Properties

Label 660.2.y.b.421.1
Level $660$
Weight $2$
Character 660.421
Analytic conductor $5.270$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [660,2,Mod(181,660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("660.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(660, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 660.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.27012653340\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 421.1
Root \(0.453245 + 1.39494i\) of defining polynomial
Character \(\chi\) \(=\) 660.421
Dual form 660.2.y.b.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{3} +(0.809017 + 0.587785i) q^{5} +(-1.26226 + 3.88484i) q^{7} +(-0.809017 + 0.587785i) q^{9} +(-2.91998 - 1.57281i) q^{11} +(-5.72462 + 4.15918i) q^{13} +(-0.309017 + 0.951057i) q^{15} +(-0.657715 - 0.477858i) q^{17} +(-2.56691 - 7.90013i) q^{19} -4.08477 q^{21} +7.02697 q^{23} +(0.309017 + 0.951057i) q^{25} +(-0.809017 - 0.587785i) q^{27} +(-2.19613 + 6.75901i) q^{29} +(3.69573 - 2.68510i) q^{31} +(0.593510 - 3.26309i) q^{33} +(-3.30464 + 2.40097i) q^{35} +(-0.971104 + 2.98875i) q^{37} +(-5.72462 - 4.15918i) q^{39} +(1.96840 + 6.05812i) q^{41} +1.35115 q^{43} -1.00000 q^{45} +(0.858221 + 2.64133i) q^{47} +(-7.83558 - 5.69288i) q^{49} +(0.251225 - 0.773190i) q^{51} +(-5.62404 + 4.08610i) q^{53} +(-1.43784 - 2.98875i) q^{55} +(6.72025 - 4.88255i) q^{57} +(-1.34036 + 4.12521i) q^{59} +(8.12278 + 5.90154i) q^{61} +(-1.26226 - 3.88484i) q^{63} -7.07602 q^{65} -3.26304 q^{67} +(2.17145 + 6.68305i) q^{69} +(7.22025 + 5.24582i) q^{71} +(0.649380 - 1.99858i) q^{73} +(-0.809017 + 0.587785i) q^{75} +(9.79590 - 9.35835i) q^{77} +(-10.1631 + 7.38394i) q^{79} +(0.309017 - 0.951057i) q^{81} +(11.3050 + 8.21357i) q^{83} +(-0.251225 - 0.773190i) q^{85} -7.10684 q^{87} +0.800155 q^{89} +(-8.93179 - 27.4892i) q^{91} +(3.69573 + 2.68510i) q^{93} +(2.56691 - 7.90013i) q^{95} +(-3.90457 + 2.83683i) q^{97} +(3.28679 - 0.443888i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 2 q^{5} - 3 q^{7} - 2 q^{9} - 5 q^{11} - 8 q^{13} + 2 q^{15} + 6 q^{17} + 6 q^{19} - 8 q^{21} + 30 q^{23} - 2 q^{25} - 2 q^{27} - 9 q^{31} + 10 q^{33} - 7 q^{35} - 7 q^{37} - 8 q^{39} + 25 q^{41}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/660\mathbb{Z}\right)^\times\).

\(n\) \(221\) \(331\) \(397\) \(541\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0 0
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) −1.26226 + 3.88484i −0.477090 + 1.46833i 0.366028 + 0.930604i \(0.380718\pi\)
−0.843118 + 0.537729i \(0.819282\pi\)
\(8\) 0 0
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) −2.91998 1.57281i −0.880406 0.474220i
\(12\) 0 0
\(13\) −5.72462 + 4.15918i −1.58772 + 1.15355i −0.680626 + 0.732631i \(0.738292\pi\)
−0.907099 + 0.420918i \(0.861708\pi\)
\(14\) 0 0
\(15\) −0.309017 + 0.951057i −0.0797878 + 0.245562i
\(16\) 0 0
\(17\) −0.657715 0.477858i −0.159519 0.115898i 0.505162 0.863024i \(-0.331433\pi\)
−0.664681 + 0.747127i \(0.731433\pi\)
\(18\) 0 0
\(19\) −2.56691 7.90013i −0.588889 1.81241i −0.583058 0.812431i \(-0.698144\pi\)
−0.00583084 0.999983i \(-0.501856\pi\)
\(20\) 0 0
\(21\) −4.08477 −0.891369
\(22\) 0 0
\(23\) 7.02697 1.46523 0.732613 0.680646i \(-0.238301\pi\)
0.732613 + 0.680646i \(0.238301\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 0 0
\(29\) −2.19613 + 6.75901i −0.407812 + 1.25512i 0.510712 + 0.859752i \(0.329382\pi\)
−0.918524 + 0.395364i \(0.870618\pi\)
\(30\) 0 0
\(31\) 3.69573 2.68510i 0.663772 0.482259i −0.204163 0.978937i \(-0.565447\pi\)
0.867935 + 0.496678i \(0.165447\pi\)
\(32\) 0 0
\(33\) 0.593510 3.26309i 0.103317 0.568031i
\(34\) 0 0
\(35\) −3.30464 + 2.40097i −0.558587 + 0.405837i
\(36\) 0 0
\(37\) −0.971104 + 2.98875i −0.159648 + 0.491348i −0.998602 0.0528553i \(-0.983168\pi\)
0.838954 + 0.544203i \(0.183168\pi\)
\(38\) 0 0
\(39\) −5.72462 4.15918i −0.916673 0.666002i
\(40\) 0 0
\(41\) 1.96840 + 6.05812i 0.307413 + 0.946119i 0.978766 + 0.204981i \(0.0657134\pi\)
−0.671353 + 0.741138i \(0.734287\pi\)
\(42\) 0 0
\(43\) 1.35115 0.206048 0.103024 0.994679i \(-0.467148\pi\)
0.103024 + 0.994679i \(0.467148\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 0.858221 + 2.64133i 0.125184 + 0.385278i 0.993935 0.109972i \(-0.0350763\pi\)
−0.868750 + 0.495251i \(0.835076\pi\)
\(48\) 0 0
\(49\) −7.83558 5.69288i −1.11937 0.813269i
\(50\) 0 0
\(51\) 0.251225 0.773190i 0.0351785 0.108268i
\(52\) 0 0
\(53\) −5.62404 + 4.08610i −0.772521 + 0.561269i −0.902725 0.430218i \(-0.858437\pi\)
0.130204 + 0.991487i \(0.458437\pi\)
\(54\) 0 0
\(55\) −1.43784 2.98875i −0.193878 0.403003i
\(56\) 0 0
\(57\) 6.72025 4.88255i 0.890119 0.646709i
\(58\) 0 0
\(59\) −1.34036 + 4.12521i −0.174500 + 0.537057i −0.999610 0.0279154i \(-0.991113\pi\)
0.825110 + 0.564972i \(0.191113\pi\)
\(60\) 0 0
\(61\) 8.12278 + 5.90154i 1.04001 + 0.755615i 0.970288 0.241951i \(-0.0777873\pi\)
0.0697265 + 0.997566i \(0.477787\pi\)
\(62\) 0 0
\(63\) −1.26226 3.88484i −0.159030 0.489444i
\(64\) 0 0
\(65\) −7.07602 −0.877672
\(66\) 0 0
\(67\) −3.26304 −0.398644 −0.199322 0.979934i \(-0.563874\pi\)
−0.199322 + 0.979934i \(0.563874\pi\)
\(68\) 0 0
\(69\) 2.17145 + 6.68305i 0.261412 + 0.804545i
\(70\) 0 0
\(71\) 7.22025 + 5.24582i 0.856886 + 0.622564i 0.927036 0.374972i \(-0.122348\pi\)
−0.0701500 + 0.997536i \(0.522348\pi\)
\(72\) 0 0
\(73\) 0.649380 1.99858i 0.0760041 0.233917i −0.905835 0.423630i \(-0.860756\pi\)
0.981840 + 0.189713i \(0.0607558\pi\)
\(74\) 0 0
\(75\) −0.809017 + 0.587785i −0.0934172 + 0.0678716i
\(76\) 0 0
\(77\) 9.79590 9.35835i 1.11635 1.06648i
\(78\) 0 0
\(79\) −10.1631 + 7.38394i −1.14344 + 0.830758i −0.987595 0.157024i \(-0.949810\pi\)
−0.155845 + 0.987781i \(0.549810\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) 11.3050 + 8.21357i 1.24089 + 0.901557i 0.997657 0.0684118i \(-0.0217932\pi\)
0.243229 + 0.969969i \(0.421793\pi\)
\(84\) 0 0
\(85\) −0.251225 0.773190i −0.0272491 0.0838642i
\(86\) 0 0
\(87\) −7.10684 −0.761933
\(88\) 0 0
\(89\) 0.800155 0.0848163 0.0424081 0.999100i \(-0.486497\pi\)
0.0424081 + 0.999100i \(0.486497\pi\)
\(90\) 0 0
\(91\) −8.93179 27.4892i −0.936306 2.88165i
\(92\) 0 0
\(93\) 3.69573 + 2.68510i 0.383229 + 0.278432i
\(94\) 0 0
\(95\) 2.56691 7.90013i 0.263359 0.810536i
\(96\) 0 0
\(97\) −3.90457 + 2.83683i −0.396449 + 0.288037i −0.768093 0.640338i \(-0.778794\pi\)
0.371644 + 0.928375i \(0.378794\pi\)
\(98\) 0 0
\(99\) 3.28679 0.443888i 0.330334 0.0446125i
\(100\) 0 0
\(101\) 11.1326 8.08827i 1.10773 0.804813i 0.125426 0.992103i \(-0.459970\pi\)
0.982305 + 0.187290i \(0.0599703\pi\)
\(102\) 0 0
\(103\) 1.93554 5.95699i 0.190715 0.586959i −0.809285 0.587416i \(-0.800145\pi\)
1.00000 0.000456502i \(0.000145309\pi\)
\(104\) 0 0
\(105\) −3.30464 2.40097i −0.322500 0.234310i
\(106\) 0 0
\(107\) −0.523263 1.61044i −0.0505857 0.155687i 0.922573 0.385824i \(-0.126083\pi\)
−0.973158 + 0.230137i \(0.926083\pi\)
\(108\) 0 0
\(109\) −7.19732 −0.689378 −0.344689 0.938717i \(-0.612016\pi\)
−0.344689 + 0.938717i \(0.612016\pi\)
\(110\) 0 0
\(111\) −3.14256 −0.298278
\(112\) 0 0
\(113\) 4.98521 + 15.3429i 0.468969 + 1.44334i 0.853921 + 0.520403i \(0.174218\pi\)
−0.384951 + 0.922937i \(0.625782\pi\)
\(114\) 0 0
\(115\) 5.68494 + 4.13035i 0.530123 + 0.385157i
\(116\) 0 0
\(117\) 2.18661 6.72970i 0.202152 0.622161i
\(118\) 0 0
\(119\) 2.68661 1.95194i 0.246281 0.178934i
\(120\) 0 0
\(121\) 6.05253 + 9.18514i 0.550230 + 0.835013i
\(122\) 0 0
\(123\) −5.15334 + 3.74412i −0.464661 + 0.337596i
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 0.858474 + 0.623718i 0.0761773 + 0.0553460i 0.625222 0.780447i \(-0.285008\pi\)
−0.549045 + 0.835793i \(0.685008\pi\)
\(128\) 0 0
\(129\) 0.417527 + 1.28502i 0.0367612 + 0.113139i
\(130\) 0 0
\(131\) 1.42227 0.124264 0.0621322 0.998068i \(-0.480210\pi\)
0.0621322 + 0.998068i \(0.480210\pi\)
\(132\) 0 0
\(133\) 33.9309 2.94218
\(134\) 0 0
\(135\) −0.309017 0.951057i −0.0265959 0.0818539i
\(136\) 0 0
\(137\) 4.87592 + 3.54257i 0.416578 + 0.302662i 0.776260 0.630413i \(-0.217115\pi\)
−0.359681 + 0.933075i \(0.617115\pi\)
\(138\) 0 0
\(139\) −4.69265 + 14.4425i −0.398026 + 1.22500i 0.528554 + 0.848899i \(0.322734\pi\)
−0.926580 + 0.376098i \(0.877266\pi\)
\(140\) 0 0
\(141\) −2.24685 + 1.63243i −0.189219 + 0.137476i
\(142\) 0 0
\(143\) 23.2574 3.14096i 1.94488 0.262661i
\(144\) 0 0
\(145\) −5.74955 + 4.17730i −0.477475 + 0.346906i
\(146\) 0 0
\(147\) 2.99293 9.21128i 0.246852 0.759733i
\(148\) 0 0
\(149\) −4.61533 3.35323i −0.378103 0.274708i 0.382460 0.923972i \(-0.375077\pi\)
−0.760563 + 0.649264i \(0.775077\pi\)
\(150\) 0 0
\(151\) −0.254179 0.782284i −0.0206848 0.0636614i 0.940181 0.340675i \(-0.110655\pi\)
−0.960866 + 0.277013i \(0.910655\pi\)
\(152\) 0 0
\(153\) 0.812980 0.0657256
\(154\) 0 0
\(155\) 4.56817 0.366924
\(156\) 0 0
\(157\) −1.52905 4.70594i −0.122032 0.375575i 0.871317 0.490721i \(-0.163266\pi\)
−0.993349 + 0.115146i \(0.963266\pi\)
\(158\) 0 0
\(159\) −5.62404 4.08610i −0.446015 0.324049i
\(160\) 0 0
\(161\) −8.86988 + 27.2987i −0.699045 + 2.15144i
\(162\) 0 0
\(163\) 7.75826 5.63671i 0.607674 0.441501i −0.240921 0.970545i \(-0.577449\pi\)
0.848594 + 0.529044i \(0.177449\pi\)
\(164\) 0 0
\(165\) 2.39815 2.29104i 0.186696 0.178357i
\(166\) 0 0
\(167\) 18.1574 13.1922i 1.40507 1.02084i 0.411049 0.911613i \(-0.365163\pi\)
0.994017 0.109226i \(-0.0348373\pi\)
\(168\) 0 0
\(169\) 11.4553 35.2557i 0.881176 2.71198i
\(170\) 0 0
\(171\) 6.72025 + 4.88255i 0.513910 + 0.373378i
\(172\) 0 0
\(173\) −2.14359 6.59729i −0.162974 0.501583i 0.835907 0.548871i \(-0.184942\pi\)
−0.998881 + 0.0472880i \(0.984942\pi\)
\(174\) 0 0
\(175\) −4.08477 −0.308779
\(176\) 0 0
\(177\) −4.33750 −0.326027
\(178\) 0 0
\(179\) −5.33574 16.4217i −0.398812 1.22742i −0.925953 0.377639i \(-0.876736\pi\)
0.527141 0.849778i \(-0.323264\pi\)
\(180\) 0 0
\(181\) 4.25830 + 3.09384i 0.316517 + 0.229963i 0.734688 0.678405i \(-0.237329\pi\)
−0.418171 + 0.908368i \(0.637329\pi\)
\(182\) 0 0
\(183\) −3.10262 + 9.54890i −0.229353 + 0.705875i
\(184\) 0 0
\(185\) −2.54238 + 1.84715i −0.186920 + 0.135805i
\(186\) 0 0
\(187\) 1.16893 + 2.42979i 0.0854808 + 0.177684i
\(188\) 0 0
\(189\) 3.30464 2.40097i 0.240378 0.174645i
\(190\) 0 0
\(191\) 4.96007 15.2655i 0.358898 1.10457i −0.594817 0.803861i \(-0.702775\pi\)
0.953715 0.300713i \(-0.0972245\pi\)
\(192\) 0 0
\(193\) −5.19639 3.77540i −0.374044 0.271759i 0.384842 0.922983i \(-0.374256\pi\)
−0.758886 + 0.651224i \(0.774256\pi\)
\(194\) 0 0
\(195\) −2.18661 6.72970i −0.156586 0.481924i
\(196\) 0 0
\(197\) −14.3571 −1.02290 −0.511449 0.859314i \(-0.670891\pi\)
−0.511449 + 0.859314i \(0.670891\pi\)
\(198\) 0 0
\(199\) −15.1413 −1.07334 −0.536669 0.843793i \(-0.680317\pi\)
−0.536669 + 0.843793i \(0.680317\pi\)
\(200\) 0 0
\(201\) −1.00834 3.10334i −0.0711225 0.218893i
\(202\) 0 0
\(203\) −23.4856 17.0633i −1.64836 1.19761i
\(204\) 0 0
\(205\) −1.96840 + 6.05812i −0.137479 + 0.423117i
\(206\) 0 0
\(207\) −5.68494 + 4.13035i −0.395131 + 0.287079i
\(208\) 0 0
\(209\) −4.93010 + 27.1054i −0.341022 + 1.87492i
\(210\) 0 0
\(211\) −2.70076 + 1.96222i −0.185928 + 0.135085i −0.676856 0.736116i \(-0.736658\pi\)
0.490928 + 0.871200i \(0.336658\pi\)
\(212\) 0 0
\(213\) −2.75789 + 8.48791i −0.188968 + 0.581582i
\(214\) 0 0
\(215\) 1.09310 + 0.794184i 0.0745489 + 0.0541629i
\(216\) 0 0
\(217\) 5.76623 + 17.7466i 0.391437 + 1.20472i
\(218\) 0 0
\(219\) 2.10144 0.142002
\(220\) 0 0
\(221\) 5.75267 0.386966
\(222\) 0 0
\(223\) −7.55931 23.2652i −0.506209 1.55795i −0.798729 0.601691i \(-0.794494\pi\)
0.292521 0.956259i \(-0.405506\pi\)
\(224\) 0 0
\(225\) −0.809017 0.587785i −0.0539345 0.0391857i
\(226\) 0 0
\(227\) −3.65630 + 11.2529i −0.242677 + 0.746883i 0.753333 + 0.657639i \(0.228445\pi\)
−0.996010 + 0.0892435i \(0.971555\pi\)
\(228\) 0 0
\(229\) −3.44953 + 2.50623i −0.227952 + 0.165617i −0.695899 0.718140i \(-0.744994\pi\)
0.467947 + 0.883756i \(0.344994\pi\)
\(230\) 0 0
\(231\) 11.9274 + 6.42457i 0.784767 + 0.422705i
\(232\) 0 0
\(233\) 20.7086 15.0457i 1.35666 0.985674i 0.358015 0.933716i \(-0.383454\pi\)
0.998649 0.0519580i \(-0.0165462\pi\)
\(234\) 0 0
\(235\) −0.858221 + 2.64133i −0.0559842 + 0.172302i
\(236\) 0 0
\(237\) −10.1631 7.38394i −0.660166 0.479638i
\(238\) 0 0
\(239\) −7.26716 22.3660i −0.470074 1.44674i −0.852488 0.522747i \(-0.824907\pi\)
0.382414 0.923991i \(-0.375093\pi\)
\(240\) 0 0
\(241\) 13.3232 0.858223 0.429112 0.903251i \(-0.358827\pi\)
0.429112 + 0.903251i \(0.358827\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −2.99293 9.21128i −0.191211 0.588487i
\(246\) 0 0
\(247\) 47.5526 + 34.5490i 3.02570 + 2.19830i
\(248\) 0 0
\(249\) −4.31813 + 13.2898i −0.273650 + 0.842210i
\(250\) 0 0
\(251\) 11.0134 8.00174i 0.695163 0.505065i −0.183191 0.983077i \(-0.558643\pi\)
0.878353 + 0.478012i \(0.158643\pi\)
\(252\) 0 0
\(253\) −20.5186 11.0521i −1.28999 0.694840i
\(254\) 0 0
\(255\) 0.657715 0.477858i 0.0411877 0.0299246i
\(256\) 0 0
\(257\) −8.50577 + 26.1781i −0.530576 + 1.63294i 0.222444 + 0.974946i \(0.428597\pi\)
−0.753019 + 0.657998i \(0.771403\pi\)
\(258\) 0 0
\(259\) −10.3850 7.54517i −0.645295 0.468834i
\(260\) 0 0
\(261\) −2.19613 6.75901i −0.135937 0.418372i
\(262\) 0 0
\(263\) 0.977108 0.0602510 0.0301255 0.999546i \(-0.490409\pi\)
0.0301255 + 0.999546i \(0.490409\pi\)
\(264\) 0 0
\(265\) −6.95169 −0.427039
\(266\) 0 0
\(267\) 0.247261 + 0.760993i 0.0151322 + 0.0465720i
\(268\) 0 0
\(269\) 10.7562 + 7.81485i 0.655818 + 0.476480i 0.865248 0.501344i \(-0.167161\pi\)
−0.209430 + 0.977824i \(0.567161\pi\)
\(270\) 0 0
\(271\) −4.87363 + 14.9995i −0.296052 + 0.911154i 0.686814 + 0.726833i \(0.259009\pi\)
−0.982866 + 0.184321i \(0.940991\pi\)
\(272\) 0 0
\(273\) 23.3837 16.9893i 1.41525 1.02824i
\(274\) 0 0
\(275\) 0.593510 3.26309i 0.0357900 0.196772i
\(276\) 0 0
\(277\) 4.25189 3.08918i 0.255471 0.185611i −0.452677 0.891675i \(-0.649531\pi\)
0.708148 + 0.706064i \(0.249531\pi\)
\(278\) 0 0
\(279\) −1.41164 + 4.34459i −0.0845128 + 0.260104i
\(280\) 0 0
\(281\) −20.7021 15.0410i −1.23498 0.897268i −0.237730 0.971331i \(-0.576403\pi\)
−0.997254 + 0.0740630i \(0.976403\pi\)
\(282\) 0 0
\(283\) 2.54739 + 7.84007i 0.151427 + 0.466044i 0.997781 0.0665762i \(-0.0212075\pi\)
−0.846355 + 0.532620i \(0.821208\pi\)
\(284\) 0 0
\(285\) 8.30669 0.492046
\(286\) 0 0
\(287\) −26.0195 −1.53588
\(288\) 0 0
\(289\) −5.04905 15.5394i −0.297003 0.914081i
\(290\) 0 0
\(291\) −3.90457 2.83683i −0.228890 0.166298i
\(292\) 0 0
\(293\) −7.20757 + 22.1826i −0.421071 + 1.29592i 0.485637 + 0.874161i \(0.338588\pi\)
−0.906707 + 0.421761i \(0.861412\pi\)
\(294\) 0 0
\(295\) −3.50911 + 2.54952i −0.204309 + 0.148439i
\(296\) 0 0
\(297\) 1.43784 + 2.98875i 0.0834317 + 0.173425i
\(298\) 0 0
\(299\) −40.2268 + 29.2265i −2.32637 + 1.69021i
\(300\) 0 0
\(301\) −1.70550 + 5.24899i −0.0983035 + 0.302547i
\(302\) 0 0
\(303\) 11.1326 + 8.08827i 0.639548 + 0.464659i
\(304\) 0 0
\(305\) 3.10262 + 9.54890i 0.177656 + 0.546768i
\(306\) 0 0
\(307\) −25.3339 −1.44588 −0.722941 0.690910i \(-0.757210\pi\)
−0.722941 + 0.690910i \(0.757210\pi\)
\(308\) 0 0
\(309\) 6.26355 0.356321
\(310\) 0 0
\(311\) 9.34470 + 28.7600i 0.529889 + 1.63083i 0.754440 + 0.656369i \(0.227908\pi\)
−0.224551 + 0.974462i \(0.572092\pi\)
\(312\) 0 0
\(313\) 11.0326 + 8.01563i 0.623598 + 0.453070i 0.854176 0.519983i \(-0.174062\pi\)
−0.230579 + 0.973054i \(0.574062\pi\)
\(314\) 0 0
\(315\) 1.26226 3.88484i 0.0711204 0.218886i
\(316\) 0 0
\(317\) 10.3686 7.53320i 0.582356 0.423107i −0.257217 0.966354i \(-0.582805\pi\)
0.839573 + 0.543247i \(0.182805\pi\)
\(318\) 0 0
\(319\) 17.0433 16.2820i 0.954242 0.911619i
\(320\) 0 0
\(321\) 1.36992 0.995305i 0.0764615 0.0555525i
\(322\) 0 0
\(323\) −2.08684 + 6.42265i −0.116115 + 0.357366i
\(324\) 0 0
\(325\) −5.72462 4.15918i −0.317545 0.230710i
\(326\) 0 0
\(327\) −2.22410 6.84506i −0.122993 0.378533i
\(328\) 0 0
\(329\) −11.3445 −0.625441
\(330\) 0 0
\(331\) −14.8785 −0.817795 −0.408898 0.912580i \(-0.634087\pi\)
−0.408898 + 0.912580i \(0.634087\pi\)
\(332\) 0 0
\(333\) −0.971104 2.98875i −0.0532162 0.163783i
\(334\) 0 0
\(335\) −2.63986 1.91797i −0.144231 0.104790i
\(336\) 0 0
\(337\) 2.17130 6.68257i 0.118278 0.364023i −0.874338 0.485317i \(-0.838704\pi\)
0.992617 + 0.121294i \(0.0387044\pi\)
\(338\) 0 0
\(339\) −13.0515 + 9.48244i −0.708858 + 0.515015i
\(340\) 0 0
\(341\) −15.0146 + 2.02776i −0.813086 + 0.109809i
\(342\) 0 0
\(343\) 8.87400 6.44734i 0.479151 0.348124i
\(344\) 0 0
\(345\) −2.17145 + 6.68305i −0.116907 + 0.359803i
\(346\) 0 0
\(347\) −0.198657 0.144333i −0.0106645 0.00774818i 0.582440 0.812874i \(-0.302098\pi\)
−0.593105 + 0.805125i \(0.702098\pi\)
\(348\) 0 0
\(349\) −1.46454 4.50738i −0.0783948 0.241274i 0.904177 0.427158i \(-0.140485\pi\)
−0.982572 + 0.185884i \(0.940485\pi\)
\(350\) 0 0
\(351\) 7.07602 0.377690
\(352\) 0 0
\(353\) 17.8806 0.951689 0.475845 0.879529i \(-0.342142\pi\)
0.475845 + 0.879529i \(0.342142\pi\)
\(354\) 0 0
\(355\) 2.75789 + 8.48791i 0.146374 + 0.450492i
\(356\) 0 0
\(357\) 2.68661 + 1.95194i 0.142191 + 0.103307i
\(358\) 0 0
\(359\) 1.98411 6.10646i 0.104717 0.322287i −0.884947 0.465692i \(-0.845805\pi\)
0.989664 + 0.143406i \(0.0458054\pi\)
\(360\) 0 0
\(361\) −40.4517 + 29.3899i −2.12904 + 1.54683i
\(362\) 0 0
\(363\) −6.86526 + 8.59466i −0.360333 + 0.451103i
\(364\) 0 0
\(365\) 1.70010 1.23519i 0.0889872 0.0646530i
\(366\) 0 0
\(367\) −4.50292 + 13.8586i −0.235050 + 0.723411i 0.762064 + 0.647501i \(0.224186\pi\)
−0.997115 + 0.0759093i \(0.975814\pi\)
\(368\) 0 0
\(369\) −5.15334 3.74412i −0.268272 0.194911i
\(370\) 0 0
\(371\) −8.77486 27.0062i −0.455568 1.40209i
\(372\) 0 0
\(373\) −7.39686 −0.382995 −0.191497 0.981493i \(-0.561334\pi\)
−0.191497 + 0.981493i \(0.561334\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −15.5399 47.8269i −0.800345 2.46321i
\(378\) 0 0
\(379\) 3.56116 + 2.58733i 0.182924 + 0.132902i 0.675479 0.737379i \(-0.263937\pi\)
−0.492555 + 0.870281i \(0.663937\pi\)
\(380\) 0 0
\(381\) −0.327908 + 1.00920i −0.0167992 + 0.0517027i
\(382\) 0 0
\(383\) −24.6605 + 17.9169i −1.26009 + 0.915511i −0.998762 0.0497387i \(-0.984161\pi\)
−0.261330 + 0.965249i \(0.584161\pi\)
\(384\) 0 0
\(385\) 13.4258 1.81318i 0.684240 0.0924082i
\(386\) 0 0
\(387\) −1.09310 + 0.794184i −0.0555654 + 0.0403707i
\(388\) 0 0
\(389\) −1.90292 + 5.85659i −0.0964819 + 0.296941i −0.987637 0.156758i \(-0.949896\pi\)
0.891155 + 0.453699i \(0.149896\pi\)
\(390\) 0 0
\(391\) −4.62174 3.35789i −0.233732 0.169816i
\(392\) 0 0
\(393\) 0.439506 + 1.35266i 0.0221701 + 0.0682326i
\(394\) 0 0
\(395\) −12.5623 −0.632078
\(396\) 0 0
\(397\) 29.7981 1.49552 0.747761 0.663968i \(-0.231129\pi\)
0.747761 + 0.663968i \(0.231129\pi\)
\(398\) 0 0
\(399\) 10.4852 + 32.2702i 0.524917 + 1.61553i
\(400\) 0 0
\(401\) −0.00433382 0.00314870i −0.000216421 0.000157239i 0.587677 0.809096i \(-0.300043\pi\)
−0.587893 + 0.808938i \(0.700043\pi\)
\(402\) 0 0
\(403\) −9.98881 + 30.7424i −0.497578 + 1.53139i
\(404\) 0 0
\(405\) 0.809017 0.587785i 0.0402004 0.0292073i
\(406\) 0 0
\(407\) 7.53634 7.19972i 0.373563 0.356877i
\(408\) 0 0
\(409\) 2.52320 1.83321i 0.124764 0.0906465i −0.523653 0.851932i \(-0.675431\pi\)
0.648417 + 0.761285i \(0.275431\pi\)
\(410\) 0 0
\(411\) −1.86244 + 5.73199i −0.0918673 + 0.282738i
\(412\) 0 0
\(413\) −14.3339 10.4142i −0.705326 0.512449i
\(414\) 0 0
\(415\) 4.31813 + 13.2898i 0.211969 + 0.652373i
\(416\) 0 0
\(417\) −15.1857 −0.743649
\(418\) 0 0
\(419\) 30.8785 1.50851 0.754256 0.656580i \(-0.227998\pi\)
0.754256 + 0.656580i \(0.227998\pi\)
\(420\) 0 0
\(421\) 2.15309 + 6.62653i 0.104935 + 0.322957i 0.989715 0.143052i \(-0.0456915\pi\)
−0.884780 + 0.466009i \(0.845691\pi\)
\(422\) 0 0
\(423\) −2.24685 1.63243i −0.109246 0.0793717i
\(424\) 0 0
\(425\) 0.251225 0.773190i 0.0121862 0.0375052i
\(426\) 0 0
\(427\) −33.1796 + 24.1064i −1.60568 + 1.16659i
\(428\) 0 0
\(429\) 10.1742 + 21.1485i 0.491213 + 1.02106i
\(430\) 0 0
\(431\) 23.1281 16.8036i 1.11404 0.809400i 0.130748 0.991416i \(-0.458262\pi\)
0.983296 + 0.182016i \(0.0582622\pi\)
\(432\) 0 0
\(433\) −8.12653 + 25.0109i −0.390536 + 1.20195i 0.541848 + 0.840476i \(0.317725\pi\)
−0.932384 + 0.361469i \(0.882275\pi\)
\(434\) 0 0
\(435\) −5.74955 4.17730i −0.275670 0.200286i
\(436\) 0 0
\(437\) −18.0376 55.5140i −0.862855 2.65559i
\(438\) 0 0
\(439\) 21.9320 1.04676 0.523379 0.852100i \(-0.324671\pi\)
0.523379 + 0.852100i \(0.324671\pi\)
\(440\) 0 0
\(441\) 9.68531 0.461205
\(442\) 0 0
\(443\) −9.16992 28.2221i −0.435676 1.34087i −0.892392 0.451260i \(-0.850975\pi\)
0.456717 0.889612i \(-0.349025\pi\)
\(444\) 0 0
\(445\) 0.647339 + 0.470319i 0.0306868 + 0.0222953i
\(446\) 0 0
\(447\) 1.76290 5.42565i 0.0833823 0.256624i
\(448\) 0 0
\(449\) 0.727553 0.528598i 0.0343353 0.0249461i −0.570485 0.821308i \(-0.693245\pi\)
0.604821 + 0.796362i \(0.293245\pi\)
\(450\) 0 0
\(451\) 3.78059 20.7855i 0.178021 0.978750i
\(452\) 0 0
\(453\) 0.665450 0.483478i 0.0312656 0.0227158i
\(454\) 0 0
\(455\) 8.93179 27.4892i 0.418729 1.28872i
\(456\) 0 0
\(457\) 18.9351 + 13.7571i 0.885745 + 0.643531i 0.934765 0.355267i \(-0.115610\pi\)
−0.0490204 + 0.998798i \(0.515610\pi\)
\(458\) 0 0
\(459\) 0.251225 + 0.773190i 0.0117262 + 0.0360894i
\(460\) 0 0
\(461\) −32.0061 −1.49067 −0.745337 0.666687i \(-0.767712\pi\)
−0.745337 + 0.666687i \(0.767712\pi\)
\(462\) 0 0
\(463\) −5.75259 −0.267345 −0.133673 0.991026i \(-0.542677\pi\)
−0.133673 + 0.991026i \(0.542677\pi\)
\(464\) 0 0
\(465\) 1.41164 + 4.34459i 0.0654633 + 0.201475i
\(466\) 0 0
\(467\) −0.112883 0.0820139i −0.00522358 0.00379515i 0.585170 0.810910i \(-0.301028\pi\)
−0.590394 + 0.807115i \(0.701028\pi\)
\(468\) 0 0
\(469\) 4.11881 12.6764i 0.190189 0.585342i
\(470\) 0 0
\(471\) 4.00311 2.90843i 0.184454 0.134013i
\(472\) 0 0
\(473\) −3.94532 2.12510i −0.181406 0.0977122i
\(474\) 0 0
\(475\) 6.72025 4.88255i 0.308346 0.224027i
\(476\) 0 0
\(477\) 2.14819 6.61145i 0.0983589 0.302718i
\(478\) 0 0
\(479\) 22.5825 + 16.4072i 1.03182 + 0.749662i 0.968672 0.248342i \(-0.0798857\pi\)
0.0631490 + 0.998004i \(0.479886\pi\)
\(480\) 0 0
\(481\) −6.87155 21.1485i −0.313316 0.964287i
\(482\) 0 0
\(483\) −28.7035 −1.30606
\(484\) 0 0
\(485\) −4.82631 −0.219151
\(486\) 0 0
\(487\) 3.44524 + 10.6033i 0.156119 + 0.480483i 0.998273 0.0587537i \(-0.0187127\pi\)
−0.842154 + 0.539237i \(0.818713\pi\)
\(488\) 0 0
\(489\) 7.75826 + 5.63671i 0.350841 + 0.254901i
\(490\) 0 0
\(491\) −1.10397 + 3.39767i −0.0498214 + 0.153335i −0.972872 0.231344i \(-0.925688\pi\)
0.923051 + 0.384679i \(0.125688\pi\)
\(492\) 0 0
\(493\) 4.67427 3.39606i 0.210519 0.152951i
\(494\) 0 0
\(495\) 2.91998 + 1.57281i 0.131243 + 0.0706926i
\(496\) 0 0
\(497\) −29.4930 + 21.4279i −1.32294 + 0.961174i
\(498\) 0 0
\(499\) 10.0212 30.8421i 0.448610 1.38068i −0.429865 0.902893i \(-0.641439\pi\)
0.878475 0.477788i \(-0.158561\pi\)
\(500\) 0 0
\(501\) 18.1574 + 13.1922i 0.811215 + 0.589382i
\(502\) 0 0
\(503\) 12.8361 + 39.5053i 0.572332 + 1.76146i 0.645090 + 0.764106i \(0.276820\pi\)
−0.0727583 + 0.997350i \(0.523180\pi\)
\(504\) 0 0
\(505\) 13.7606 0.612338
\(506\) 0 0
\(507\) 37.0701 1.64634
\(508\) 0 0
\(509\) −4.32221 13.3024i −0.191578 0.589618i −0.999999 0.00101314i \(-0.999678\pi\)
0.808421 0.588605i \(-0.200322\pi\)
\(510\) 0 0
\(511\) 6.94450 + 5.04548i 0.307207 + 0.223199i
\(512\) 0 0
\(513\) −2.56691 + 7.90013i −0.113332 + 0.348799i
\(514\) 0 0
\(515\) 5.06732 3.68162i 0.223293 0.162232i
\(516\) 0 0
\(517\) 1.64833 9.06245i 0.0724936 0.398566i
\(518\) 0 0
\(519\) 5.61199 4.07735i 0.246339 0.178976i
\(520\) 0 0
\(521\) 2.45696 7.56173i 0.107641 0.331285i −0.882700 0.469937i \(-0.844277\pi\)
0.990341 + 0.138651i \(0.0442767\pi\)
\(522\) 0 0
\(523\) −5.58951 4.06102i −0.244412 0.177576i 0.458835 0.888522i \(-0.348267\pi\)
−0.703247 + 0.710946i \(0.748267\pi\)
\(524\) 0 0
\(525\) −1.26226 3.88484i −0.0550896 0.169548i
\(526\) 0 0
\(527\) −3.71383 −0.161777
\(528\) 0 0
\(529\) 26.3784 1.14689
\(530\) 0 0
\(531\) −1.34036 4.12521i −0.0581668 0.179019i
\(532\) 0 0
\(533\) −36.4652 26.4935i −1.57948 1.14756i
\(534\) 0 0
\(535\) 0.523263 1.61044i 0.0226226 0.0696253i
\(536\) 0 0
\(537\) 13.9691 10.1492i 0.602813 0.437969i
\(538\) 0 0
\(539\) 13.9259 + 28.9470i 0.599830 + 1.24683i
\(540\) 0 0
\(541\) −0.791276 + 0.574896i −0.0340196 + 0.0247167i −0.604665 0.796480i \(-0.706693\pi\)
0.570646 + 0.821197i \(0.306693\pi\)
\(542\) 0 0
\(543\) −1.62653 + 5.00593i −0.0698009 + 0.214825i
\(544\) 0 0
\(545\) −5.82276 4.23048i −0.249419 0.181214i
\(546\) 0 0
\(547\) 5.66615 + 17.4386i 0.242267 + 0.745621i 0.996074 + 0.0885251i \(0.0282153\pi\)
−0.753807 + 0.657096i \(0.771785\pi\)
\(548\) 0 0
\(549\) −10.0403 −0.428510
\(550\) 0 0
\(551\) 59.0343 2.51495
\(552\) 0 0
\(553\) −15.8569 48.8026i −0.674305 2.07530i
\(554\) 0 0
\(555\) −2.54238 1.84715i −0.107918 0.0784071i
\(556\) 0 0
\(557\) 8.29716 25.5360i 0.351562 1.08200i −0.606414 0.795149i \(-0.707393\pi\)
0.957976 0.286848i \(-0.0926074\pi\)
\(558\) 0 0
\(559\) −7.73481 + 5.61967i −0.327147 + 0.237687i
\(560\) 0 0
\(561\) −1.94965 + 1.86257i −0.0823144 + 0.0786377i
\(562\) 0 0
\(563\) 5.60247 4.07043i 0.236116 0.171548i −0.463435 0.886131i \(-0.653383\pi\)
0.699551 + 0.714583i \(0.253383\pi\)
\(564\) 0 0
\(565\) −4.98521 + 15.3429i −0.209730 + 0.645481i
\(566\) 0 0
\(567\) 3.30464 + 2.40097i 0.138782 + 0.100831i
\(568\) 0 0
\(569\) −1.49757 4.60903i −0.0627812 0.193221i 0.914746 0.404029i \(-0.132390\pi\)
−0.977527 + 0.210808i \(0.932390\pi\)
\(570\) 0 0
\(571\) 30.2269 1.26496 0.632479 0.774578i \(-0.282037\pi\)
0.632479 + 0.774578i \(0.282037\pi\)
\(572\) 0 0
\(573\) 16.0511 0.670545
\(574\) 0 0
\(575\) 2.17145 + 6.68305i 0.0905559 + 0.278702i
\(576\) 0 0
\(577\) −21.6416 15.7236i −0.900953 0.654581i 0.0377577 0.999287i \(-0.487978\pi\)
−0.938711 + 0.344706i \(0.887978\pi\)
\(578\) 0 0
\(579\) 1.98484 6.10872i 0.0824873 0.253870i
\(580\) 0 0
\(581\) −46.1783 + 33.5505i −1.91580 + 1.39191i
\(582\) 0 0
\(583\) 22.8487 3.08578i 0.946298 0.127800i
\(584\) 0 0
\(585\) 5.72462 4.15918i 0.236684 0.171961i
\(586\) 0 0
\(587\) 4.72899 14.5543i 0.195186 0.600722i −0.804788 0.593562i \(-0.797721\pi\)
0.999974 0.00715968i \(-0.00227902\pi\)
\(588\) 0 0
\(589\) −30.6992 22.3043i −1.26494 0.919033i
\(590\) 0 0
\(591\) −4.43657 13.6544i −0.182496 0.561666i
\(592\) 0 0
\(593\) −2.68279 −0.110169 −0.0550845 0.998482i \(-0.517543\pi\)
−0.0550845 + 0.998482i \(0.517543\pi\)
\(594\) 0 0
\(595\) 3.32083 0.136141
\(596\) 0 0
\(597\) −4.67891 14.4002i −0.191495 0.589362i
\(598\) 0 0
\(599\) 23.5560 + 17.1144i 0.962473 + 0.699277i 0.953724 0.300685i \(-0.0972151\pi\)
0.00874886 + 0.999962i \(0.497215\pi\)
\(600\) 0 0
\(601\) 8.69000 26.7451i 0.354472 1.09095i −0.601842 0.798615i \(-0.705566\pi\)
0.956315 0.292339i \(-0.0944335\pi\)
\(602\) 0 0
\(603\) 2.63986 1.91797i 0.107503 0.0781057i
\(604\) 0 0
\(605\) −0.502293 + 10.9885i −0.0204211 + 0.446747i
\(606\) 0 0
\(607\) −15.9624 + 11.5974i −0.647895 + 0.470724i −0.862554 0.505966i \(-0.831136\pi\)
0.214658 + 0.976689i \(0.431136\pi\)
\(608\) 0 0
\(609\) 8.97070 27.6090i 0.363511 1.11877i
\(610\) 0 0
\(611\) −15.8988 11.5511i −0.643196 0.467309i
\(612\) 0 0
\(613\) 1.73888 + 5.35173i 0.0702327 + 0.216154i 0.980012 0.198938i \(-0.0637493\pi\)
−0.909779 + 0.415092i \(0.863749\pi\)
\(614\) 0 0
\(615\) −6.36988 −0.256858
\(616\) 0 0
\(617\) −1.97540 −0.0795267 −0.0397634 0.999209i \(-0.512660\pi\)
−0.0397634 + 0.999209i \(0.512660\pi\)
\(618\) 0 0
\(619\) 10.3591 + 31.8821i 0.416368 + 1.28145i 0.911021 + 0.412359i \(0.135295\pi\)
−0.494653 + 0.869090i \(0.664705\pi\)
\(620\) 0 0
\(621\) −5.68494 4.13035i −0.228129 0.165745i
\(622\) 0 0
\(623\) −1.01001 + 3.10848i −0.0404650 + 0.124538i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −27.3023 + 3.68724i −1.09035 + 0.147254i
\(628\) 0 0
\(629\) 2.06691 1.50170i 0.0824130 0.0598765i
\(630\) 0 0
\(631\) 0.335151 1.03149i 0.0133422 0.0410630i −0.944164 0.329476i \(-0.893128\pi\)
0.957506 + 0.288413i \(0.0931278\pi\)
\(632\) 0 0
\(633\) −2.70076 1.96222i −0.107346 0.0779911i
\(634\) 0 0
\(635\) 0.327908 + 1.00920i 0.0130126 + 0.0400488i
\(636\) 0 0
\(637\) 68.5335 2.71540
\(638\) 0 0
\(639\) −8.92472 −0.353056
\(640\) 0 0
\(641\) 4.62814 + 14.2439i 0.182800 + 0.562602i 0.999904 0.0138898i \(-0.00442140\pi\)
−0.817103 + 0.576491i \(0.804421\pi\)
\(642\) 0 0
\(643\) −30.8436 22.4092i −1.21635 0.883733i −0.220563 0.975373i \(-0.570789\pi\)
−0.995792 + 0.0916393i \(0.970789\pi\)
\(644\) 0 0
\(645\) −0.417527 + 1.28502i −0.0164401 + 0.0505975i
\(646\) 0 0
\(647\) 14.9038 10.8283i 0.585929 0.425703i −0.254928 0.966960i \(-0.582052\pi\)
0.840857 + 0.541258i \(0.182052\pi\)
\(648\) 0 0
\(649\) 10.4020 9.93739i 0.408314 0.390077i
\(650\) 0 0
\(651\) −15.0962 + 10.9680i −0.591666 + 0.429870i
\(652\) 0 0
\(653\) −9.36436 + 28.8205i −0.366456 + 1.12783i 0.582609 + 0.812753i \(0.302032\pi\)
−0.949064 + 0.315082i \(0.897968\pi\)
\(654\) 0 0
\(655\) 1.15064 + 0.835989i 0.0449593 + 0.0326648i
\(656\) 0 0
\(657\) 0.649380 + 1.99858i 0.0253347 + 0.0779722i
\(658\) 0 0
\(659\) 14.2869 0.556539 0.278269 0.960503i \(-0.410239\pi\)
0.278269 + 0.960503i \(0.410239\pi\)
\(660\) 0 0
\(661\) 33.1552 1.28959 0.644793 0.764357i \(-0.276944\pi\)
0.644793 + 0.764357i \(0.276944\pi\)
\(662\) 0 0
\(663\) 1.77767 + 5.47111i 0.0690390 + 0.212480i
\(664\) 0 0
\(665\) 27.4506 + 19.9441i 1.06449 + 0.773398i
\(666\) 0 0
\(667\) −15.4322 + 47.4954i −0.597536 + 1.83903i
\(668\) 0 0
\(669\) 19.7905 14.3787i 0.765146 0.555911i
\(670\) 0 0
\(671\) −14.4363 30.0080i −0.557307 1.15844i
\(672\) 0 0
\(673\) 2.01601 1.46472i 0.0777114 0.0564607i −0.548251 0.836314i \(-0.684706\pi\)
0.625963 + 0.779853i \(0.284706\pi\)
\(674\) 0 0
\(675\) 0.309017 0.951057i 0.0118941 0.0366062i
\(676\) 0 0
\(677\) 29.0098 + 21.0769i 1.11494 + 0.810050i 0.983434 0.181266i \(-0.0580195\pi\)
0.131504 + 0.991316i \(0.458019\pi\)
\(678\) 0 0
\(679\) −6.09207 18.7495i −0.233792 0.719538i
\(680\) 0 0
\(681\) −11.8320 −0.453404
\(682\) 0 0
\(683\) −27.7565 −1.06207 −0.531036 0.847349i \(-0.678197\pi\)
−0.531036 + 0.847349i \(0.678197\pi\)
\(684\) 0 0
\(685\) 1.86244 + 5.73199i 0.0711601 + 0.219008i
\(686\) 0 0
\(687\) −3.44953 2.50623i −0.131608 0.0956188i
\(688\) 0 0
\(689\) 15.2006 46.7828i 0.579099 1.78228i
\(690\) 0 0
\(691\) 8.42264 6.11941i 0.320412 0.232793i −0.415939 0.909392i \(-0.636547\pi\)
0.736351 + 0.676599i \(0.236547\pi\)
\(692\) 0 0
\(693\) −2.42435 + 13.3290i −0.0920934 + 0.506325i
\(694\) 0 0
\(695\) −12.2855 + 8.92596i −0.466017 + 0.338581i
\(696\) 0 0
\(697\) 1.60027 4.92513i 0.0606146 0.186553i
\(698\) 0 0
\(699\) 20.7086 + 15.0457i 0.783270 + 0.569079i
\(700\) 0 0
\(701\) 2.71358 + 8.35155i 0.102491 + 0.315434i 0.989133 0.147021i \(-0.0469686\pi\)
−0.886643 + 0.462455i \(0.846969\pi\)
\(702\) 0 0
\(703\) 26.1042 0.984540
\(704\) 0 0
\(705\) −2.77726 −0.104598
\(706\) 0 0
\(707\) 17.3695 + 53.4577i 0.653246 + 2.01049i
\(708\) 0 0
\(709\) 32.4128 + 23.5492i 1.21729 + 0.884410i 0.995872 0.0907694i \(-0.0289326\pi\)
0.221415 + 0.975180i \(0.428933\pi\)
\(710\) 0 0
\(711\) 3.88197 11.9475i 0.145585 0.448065i
\(712\) 0 0
\(713\) 25.9698 18.8681i 0.972575 0.706617i
\(714\) 0 0
\(715\) 20.6618 + 11.1292i 0.772708 + 0.416210i
\(716\) 0 0
\(717\) 19.0257 13.8230i 0.710527 0.516228i
\(718\) 0 0
\(719\) −4.39821 + 13.5363i −0.164026 + 0.504819i −0.998963 0.0455257i \(-0.985504\pi\)
0.834937 + 0.550345i \(0.185504\pi\)
\(720\) 0 0
\(721\) 20.6988 + 15.0386i 0.770864 + 0.560065i
\(722\) 0 0
\(723\) 4.11710 + 12.6711i 0.153117 + 0.471244i
\(724\) 0 0
\(725\) −7.10684 −0.263941
\(726\) 0 0
\(727\) 19.2900 0.715427 0.357714 0.933831i \(-0.383556\pi\)
0.357714 + 0.933831i \(0.383556\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) −0.888670 0.645656i −0.0328686 0.0238805i
\(732\) 0 0
\(733\) −4.33900 + 13.3541i −0.160265 + 0.493244i −0.998656 0.0518243i \(-0.983496\pi\)
0.838391 + 0.545069i \(0.183496\pi\)
\(734\) 0 0
\(735\) 7.83558 5.69288i 0.289020 0.209985i
\(736\) 0 0
\(737\) 9.52801 + 5.13215i 0.350969 + 0.189045i
\(738\) 0 0
\(739\) −24.9927 + 18.1583i −0.919372 + 0.667963i −0.943368 0.331749i \(-0.892361\pi\)
0.0239956 + 0.999712i \(0.492361\pi\)
\(740\) 0 0
\(741\) −18.1635 + 55.9015i −0.667252 + 2.05359i
\(742\) 0 0
\(743\) −20.1696 14.6541i −0.739951 0.537606i 0.152745 0.988266i \(-0.451189\pi\)
−0.892696 + 0.450660i \(0.851189\pi\)
\(744\) 0 0
\(745\) −1.76290 5.42565i −0.0645877 0.198780i
\(746\) 0 0
\(747\) −13.9738 −0.511273
\(748\) 0 0
\(749\) 6.91679 0.252734
\(750\) 0 0
\(751\) −14.0835 43.3445i −0.513913 1.58166i −0.785251 0.619177i \(-0.787466\pi\)
0.271338 0.962484i \(-0.412534\pi\)
\(752\) 0 0
\(753\) 11.0134 + 8.00174i 0.401352 + 0.291600i
\(754\) 0 0
\(755\) 0.254179 0.782284i 0.00925054 0.0284702i
\(756\) 0 0
\(757\) −39.2692 + 28.5307i −1.42726 + 1.03697i −0.436745 + 0.899586i \(0.643869\pi\)
−0.990518 + 0.137382i \(0.956131\pi\)
\(758\) 0 0
\(759\) 4.17058 22.9296i 0.151382 0.832293i
\(760\) 0 0
\(761\) 18.6226 13.5301i 0.675068 0.490466i −0.196650 0.980474i \(-0.563006\pi\)
0.871718 + 0.490008i \(0.163006\pi\)
\(762\) 0 0
\(763\) 9.08491 27.9605i 0.328896 1.01224i
\(764\) 0 0
\(765\) 0.657715 + 0.477858i 0.0237797 + 0.0172770i
\(766\) 0 0
\(767\) −9.48443 29.1901i −0.342463 1.05399i
\(768\) 0 0
\(769\) 29.2841 1.05601 0.528006 0.849241i \(-0.322940\pi\)
0.528006 + 0.849241i \(0.322940\pi\)
\(770\) 0 0
\(771\) −27.5253 −0.991298
\(772\) 0 0
\(773\) 1.84208 + 5.66933i 0.0662549 + 0.203912i 0.978703 0.205280i \(-0.0658106\pi\)
−0.912448 + 0.409192i \(0.865811\pi\)
\(774\) 0 0
\(775\) 3.69573 + 2.68510i 0.132754 + 0.0964517i
\(776\) 0 0
\(777\) 3.96673 12.2083i 0.142306 0.437972i
\(778\) 0 0
\(779\) 42.8072 31.1012i 1.53373 1.11432i
\(780\) 0 0
\(781\) −12.8323 26.6738i −0.459175 0.954462i
\(782\) 0 0
\(783\) 5.74955 4.17730i 0.205472 0.149284i
\(784\) 0 0
\(785\) 1.52905 4.70594i 0.0545742 0.167962i
\(786\) 0 0
\(787\) −34.0807 24.7611i −1.21485 0.882637i −0.219184 0.975684i \(-0.570339\pi\)
−0.995662 + 0.0930468i \(0.970339\pi\)
\(788\) 0 0
\(789\) 0.301943 + 0.929285i 0.0107495 + 0.0330834i
\(790\) 0 0
\(791\) −65.8974 −2.34304
\(792\) 0 0
\(793\) −71.0454 −2.52290
\(794\) 0 0
\(795\) −2.14819 6.61145i −0.0761885 0.234484i
\(796\) 0 0
\(797\) −21.3588 15.5181i −0.756567 0.549678i 0.141289 0.989968i \(-0.454875\pi\)
−0.897855 + 0.440291i \(0.854875\pi\)
\(798\) 0 0
\(799\) 0.697717 2.14735i 0.0246835 0.0759679i
\(800\) 0 0
\(801\) −0.647339 + 0.470319i −0.0228726 + 0.0166179i
\(802\) 0 0
\(803\) −5.03957 + 4.81447i −0.177843 + 0.169899i
\(804\) 0 0
\(805\) −23.2217 + 16.8715i −0.818456 + 0.594643i
\(806\) 0 0
\(807\) −4.10851 + 12.6447i −0.144626 + 0.445114i
\(808\) 0 0
\(809\) −37.2659 27.0753i −1.31020 0.951915i −0.999999 0.00124363i \(-0.999604\pi\)
−0.310200 0.950671i \(-0.600396\pi\)
\(810\) 0 0
\(811\) −2.11433 6.50724i −0.0742442 0.228500i 0.907047 0.421029i \(-0.138331\pi\)
−0.981291 + 0.192529i \(0.938331\pi\)
\(812\) 0 0
\(813\) −15.7714 −0.553127
\(814\) 0 0
\(815\) 9.58974 0.335914
\(816\) 0 0
\(817\) −3.46827 10.6742i −0.121339 0.373444i
\(818\) 0 0
\(819\) 23.3837 + 16.9893i 0.817094 + 0.593654i
\(820\) 0 0
\(821\) 3.63254 11.1798i 0.126777 0.390178i −0.867444 0.497535i \(-0.834239\pi\)
0.994221 + 0.107357i \(0.0342386\pi\)
\(822\) 0 0
\(823\) −16.5272 + 12.0077i −0.576103 + 0.418563i −0.837317 0.546718i \(-0.815877\pi\)
0.261214 + 0.965281i \(0.415877\pi\)
\(824\) 0 0
\(825\) 3.28679 0.443888i 0.114431 0.0154542i
\(826\) 0 0
\(827\) 15.6584 11.3765i 0.544497 0.395600i −0.281256 0.959633i \(-0.590751\pi\)
0.825752 + 0.564033i \(0.190751\pi\)
\(828\) 0 0
\(829\) 0.313545 0.964993i 0.0108899 0.0335156i −0.945464 0.325727i \(-0.894391\pi\)
0.956354 + 0.292211i \(0.0943910\pi\)
\(830\) 0 0
\(831\) 4.25189 + 3.08918i 0.147496 + 0.107162i
\(832\) 0 0
\(833\) 2.43319 + 7.48859i 0.0843050 + 0.259464i
\(834\) 0 0
\(835\) 22.4438 0.776701
\(836\) 0 0
\(837\) −4.56817 −0.157899
\(838\) 0 0
\(839\) 2.80354 + 8.62841i 0.0967889 + 0.297886i 0.987716 0.156261i \(-0.0499441\pi\)
−0.890927 + 0.454147i \(0.849944\pi\)
\(840\) 0 0
\(841\) −17.3997 12.6416i −0.599989 0.435917i
\(842\) 0 0
\(843\) 7.90750 24.3368i 0.272349 0.838203i
\(844\) 0 0
\(845\) 29.9903 21.7892i 1.03170 0.749573i
\(846\) 0 0
\(847\) −43.3227 + 11.9191i −1.48859 + 0.409544i
\(848\) 0 0
\(849\) −6.66916 + 4.84543i −0.228885 + 0.166295i
\(850\) 0 0
\(851\) −6.82392 + 21.0019i −0.233921 + 0.719935i
\(852\) 0 0
\(853\) −12.3625 8.98189i −0.423285 0.307534i 0.355674 0.934610i \(-0.384252\pi\)
−0.778958 + 0.627076i \(0.784252\pi\)
\(854\) 0 0
\(855\) 2.56691 + 7.90013i 0.0877864 + 0.270179i
\(856\) 0 0
\(857\) 41.0382 1.40184 0.700919 0.713241i \(-0.252773\pi\)
0.700919 + 0.713241i \(0.252773\pi\)
\(858\) 0 0
\(859\) −21.9500 −0.748923 −0.374461 0.927242i \(-0.622172\pi\)
−0.374461 + 0.927242i \(0.622172\pi\)
\(860\) 0 0
\(861\) −8.04046 24.7460i −0.274018 0.843341i
\(862\) 0 0
\(863\) 39.0547 + 28.3749i 1.32944 + 0.965894i 0.999762 + 0.0218001i \(0.00693974\pi\)
0.329677 + 0.944094i \(0.393060\pi\)
\(864\) 0 0
\(865\) 2.14359 6.59729i 0.0728843 0.224315i
\(866\) 0 0
\(867\) 13.2186 9.60386i 0.448927 0.326164i
\(868\) 0 0
\(869\) 41.2896 5.57626i 1.40065 0.189162i
\(870\) 0 0
\(871\) 18.6797 13.5716i 0.632937 0.459855i
\(872\) 0 0
\(873\) 1.49141 4.59009i 0.0504767 0.155351i
\(874\) 0 0
\(875\) −3.30464 2.40097i −0.111717 0.0811674i
\(876\) 0 0
\(877\) 14.1874 + 43.6643i 0.479074 + 1.47444i 0.840383 + 0.541993i \(0.182330\pi\)
−0.361309 + 0.932446i \(0.617670\pi\)
\(878\) 0 0
\(879\) −23.3242 −0.786705
\(880\) 0 0
\(881\) −33.1091 −1.11547 −0.557737 0.830018i \(-0.688330\pi\)
−0.557737 + 0.830018i \(0.688330\pi\)
\(882\) 0 0
\(883\) 0.0529664 + 0.163014i 0.00178246 + 0.00548585i 0.951944 0.306273i \(-0.0990820\pi\)
−0.950161 + 0.311759i \(0.899082\pi\)
\(884\) 0 0
\(885\) −3.50911 2.54952i −0.117958 0.0857012i
\(886\) 0 0
\(887\) −12.2589 + 37.7290i −0.411614 + 1.26682i 0.503631 + 0.863919i \(0.331997\pi\)
−0.915245 + 0.402898i \(0.868003\pi\)
\(888\) 0 0
\(889\) −3.50667 + 2.54774i −0.117610 + 0.0854485i
\(890\) 0 0
\(891\) −2.39815 + 2.29104i −0.0803412 + 0.0767526i
\(892\) 0 0
\(893\) 18.6639 13.5601i 0.624564 0.453772i
\(894\) 0 0
\(895\) 5.33574 16.4217i 0.178354 0.548917i
\(896\) 0 0
\(897\) −40.2268 29.2265i −1.34313 0.975843i
\(898\) 0 0
\(899\) 10.0323 + 30.8763i 0.334596 + 1.02978i
\(900\) 0 0
\(901\) 5.65159 0.188282
\(902\) 0 0
\(903\) −5.51912 −0.183665
\(904\) 0 0
\(905\) 1.62653 + 5.00593i 0.0540675 + 0.166403i
\(906\) 0 0
\(907\) −25.3463 18.4152i −0.841610 0.611465i 0.0812101 0.996697i \(-0.474122\pi\)
−0.922820 + 0.385232i \(0.874122\pi\)
\(908\) 0 0
\(909\) −4.25226 + 13.0871i −0.141038 + 0.434072i
\(910\) 0 0
\(911\) 23.2850 16.9176i 0.771468 0.560504i −0.130938 0.991391i \(-0.541799\pi\)
0.902406 + 0.430886i \(0.141799\pi\)
\(912\) 0 0
\(913\) −20.0920 41.7641i −0.664948 1.38219i
\(914\) 0 0
\(915\) −8.12278 + 5.90154i −0.268531 + 0.195099i
\(916\) 0 0
\(917\) −1.79528 + 5.52530i −0.0592853 + 0.182461i
\(918\) 0 0
\(919\) −21.3619 15.5203i −0.704665 0.511969i 0.176783 0.984250i \(-0.443431\pi\)
−0.881448 + 0.472281i \(0.843431\pi\)
\(920\) 0 0
\(921\) −7.82860 24.0940i −0.257961 0.793923i
\(922\) 0 0
\(923\) −63.1515 −2.07866
\(924\) 0 0
\(925\) −3.14256 −0.103327
\(926\) 0 0
\(927\) 1.93554 + 5.95699i 0.0635716 + 0.195653i
\(928\) 0 0
\(929\) 44.9423 + 32.6525i 1.47451 + 1.07129i 0.979275 + 0.202535i \(0.0649181\pi\)
0.495235 + 0.868759i \(0.335082\pi\)
\(930\) 0 0
\(931\) −24.8613 + 76.5152i −0.814796 + 2.50768i
\(932\) 0 0
\(933\) −24.4647 + 17.7747i −0.800939 + 0.581917i
\(934\) 0 0
\(935\) −0.482512 + 2.65283i −0.0157798 + 0.0867567i
\(936\) 0 0
\(937\) 11.8835 8.63389i 0.388218 0.282057i −0.376507 0.926414i \(-0.622875\pi\)
0.764725 + 0.644357i \(0.222875\pi\)
\(938\) 0 0
\(939\) −4.21407 + 12.9696i −0.137521 + 0.423246i
\(940\) 0 0
\(941\) 46.0740 + 33.4748i 1.50197 + 1.09125i 0.969588 + 0.244742i \(0.0787033\pi\)
0.532383 + 0.846504i \(0.321297\pi\)
\(942\) 0 0
\(943\) 13.8319 + 42.5702i 0.450429 + 1.38628i
\(944\) 0 0
\(945\) 4.08477 0.132877
\(946\) 0 0
\(947\) −33.1235 −1.07637 −0.538184 0.842827i \(-0.680890\pi\)
−0.538184 + 0.842827i \(0.680890\pi\)
\(948\) 0 0
\(949\) 4.59502 + 14.1420i 0.149161 + 0.459070i
\(950\) 0 0
\(951\) 10.3686 + 7.53320i 0.336224 + 0.244281i
\(952\) 0 0
\(953\) −1.99812 + 6.14959i −0.0647255 + 0.199205i −0.978189 0.207715i \(-0.933397\pi\)
0.913464 + 0.406920i \(0.133397\pi\)
\(954\) 0 0
\(955\) 12.9856 9.43461i 0.420205 0.305297i
\(956\) 0 0
\(957\) 20.7518 + 11.1777i 0.670811 + 0.361324i
\(958\) 0 0
\(959\) −19.9170 + 14.4706i −0.643154 + 0.467279i
\(960\) 0 0
\(961\) −3.13091 + 9.63595i −0.100997 + 0.310837i
\(962\) 0 0
\(963\) 1.36992 + 0.995305i 0.0441451 + 0.0320733i
\(964\) 0 0
\(965\) −1.98484 6.10872i −0.0638944 0.196647i
\(966\) 0 0
\(967\) −15.6961 −0.504752 −0.252376 0.967629i \(-0.581212\pi\)
−0.252376 + 0.967629i \(0.581212\pi\)
\(968\) 0 0
\(969\) −6.75317 −0.216943
\(970\) 0 0
\(971\) −2.09603 6.45092i −0.0672649 0.207020i 0.911774 0.410691i \(-0.134713\pi\)
−0.979039 + 0.203671i \(0.934713\pi\)
\(972\) 0 0
\(973\) −50.1835 36.4604i −1.60881 1.16887i
\(974\) 0 0
\(975\) 2.18661 6.72970i 0.0700276 0.215523i
\(976\) 0 0
\(977\) −15.5147 + 11.2721i −0.496358 + 0.360625i −0.807624 0.589697i \(-0.799247\pi\)
0.311266 + 0.950323i \(0.399247\pi\)
\(978\) 0 0
\(979\) −2.33643 1.25849i −0.0746728 0.0402216i
\(980\) 0 0
\(981\) 5.82276 4.23048i 0.185906 0.135069i
\(982\) 0 0
\(983\) −10.0003 + 30.7777i −0.318959 + 0.981656i 0.655135 + 0.755512i \(0.272612\pi\)
−0.974094 + 0.226143i \(0.927388\pi\)
\(984\) 0 0
\(985\) −11.6151 8.43887i −0.370088 0.268885i
\(986\) 0 0
\(987\) −3.50563 10.7892i −0.111586 0.343425i
\(988\) 0 0
\(989\) 9.49448 0.301907
\(990\) 0 0
\(991\) −40.4694 −1.28555 −0.642776 0.766054i \(-0.722218\pi\)
−0.642776 + 0.766054i \(0.722218\pi\)
\(992\) 0 0
\(993\) −4.59770 14.1503i −0.145904 0.449045i
\(994\) 0 0
\(995\) −12.2496 8.89982i −0.388337 0.282143i
\(996\) 0 0
\(997\) −11.6639 + 35.8978i −0.369399 + 1.13689i 0.577781 + 0.816192i \(0.303919\pi\)
−0.947180 + 0.320702i \(0.896081\pi\)
\(998\) 0 0
\(999\) 2.54238 1.84715i 0.0804374 0.0584412i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 660.2.y.b.421.1 yes 8
3.2 odd 2 1980.2.z.b.1081.1 8
11.2 odd 10 7260.2.a.bg.1.4 4
11.4 even 5 inner 660.2.y.b.301.1 8
11.9 even 5 7260.2.a.be.1.1 4
33.26 odd 10 1980.2.z.b.1621.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
660.2.y.b.301.1 8 11.4 even 5 inner
660.2.y.b.421.1 yes 8 1.1 even 1 trivial
1980.2.z.b.1081.1 8 3.2 odd 2
1980.2.z.b.1621.1 8 33.26 odd 10
7260.2.a.be.1.1 4 11.9 even 5
7260.2.a.bg.1.4 4 11.2 odd 10