Properties

Label 6624.2.b.b.2897.2
Level $6624$
Weight $2$
Character 6624.2897
Analytic conductor $52.893$
Analytic rank $0$
Dimension $8$
CM discriminant -184
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6624,2,Mod(2897,6624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6624.2897");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6624 = 2^{5} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6624.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.8929062989\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1173738225664.17
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1656)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 2897.2
Root \(-0.551740 - 1.92239i\) of defining polynomial
Character \(\chi\) \(=\) 6624.2897
Dual form 6624.2.b.b.2897.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.84478i q^{5} +O(q^{10})\) \(q-3.84478i q^{5} -3.84478i q^{11} +7.56424 q^{19} -4.79583i q^{23} -9.78233 q^{25} +10.7823 q^{31} +2.12690 q^{37} +9.59166i q^{41} +8.74778 q^{43} -11.0059i q^{47} +7.00000 q^{49} -14.5422i q^{53} -14.7823 q^{55} +14.1851 q^{61} +2.12690 q^{67} -2.52060i q^{71} -16.7823 q^{73} +8.52645i q^{83} -29.0828i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 24 q^{25} + 32 q^{31} + 56 q^{49} - 64 q^{55} - 80 q^{73}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6624\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(2305\) \(2945\) \(5797\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 3.84478i − 1.71944i −0.510768 0.859719i \(-0.670639\pi\)
0.510768 0.859719i \(-0.329361\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.84478i − 1.15924i −0.814885 0.579622i \(-0.803200\pi\)
0.814885 0.579622i \(-0.196800\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 7.56424 1.73535 0.867677 0.497128i \(-0.165612\pi\)
0.867677 + 0.497128i \(0.165612\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.79583i − 1.00000i
\(24\) 0 0
\(25\) −9.78233 −1.95647
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.7823 1.93656 0.968282 0.249861i \(-0.0803848\pi\)
0.968282 + 0.249861i \(0.0803848\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.12690 0.349660 0.174830 0.984599i \(-0.444062\pi\)
0.174830 + 0.984599i \(0.444062\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.59166i 1.49797i 0.662589 + 0.748983i \(0.269458\pi\)
−0.662589 + 0.748983i \(0.730542\pi\)
\(42\) 0 0
\(43\) 8.74778 1.33402 0.667012 0.745047i \(-0.267573\pi\)
0.667012 + 0.745047i \(0.267573\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 11.0059i − 1.60537i −0.596402 0.802686i \(-0.703403\pi\)
0.596402 0.802686i \(-0.296597\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 14.5422i − 1.99753i −0.0497015 0.998764i \(-0.515827\pi\)
0.0497015 0.998764i \(-0.484173\pi\)
\(54\) 0 0
\(55\) −14.7823 −1.99325
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 14.1851 1.81622 0.908109 0.418733i \(-0.137526\pi\)
0.908109 + 0.418733i \(0.137526\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.12690 0.259842 0.129921 0.991524i \(-0.458528\pi\)
0.129921 + 0.991524i \(0.458528\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 2.52060i − 0.299140i −0.988751 0.149570i \(-0.952211\pi\)
0.988751 0.149570i \(-0.0477889\pi\)
\(72\) 0 0
\(73\) −16.7823 −1.96422 −0.982112 0.188300i \(-0.939702\pi\)
−0.982112 + 0.188300i \(0.939702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.52645i 0.935900i 0.883755 + 0.467950i \(0.155007\pi\)
−0.883755 + 0.467950i \(0.844993\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 29.0828i − 2.98383i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 0.836893i − 0.0809055i −0.999181 0.0404528i \(-0.987120\pi\)
0.999181 0.0404528i \(-0.0128800\pi\)
\(108\) 0 0
\(109\) 7.56424 0.724522 0.362261 0.932077i \(-0.382005\pi\)
0.362261 + 0.932077i \(0.382005\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −18.4389 −1.71944
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.78233 −0.343848
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 18.3870i 1.64458i
\(126\) 0 0
\(127\) −13.5647 −1.20367 −0.601834 0.798621i \(-0.705563\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.2318i 1.82130i 0.413180 + 0.910649i \(0.364418\pi\)
−0.413180 + 0.910649i \(0.635582\pi\)
\(150\) 0 0
\(151\) 22.7823 1.85400 0.927000 0.375062i \(-0.122378\pi\)
0.927000 + 0.375062i \(0.122378\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 41.4557i − 3.32980i
\(156\) 0 0
\(157\) −25.0598 −1.99999 −0.999995 0.00319494i \(-0.998983\pi\)
−0.999995 + 0.00319494i \(0.998983\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.96469i 0.461561i 0.973006 + 0.230781i \(0.0741280\pi\)
−0.973006 + 0.230781i \(0.925872\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −17.2554 −1.28258 −0.641291 0.767298i \(-0.721601\pi\)
−0.641291 + 0.767298i \(0.721601\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 8.17745i − 0.601218i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −27.1293 −1.95281 −0.976406 0.215945i \(-0.930717\pi\)
−0.976406 + 0.215945i \(0.930717\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 36.8778 2.57566
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 29.0828i − 2.01170i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 33.6333i − 2.29377i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.2177 −0.885121 −0.442560 0.896739i \(-0.645930\pi\)
−0.442560 + 0.896739i \(0.645930\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.86055i 0.654468i 0.944943 + 0.327234i \(0.106117\pi\)
−0.944943 + 0.327234i \(0.893883\pi\)
\(228\) 0 0
\(229\) −23.8763 −1.57779 −0.788894 0.614530i \(-0.789346\pi\)
−0.788894 + 0.614530i \(0.789346\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 9.28383i − 0.608204i −0.952639 0.304102i \(-0.901644\pi\)
0.952639 0.304102i \(-0.0983564\pi\)
\(234\) 0 0
\(235\) −42.3152 −2.76034
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.3137i 0.731823i 0.930650 + 0.365911i \(0.119243\pi\)
−0.930650 + 0.365911i \(0.880757\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 26.9135i − 1.71944i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 31.5951i 1.99427i 0.0756629 + 0.997133i \(0.475893\pi\)
−0.0756629 + 0.997133i \(0.524107\pi\)
\(252\) 0 0
\(253\) −18.4389 −1.15924
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.1421i 0.882162i 0.897467 + 0.441081i \(0.145405\pi\)
−0.897467 + 0.441081i \(0.854595\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −55.9116 −3.43463
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −13.5647 −0.823994 −0.411997 0.911185i \(-0.635169\pi\)
−0.411997 + 0.911185i \(0.635169\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 37.6109i 2.26802i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 33.5674 1.99537 0.997687 0.0679748i \(-0.0216538\pi\)
0.997687 + 0.0679748i \(0.0216538\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.52645i 0.498121i 0.968488 + 0.249060i \(0.0801217\pi\)
−0.968488 + 0.249060i \(0.919878\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 54.5387i − 3.12287i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 9.59166i − 0.543893i −0.962312 0.271947i \(-0.912333\pi\)
0.962312 0.271947i \(-0.0876674\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 8.17745i − 0.446782i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 41.4557i − 2.24495i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 0.798550i − 0.0425025i −0.999774 0.0212513i \(-0.993235\pi\)
0.999774 0.0212513i \(-0.00676499\pi\)
\(354\) 0 0
\(355\) −9.69113 −0.514352
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 38.2177 2.01146
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 64.5244i 3.37736i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 20.8060 1.07729 0.538647 0.842531i \(-0.318936\pi\)
0.538647 + 0.842531i \(0.318936\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 15.3687 0.789435 0.394718 0.918802i \(-0.370842\pi\)
0.394718 + 0.918802i \(0.370842\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.51857i 0.279802i 0.990165 + 0.139901i \(0.0446785\pi\)
−0.990165 + 0.139901i \(0.955322\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 8.17745i − 0.405341i
\(408\) 0 0
\(409\) −27.1293 −1.34146 −0.670729 0.741702i \(-0.734019\pi\)
−0.670729 + 0.741702i \(0.734019\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 32.7823 1.60922
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.2318i 1.08609i 0.839702 + 0.543047i \(0.182729\pi\)
−0.839702 + 0.543047i \(0.817271\pi\)
\(420\) 0 0
\(421\) −31.6807 −1.54402 −0.772011 0.635609i \(-0.780749\pi\)
−0.772011 + 0.635609i \(0.780749\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 36.2768i − 1.73535i
\(438\) 0 0
\(439\) 10.0000 0.477274 0.238637 0.971109i \(-0.423299\pi\)
0.238637 + 0.971109i \(0.423299\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.1127i 1.46830i 0.678988 + 0.734150i \(0.262419\pi\)
−0.678988 + 0.734150i \(0.737581\pi\)
\(450\) 0 0
\(451\) 36.8778 1.73651
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 40.6188i − 1.87961i −0.341707 0.939807i \(-0.611005\pi\)
0.341707 0.939807i \(-0.388995\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 33.6333i − 1.54646i
\(474\) 0 0
\(475\) −73.9959 −3.39516
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −13.5647 −0.614673 −0.307337 0.951601i \(-0.599438\pi\)
−0.307337 + 0.951601i \(0.599438\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −42.3152 −1.86102
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 26.9465 1.17829 0.589144 0.808028i \(-0.299465\pi\)
0.589144 + 0.808028i \(0.299465\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −3.21767 −0.139112
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 26.9135i − 1.15924i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 29.0828i − 1.24577i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.8684i 0.545253i 0.962120 + 0.272627i \(0.0878924\pi\)
−0.962120 + 0.272627i \(0.912108\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 46.9742i − 1.97973i −0.142017 0.989864i \(-0.545359\pi\)
0.142017 0.989864i \(-0.454641\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −44.4421 −1.85984 −0.929921 0.367759i \(-0.880125\pi\)
−0.929921 + 0.367759i \(0.880125\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 46.9144i 1.95647i
\(576\) 0 0
\(577\) 35.9116 1.49502 0.747511 0.664250i \(-0.231249\pi\)
0.747511 + 0.664250i \(0.231249\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −55.9116 −2.31562
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 81.5601 3.36063
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 47.9583i − 1.96941i −0.174224 0.984706i \(-0.555742\pi\)
0.174224 0.984706i \(-0.444258\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 39.5980i − 1.61793i −0.587857 0.808965i \(-0.700028\pi\)
0.587857 0.808965i \(-0.299972\pi\)
\(600\) 0 0
\(601\) −40.7823 −1.66355 −0.831773 0.555116i \(-0.812674\pi\)
−0.831773 + 0.555116i \(0.812674\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.5422i 0.591226i
\(606\) 0 0
\(607\) −41.9116 −1.70114 −0.850571 0.525861i \(-0.823743\pi\)
−0.850571 + 0.525861i \(0.823743\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 21.5092 0.868747 0.434373 0.900733i \(-0.356970\pi\)
0.434373 + 0.900733i \(0.356970\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 34.7509 1.39676 0.698379 0.715728i \(-0.253905\pi\)
0.698379 + 0.715728i \(0.253905\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 21.7823 0.871293
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 52.1531i 2.06963i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 47.9927 1.89265 0.946324 0.323220i \(-0.104765\pi\)
0.946324 + 0.323220i \(0.104765\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 47.9583i 1.88544i 0.333591 + 0.942718i \(0.391740\pi\)
−0.333591 + 0.942718i \(0.608260\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 31.2554i − 1.21754i −0.793347 0.608770i \(-0.791663\pi\)
0.793347 0.608770i \(-0.208337\pi\)
\(660\) 0 0
\(661\) −4.49399 −0.174796 −0.0873979 0.996173i \(-0.527855\pi\)
−0.0873979 + 0.996173i \(0.527855\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 54.5387i − 2.10544i
\(672\) 0 0
\(673\) 47.9116 1.84686 0.923429 0.383769i \(-0.125374\pi\)
0.923429 + 0.383769i \(0.125374\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 51.3162i − 1.97224i −0.166025 0.986122i \(-0.553093\pi\)
0.166025 0.986122i \(-0.446907\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 51.6559i 1.95102i 0.219961 + 0.975509i \(0.429407\pi\)
−0.219961 + 0.975509i \(0.570593\pi\)
\(702\) 0 0
\(703\) 16.0884 0.606784
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −11.8180 −0.443835 −0.221918 0.975065i \(-0.571232\pi\)
−0.221918 + 0.975065i \(0.571232\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 51.7102i − 1.93656i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 45.2548i 1.68772i 0.536563 + 0.843860i \(0.319722\pi\)
−0.536563 + 0.843860i \(0.680278\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 54.1332 1.99946 0.999728 0.0233363i \(-0.00742884\pi\)
0.999728 + 0.0233363i \(0.00742884\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8.17745i − 0.301220i
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 85.4763 3.13161
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 87.5930i − 3.18784i
\(756\) 0 0
\(757\) 53.4300 1.94195 0.970974 0.239185i \(-0.0768803\pi\)
0.970974 + 0.239185i \(0.0768803\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31.2956i 1.13446i 0.823558 + 0.567232i \(0.191986\pi\)
−0.823558 + 0.567232i \(0.808014\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 17.5501i − 0.631234i −0.948887 0.315617i \(-0.897789\pi\)
0.948887 0.315617i \(-0.102211\pi\)
\(774\) 0 0
\(775\) −105.476 −3.78882
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 72.5536i 2.59950i
\(780\) 0 0
\(781\) −9.69113 −0.346776
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 96.3494i 3.43886i
\(786\) 0 0
\(787\) −25.0598 −0.893285 −0.446643 0.894712i \(-0.647380\pi\)
−0.446643 + 0.894712i \(0.647380\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 5.17888i − 0.183445i −0.995785 0.0917227i \(-0.970763\pi\)
0.995785 0.0917227i \(-0.0292373\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 64.5244i 2.27702i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16.1720i 0.568578i 0.958739 + 0.284289i \(0.0917575\pi\)
−0.958739 + 0.284289i \(0.908243\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 66.1703 2.31501
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 46.7823 1.63073 0.815365 0.578948i \(-0.196536\pi\)
0.815365 + 0.578948i \(0.196536\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 37.6109i − 1.30786i −0.756555 0.653930i \(-0.773119\pi\)
0.756555 0.653930i \(-0.226881\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 22.9329 0.793626
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 49.9821i − 1.71944i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 10.2002i − 0.349660i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.8103i 0.779185i 0.920987 + 0.389593i \(0.127384\pi\)
−0.920987 + 0.389593i \(0.872616\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.9583i 1.63252i 0.577685 + 0.816260i \(0.303956\pi\)
−0.577685 + 0.816260i \(0.696044\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 31.4205i 1.05500i 0.849556 + 0.527499i \(0.176870\pi\)
−0.849556 + 0.527499i \(0.823130\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 83.2511i − 2.78589i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 66.3431i 2.20532i
\(906\) 0 0
\(907\) 59.5705 1.97801 0.989004 0.147891i \(-0.0472485\pi\)
0.989004 + 0.147891i \(0.0472485\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 32.7823 1.08494
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −20.8060 −0.684097
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 53.7401i − 1.76316i −0.472038 0.881578i \(-0.656482\pi\)
0.472038 0.881578i \(-0.343518\pi\)
\(930\) 0 0
\(931\) 52.9497 1.73535
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 49.6424i 1.61830i 0.587604 + 0.809149i \(0.300071\pi\)
−0.587604 + 0.809149i \(0.699929\pi\)
\(942\) 0 0
\(943\) 46.0000 1.49797
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 85.2586 2.75028
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 104.306i 3.35774i
\(966\) 0 0
\(967\) −5.91165 −0.190106 −0.0950529 0.995472i \(-0.530302\pi\)
−0.0950529 + 0.995472i \(0.530302\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 13.2081i − 0.423869i −0.977284 0.211934i \(-0.932024\pi\)
0.977284 0.211934i \(-0.0679763\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 41.9529i − 1.33402i
\(990\) 0 0
\(991\) −37.2177 −1.18226 −0.591129 0.806577i \(-0.701318\pi\)
−0.591129 + 0.806577i \(0.701318\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6624.2.b.b.2897.2 8
3.2 odd 2 inner 6624.2.b.b.2897.8 8
4.3 odd 2 1656.2.b.b.413.1 8
8.3 odd 2 1656.2.b.b.413.4 yes 8
8.5 even 2 inner 6624.2.b.b.2897.7 8
12.11 even 2 1656.2.b.b.413.8 yes 8
23.22 odd 2 inner 6624.2.b.b.2897.7 8
24.5 odd 2 inner 6624.2.b.b.2897.1 8
24.11 even 2 1656.2.b.b.413.5 yes 8
69.68 even 2 inner 6624.2.b.b.2897.1 8
92.91 even 2 1656.2.b.b.413.4 yes 8
184.45 odd 2 CM 6624.2.b.b.2897.2 8
184.91 even 2 1656.2.b.b.413.1 8
276.275 odd 2 1656.2.b.b.413.5 yes 8
552.275 odd 2 1656.2.b.b.413.8 yes 8
552.413 even 2 inner 6624.2.b.b.2897.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1656.2.b.b.413.1 8 4.3 odd 2
1656.2.b.b.413.1 8 184.91 even 2
1656.2.b.b.413.4 yes 8 8.3 odd 2
1656.2.b.b.413.4 yes 8 92.91 even 2
1656.2.b.b.413.5 yes 8 24.11 even 2
1656.2.b.b.413.5 yes 8 276.275 odd 2
1656.2.b.b.413.8 yes 8 12.11 even 2
1656.2.b.b.413.8 yes 8 552.275 odd 2
6624.2.b.b.2897.1 8 24.5 odd 2 inner
6624.2.b.b.2897.1 8 69.68 even 2 inner
6624.2.b.b.2897.2 8 1.1 even 1 trivial
6624.2.b.b.2897.2 8 184.45 odd 2 CM
6624.2.b.b.2897.7 8 8.5 even 2 inner
6624.2.b.b.2897.7 8 23.22 odd 2 inner
6624.2.b.b.2897.8 8 3.2 odd 2 inner
6624.2.b.b.2897.8 8 552.413 even 2 inner