64194 0.325957
\(876\) 0 0
\(877\) −52.9707 −1.78869 −0.894346 0.447376i \(-0.852359\pi\)
−0.894346 + 0.447376i \(0.852359\pi\)
\(878\) 10.8710 0.366879
\(879\) 0 0
\(880\) −2.25881 −0.0761443
\(881\) 1.17039 0.0394313 0.0197156 0.999806i \(-0.493724\pi\)
0.0197156 + 0.999806i \(0.493724\pi\)
\(882\) 0 0
\(883\) −12.9169 −0.434688 −0.217344 0.976095i \(-0.569739\pi\)
−0.217344 + 0.976095i \(0.569739\pi\)
\(884\) 10.4700 0.352143
\(885\) 0 0
\(886\) 9.75286 0.327654
\(887\) 4.14949 0.139326 0.0696631 0.997571i \(-0.477808\pi\)
0.0696631 + 0.997571i \(0.477808\pi\)
\(888\) 0 0
\(889\) −8.00990 −0.268643
\(890\) 0.201938 0.00676897
\(891\) 0 0
\(892\) −17.6663 −0.591511
\(893\) 49.4463 1.65466
\(894\) 0 0
\(895\) 11.8000 0.394429
\(896\) 1.74317 0.0582352
\(897\) 0 0
\(898\) 37.7704 1.26041
\(899\) −17.2027 −0.573741
\(900\) 0 0
\(901\) 27.5133 0.916602
\(902\) −3.95017 −0.131526
\(903\) 0 0
\(904\) −5.65037 −0.187928
\(905\) 1.43450 0.0476843
\(906\) 0 0
\(907\) −18.3173 −0.608216 −0.304108 0.952638i \(-0.598358\pi\)
−0.304108 + 0.952638i \(0.598358\pi\)
\(908\) 6.16256 0.204512
\(909\) 0 0
\(910\) −1.76470 −0.0584993
\(911\) −33.3440 −1.10474 −0.552369 0.833600i \(-0.686276\pi\)
−0.552369 + 0.833600i \(0.686276\pi\)
\(912\) 0 0
\(913\) −57.7870 −1.91247
\(914\) 16.2991 0.539127
\(915\) 0 0
\(916\) −18.8703 −0.623491
\(917\) −13.3844 −0.441991
\(918\) 0 0
\(919\) −1.65034 −0.0544397 −0.0272198 0.999629i \(-0.508665\pi\)
−0.0272198 + 0.999629i \(0.508665\pi\)
\(920\) −3.61358 −0.119136
\(921\) 0 0
\(922\) 8.27402 0.272490
\(923\) 23.4040 0.770353
\(924\) 0 0
\(925\) −18.8689 −0.620405
\(926\) −19.3692 −0.636512
\(927\) 0 0
\(928\) −9.23101 −0.303023
\(929\) −7.07179 −0.232018 −0.116009 0.993248i \(-0.537010\pi\)
−0.116009 + 0.993248i \(0.537010\pi\)
\(930\) 0 0
\(931\) 19.0162 0.623232
\(932\) 27.5072 0.901027
\(933\) 0 0
\(934\) 20.5070 0.671009
\(935\) 13.3584 0.436868
\(936\) 0 0
\(937\) −44.6691 −1.45928 −0.729638 0.683833i \(-0.760312\pi\)
−0.729638 + 0.683833i \(0.760312\pi\)
\(938\) −2.92523 −0.0955120
\(939\) 0 0
\(940\) −5.89002 −0.192111
\(941\) 4.34217 0.141551 0.0707754 0.997492i \(-0.477453\pi\)
0.0707754 + 0.997492i \(0.477453\pi\)
\(942\) 0 0
\(943\) −6.31937 −0.205787
\(944\) 15.0256 0.489041
\(945\) 0 0
\(946\) −16.6184 −0.540310
\(947\) 47.4683 1.54251 0.771256 0.636525i \(-0.219629\pi\)
0.771256 + 0.636525i \(0.219629\pi\)
\(948\) 0 0
\(949\) −2.42433 −0.0786971
\(950\) −22.4325 −0.727806
\(951\) 0 0
\(952\) −10.3090 −0.334116
\(953\) 3.96085 0.128304 0.0641522 0.997940i \(-0.479566\pi\)
0.0641522 + 0.997940i \(0.479566\pi\)
\(954\) 0 0
\(955\) −9.41518 −0.304668
\(956\) 18.0962 0.585273
\(957\) 0 0
\(958\) 5.43080 0.175461
\(959\) 29.8676 0.964475
\(960\) 0 0
\(961\) −27.5271 −0.887971
\(962\) 7.14855 0.230478
\(963\) 0 0
\(964\) −12.9959 −0.418570
\(965\) −9.90050 −0.318708
\(966\) 0 0
\(967\) 14.5697 0.468531 0.234266 0.972173i \(-0.424731\pi\)
0.234266 + 0.972173i \(0.424731\pi\)
\(968\) −4.60384 −0.147973
\(969\) 0 0
\(970\) −8.03345 −0.257938
\(971\) −50.9210 −1.63413 −0.817066 0.576544i \(-0.804401\pi\)
−0.817066 + 0.576544i \(0.804401\pi\)
\(972\) 0 0
\(973\) −8.87046 −0.284374
\(974\) −2.16789 −0.0694635
\(975\) 0 0
\(976\) −12.9575 −0.414759
\(977\) 50.5222 1.61635 0.808175 0.588942i \(-0.200456\pi\)
0.808175 + 0.588942i \(0.200456\pi\)
\(978\) 0 0
\(979\) 1.39499 0.0445840
\(980\) −2.26521 −0.0723594
\(981\) 0 0
\(982\) −14.0211 −0.447433
\(983\) −33.0892 −1.05538 −0.527691 0.849437i \(-0.676942\pi\)
−0.527691 + 0.849437i \(0.676942\pi\)
\(984\) 0 0
\(985\) 12.8999 0.411025
\(986\) 54.5916 1.73855
\(987\) 0 0
\(988\) 8.49863 0.270377
\(989\) −26.5856 −0.845373
\(990\) 0 0
\(991\) 20.4427 0.649385 0.324692 0.945820i \(-0.394739\pi\)
0.324692 + 0.945820i \(0.394739\pi\)
\(992\) 1.86357 0.0591685
\(993\) 0 0
\(994\) −23.0442 −0.730917
\(995\) 5.61285 0.177939
\(996\) 0 0
\(997\) −3.31333 −0.104934 −0.0524671 0.998623i \(-0.516708\pi\)
−0.0524671 + 0.998623i \(0.516708\pi\)
\(998\) −34.8634 −1.10358
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6642.2.a.bu.1.4 7
3.2 odd 2 6642.2.a.bv.1.4 7
9.2 odd 6 738.2.e.j.247.2 14
9.4 even 3 2214.2.e.j.1477.4 14
9.5 odd 6 738.2.e.j.493.2 yes 14
9.7 even 3 2214.2.e.j.739.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.e.j.247.2 14 9.2 odd 6
738.2.e.j.493.2 yes 14 9.5 odd 6
2214.2.e.j.739.4 14 9.7 even 3
2214.2.e.j.1477.4 14 9.4 even 3
6642.2.a.bu.1.4 7 1.1 even 1 trivial
6642.2.a.bv.1.4 7 3.2 odd 2