Properties

Label 660.2.y.b.361.1
Level $660$
Weight $2$
Character 660.361
Analytic conductor $5.270$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [660,2,Mod(181,660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("660.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(660, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 660.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.27012653340\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.1
Root \(1.43801 - 1.04478i\) of defining polynomial
Character \(\chi\) \(=\) 660.361
Dual form 660.2.y.b.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{3} +(-0.309017 - 0.951057i) q^{5} +(-1.12900 - 0.820265i) q^{7} +(0.309017 - 0.951057i) q^{9} +(-0.660531 + 3.25018i) q^{11} +(-0.591770 + 1.82128i) q^{13} +(0.809017 + 0.587785i) q^{15} +(1.46847 + 4.51948i) q^{17} +(0.439763 - 0.319507i) q^{19} +1.39552 q^{21} -1.43100 q^{23} +(-0.809017 + 0.587785i) q^{25} +(0.309017 + 0.951057i) q^{27} +(7.72730 + 5.61421i) q^{29} +(-2.92597 + 9.00521i) q^{31} +(-1.37603 - 3.01770i) q^{33} +(-0.431239 + 1.32722i) q^{35} +(0.517740 + 0.376160i) q^{37} +(-0.591770 - 1.82128i) q^{39} +(3.32959 - 2.41909i) q^{41} -7.84844 q^{43} -1.00000 q^{45} +(-9.43603 + 6.85567i) q^{47} +(-1.56132 - 4.80524i) q^{49} +(-3.84450 - 2.79319i) q^{51} +(-3.55538 + 10.9423i) q^{53} +(3.29522 - 0.376160i) q^{55} +(-0.167975 + 0.516973i) q^{57} +(6.48027 + 4.70819i) q^{59} +(-1.85302 - 5.70301i) q^{61} +(-1.12900 + 0.820265i) q^{63} +1.91501 q^{65} +9.66707 q^{67} +(1.15770 - 0.841120i) q^{69} +(0.332025 + 1.02187i) q^{71} +(-8.28929 - 6.02252i) q^{73} +(0.309017 - 0.951057i) q^{75} +(3.41175 - 3.12764i) q^{77} +(-2.33688 + 7.19218i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(-1.06349 - 3.27309i) q^{83} +(3.84450 - 2.79319i) q^{85} -9.55147 q^{87} +11.0079 q^{89} +(2.16204 - 1.57081i) q^{91} +(-2.92597 - 9.00521i) q^{93} +(-0.439763 - 0.319507i) q^{95} +(4.07271 - 12.5345i) q^{97} +(2.88699 + 1.63256i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 2 q^{5} - 3 q^{7} - 2 q^{9} - 5 q^{11} - 8 q^{13} + 2 q^{15} + 6 q^{17} + 6 q^{19} - 8 q^{21} + 30 q^{23} - 2 q^{25} - 2 q^{27} - 9 q^{31} + 10 q^{33} - 7 q^{35} - 7 q^{37} - 8 q^{39} + 25 q^{41}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/660\mathbb{Z}\right)^\times\).

\(n\) \(221\) \(331\) \(397\) \(541\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) 0 0
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) 0 0
\(7\) −1.12900 0.820265i −0.426721 0.310031i 0.353615 0.935391i \(-0.384952\pi\)
−0.780336 + 0.625360i \(0.784952\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) −0.660531 + 3.25018i −0.199158 + 0.979967i
\(12\) 0 0
\(13\) −0.591770 + 1.82128i −0.164127 + 0.505132i −0.998971 0.0453552i \(-0.985558\pi\)
0.834844 + 0.550487i \(0.185558\pi\)
\(14\) 0 0
\(15\) 0.809017 + 0.587785i 0.208887 + 0.151765i
\(16\) 0 0
\(17\) 1.46847 + 4.51948i 0.356156 + 1.09613i 0.955336 + 0.295521i \(0.0954931\pi\)
−0.599181 + 0.800614i \(0.704507\pi\)
\(18\) 0 0
\(19\) 0.439763 0.319507i 0.100889 0.0732999i −0.536197 0.844093i \(-0.680140\pi\)
0.637086 + 0.770793i \(0.280140\pi\)
\(20\) 0 0
\(21\) 1.39552 0.304527
\(22\) 0 0
\(23\) −1.43100 −0.298384 −0.149192 0.988808i \(-0.547667\pi\)
−0.149192 + 0.988808i \(0.547667\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 0 0
\(29\) 7.72730 + 5.61421i 1.43492 + 1.04253i 0.989073 + 0.147426i \(0.0470989\pi\)
0.445851 + 0.895107i \(0.352901\pi\)
\(30\) 0 0
\(31\) −2.92597 + 9.00521i −0.525520 + 1.61738i 0.237766 + 0.971323i \(0.423585\pi\)
−0.763286 + 0.646061i \(0.776415\pi\)
\(32\) 0 0
\(33\) −1.37603 3.01770i −0.239536 0.525315i
\(34\) 0 0
\(35\) −0.431239 + 1.32722i −0.0728927 + 0.224341i
\(36\) 0 0
\(37\) 0.517740 + 0.376160i 0.0851159 + 0.0618404i 0.629529 0.776977i \(-0.283248\pi\)
−0.544413 + 0.838817i \(0.683248\pi\)
\(38\) 0 0
\(39\) −0.591770 1.82128i −0.0947590 0.291638i
\(40\) 0 0
\(41\) 3.32959 2.41909i 0.519994 0.377798i −0.296608 0.954999i \(-0.595855\pi\)
0.816602 + 0.577202i \(0.195855\pi\)
\(42\) 0 0
\(43\) −7.84844 −1.19688 −0.598438 0.801169i \(-0.704212\pi\)
−0.598438 + 0.801169i \(0.704212\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −9.43603 + 6.85567i −1.37639 + 1.00000i −0.379178 + 0.925324i \(0.623793\pi\)
−0.997208 + 0.0746793i \(0.976207\pi\)
\(48\) 0 0
\(49\) −1.56132 4.80524i −0.223045 0.686463i
\(50\) 0 0
\(51\) −3.84450 2.79319i −0.538337 0.391125i
\(52\) 0 0
\(53\) −3.55538 + 10.9423i −0.488369 + 1.50305i 0.338672 + 0.940904i \(0.390022\pi\)
−0.827041 + 0.562141i \(0.809978\pi\)
\(54\) 0 0
\(55\) 3.29522 0.376160i 0.444328 0.0507214i
\(56\) 0 0
\(57\) −0.167975 + 0.516973i −0.0222488 + 0.0684747i
\(58\) 0 0
\(59\) 6.48027 + 4.70819i 0.843659 + 0.612954i 0.923390 0.383862i \(-0.125406\pi\)
−0.0797310 + 0.996816i \(0.525406\pi\)
\(60\) 0 0
\(61\) −1.85302 5.70301i −0.237255 0.730196i −0.996814 0.0797579i \(-0.974585\pi\)
0.759559 0.650438i \(-0.225415\pi\)
\(62\) 0 0
\(63\) −1.12900 + 0.820265i −0.142240 + 0.103344i
\(64\) 0 0
\(65\) 1.91501 0.237527
\(66\) 0 0
\(67\) 9.66707 1.18102 0.590510 0.807030i \(-0.298927\pi\)
0.590510 + 0.807030i \(0.298927\pi\)
\(68\) 0 0
\(69\) 1.15770 0.841120i 0.139371 0.101259i
\(70\) 0 0
\(71\) 0.332025 + 1.02187i 0.0394042 + 0.121274i 0.968824 0.247752i \(-0.0796917\pi\)
−0.929419 + 0.369025i \(0.879692\pi\)
\(72\) 0 0
\(73\) −8.28929 6.02252i −0.970188 0.704883i −0.0146934 0.999892i \(-0.504677\pi\)
−0.955494 + 0.295009i \(0.904677\pi\)
\(74\) 0 0
\(75\) 0.309017 0.951057i 0.0356822 0.109819i
\(76\) 0 0
\(77\) 3.41175 3.12764i 0.388805 0.356428i
\(78\) 0 0
\(79\) −2.33688 + 7.19218i −0.262920 + 0.809184i 0.729246 + 0.684252i \(0.239871\pi\)
−0.992165 + 0.124932i \(0.960129\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) −1.06349 3.27309i −0.116734 0.359269i 0.875571 0.483089i \(-0.160485\pi\)
−0.992305 + 0.123820i \(0.960485\pi\)
\(84\) 0 0
\(85\) 3.84450 2.79319i 0.416994 0.302964i
\(86\) 0 0
\(87\) −9.55147 −1.02403
\(88\) 0 0
\(89\) 11.0079 1.16683 0.583417 0.812173i \(-0.301715\pi\)
0.583417 + 0.812173i \(0.301715\pi\)
\(90\) 0 0
\(91\) 2.16204 1.57081i 0.226643 0.164666i
\(92\) 0 0
\(93\) −2.92597 9.00521i −0.303409 0.933797i
\(94\) 0 0
\(95\) −0.439763 0.319507i −0.0451187 0.0327807i
\(96\) 0 0
\(97\) 4.07271 12.5345i 0.413521 1.27269i −0.500046 0.865999i \(-0.666684\pi\)
0.913567 0.406688i \(-0.133316\pi\)
\(98\) 0 0
\(99\) 2.88699 + 1.63256i 0.290154 + 0.164079i
\(100\) 0 0
\(101\) −2.78793 + 8.58036i −0.277409 + 0.853778i 0.711163 + 0.703028i \(0.248169\pi\)
−0.988572 + 0.150750i \(0.951831\pi\)
\(102\) 0 0
\(103\) −3.24923 2.36070i −0.320156 0.232607i 0.416086 0.909325i \(-0.363402\pi\)
−0.736242 + 0.676718i \(0.763402\pi\)
\(104\) 0 0
\(105\) −0.431239 1.32722i −0.0420846 0.129523i
\(106\) 0 0
\(107\) 7.65041 5.55835i 0.739593 0.537346i −0.152991 0.988228i \(-0.548890\pi\)
0.892584 + 0.450882i \(0.148890\pi\)
\(108\) 0 0
\(109\) 18.8247 1.80308 0.901540 0.432697i \(-0.142438\pi\)
0.901540 + 0.432697i \(0.142438\pi\)
\(110\) 0 0
\(111\) −0.639962 −0.0607425
\(112\) 0 0
\(113\) −4.88630 + 3.55011i −0.459665 + 0.333966i −0.793400 0.608701i \(-0.791691\pi\)
0.333735 + 0.942667i \(0.391691\pi\)
\(114\) 0 0
\(115\) 0.442203 + 1.36096i 0.0412356 + 0.126910i
\(116\) 0 0
\(117\) 1.54927 + 1.12561i 0.143230 + 0.104063i
\(118\) 0 0
\(119\) 2.04927 6.30701i 0.187857 0.578163i
\(120\) 0 0
\(121\) −10.1274 4.29369i −0.920673 0.390336i
\(122\) 0 0
\(123\) −1.27179 + 3.91416i −0.114673 + 0.352928i
\(124\) 0 0
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) −4.09436 12.6011i −0.363316 1.11817i −0.951029 0.309101i \(-0.899972\pi\)
0.587714 0.809069i \(-0.300028\pi\)
\(128\) 0 0
\(129\) 6.34953 4.61320i 0.559045 0.406170i
\(130\) 0 0
\(131\) −0.385462 −0.0336780 −0.0168390 0.999858i \(-0.505360\pi\)
−0.0168390 + 0.999858i \(0.505360\pi\)
\(132\) 0 0
\(133\) −0.758572 −0.0657765
\(134\) 0 0
\(135\) 0.809017 0.587785i 0.0696291 0.0505885i
\(136\) 0 0
\(137\) 0.751220 + 2.31202i 0.0641810 + 0.197529i 0.978005 0.208582i \(-0.0668847\pi\)
−0.913824 + 0.406111i \(0.866885\pi\)
\(138\) 0 0
\(139\) −10.4161 7.56773i −0.883481 0.641886i 0.0506891 0.998714i \(-0.483858\pi\)
−0.934170 + 0.356828i \(0.883858\pi\)
\(140\) 0 0
\(141\) 3.60424 11.0927i 0.303532 0.934175i
\(142\) 0 0
\(143\) −5.52861 3.12637i −0.462326 0.261440i
\(144\) 0 0
\(145\) 2.95157 9.08399i 0.245114 0.754384i
\(146\) 0 0
\(147\) 4.08758 + 2.96980i 0.337138 + 0.244945i
\(148\) 0 0
\(149\) −5.22929 16.0941i −0.428400 1.31848i −0.899701 0.436508i \(-0.856215\pi\)
0.471300 0.881973i \(-0.343785\pi\)
\(150\) 0 0
\(151\) 1.35015 0.980945i 0.109874 0.0798281i −0.531491 0.847064i \(-0.678368\pi\)
0.641365 + 0.767235i \(0.278368\pi\)
\(152\) 0 0
\(153\) 4.75206 0.384181
\(154\) 0 0
\(155\) 9.46864 0.760539
\(156\) 0 0
\(157\) 5.62526 4.08699i 0.448945 0.326177i −0.340234 0.940341i \(-0.610506\pi\)
0.789179 + 0.614163i \(0.210506\pi\)
\(158\) 0 0
\(159\) −3.55538 10.9423i −0.281960 0.867784i
\(160\) 0 0
\(161\) 1.61559 + 1.17380i 0.127327 + 0.0925082i
\(162\) 0 0
\(163\) −3.62548 + 11.1581i −0.283969 + 0.873968i 0.702736 + 0.711450i \(0.251961\pi\)
−0.986706 + 0.162517i \(0.948039\pi\)
\(164\) 0 0
\(165\) −2.44479 + 2.24120i −0.190327 + 0.174478i
\(166\) 0 0
\(167\) −5.52466 + 17.0032i −0.427511 + 1.31574i 0.473058 + 0.881032i \(0.343150\pi\)
−0.900569 + 0.434713i \(0.856850\pi\)
\(168\) 0 0
\(169\) 7.55035 + 5.48565i 0.580796 + 0.421973i
\(170\) 0 0
\(171\) −0.167975 0.516973i −0.0128453 0.0395339i
\(172\) 0 0
\(173\) 7.81443 5.67752i 0.594120 0.431654i −0.249667 0.968332i \(-0.580321\pi\)
0.843787 + 0.536678i \(0.180321\pi\)
\(174\) 0 0
\(175\) 1.39552 0.105491
\(176\) 0 0
\(177\) −8.01006 −0.602073
\(178\) 0 0
\(179\) 9.58168 6.96150i 0.716169 0.520327i −0.168989 0.985618i \(-0.554050\pi\)
0.885158 + 0.465291i \(0.154050\pi\)
\(180\) 0 0
\(181\) −0.932079 2.86864i −0.0692809 0.213225i 0.910422 0.413682i \(-0.135757\pi\)
−0.979703 + 0.200457i \(0.935757\pi\)
\(182\) 0 0
\(183\) 4.85127 + 3.52466i 0.358616 + 0.260550i
\(184\) 0 0
\(185\) 0.197759 0.608640i 0.0145395 0.0447481i
\(186\) 0 0
\(187\) −15.6591 + 1.78754i −1.14511 + 0.130718i
\(188\) 0 0
\(189\) 0.431239 1.32722i 0.0313680 0.0965408i
\(190\) 0 0
\(191\) −0.491235 0.356903i −0.0355445 0.0258246i 0.569871 0.821734i \(-0.306993\pi\)
−0.605416 + 0.795909i \(0.706993\pi\)
\(192\) 0 0
\(193\) −0.614365 1.89082i −0.0442230 0.136104i 0.926507 0.376277i \(-0.122796\pi\)
−0.970730 + 0.240173i \(0.922796\pi\)
\(194\) 0 0
\(195\) −1.54927 + 1.12561i −0.110946 + 0.0806068i
\(196\) 0 0
\(197\) −10.1402 −0.722462 −0.361231 0.932476i \(-0.617643\pi\)
−0.361231 + 0.932476i \(0.617643\pi\)
\(198\) 0 0
\(199\) 11.4830 0.814006 0.407003 0.913427i \(-0.366574\pi\)
0.407003 + 0.913427i \(0.366574\pi\)
\(200\) 0 0
\(201\) −7.82082 + 5.68216i −0.551638 + 0.400789i
\(202\) 0 0
\(203\) −4.11897 12.6769i −0.289095 0.889742i
\(204\) 0 0
\(205\) −3.32959 2.41909i −0.232548 0.168956i
\(206\) 0 0
\(207\) −0.442203 + 1.36096i −0.0307352 + 0.0945933i
\(208\) 0 0
\(209\) 0.747978 + 1.64036i 0.0517388 + 0.113466i
\(210\) 0 0
\(211\) 0.125891 0.387451i 0.00866666 0.0266732i −0.946630 0.322323i \(-0.895536\pi\)
0.955296 + 0.295650i \(0.0955362\pi\)
\(212\) 0 0
\(213\) −0.869254 0.631550i −0.0595603 0.0432731i
\(214\) 0 0
\(215\) 2.42530 + 7.46431i 0.165404 + 0.509062i
\(216\) 0 0
\(217\) 10.6901 7.76679i 0.725690 0.527244i
\(218\) 0 0
\(219\) 10.2461 0.692369
\(220\) 0 0
\(221\) −9.10023 −0.612147
\(222\) 0 0
\(223\) −23.7856 + 17.2812i −1.59280 + 1.15724i −0.692993 + 0.720944i \(0.743708\pi\)
−0.899806 + 0.436291i \(0.856292\pi\)
\(224\) 0 0
\(225\) 0.309017 + 0.951057i 0.0206011 + 0.0634038i
\(226\) 0 0
\(227\) −2.26613 1.64644i −0.150408 0.109278i 0.510036 0.860153i \(-0.329632\pi\)
−0.660444 + 0.750875i \(0.729632\pi\)
\(228\) 0 0
\(229\) −4.71861 + 14.5224i −0.311814 + 0.959666i 0.665232 + 0.746637i \(0.268333\pi\)
−0.977046 + 0.213029i \(0.931667\pi\)
\(230\) 0 0
\(231\) −0.921783 + 4.53569i −0.0606488 + 0.298427i
\(232\) 0 0
\(233\) −2.20294 + 6.77994i −0.144319 + 0.444169i −0.996923 0.0783895i \(-0.975022\pi\)
0.852604 + 0.522558i \(0.175022\pi\)
\(234\) 0 0
\(235\) 9.43603 + 6.85567i 0.615538 + 0.447215i
\(236\) 0 0
\(237\) −2.33688 7.19218i −0.151797 0.467182i
\(238\) 0 0
\(239\) 9.24899 6.71979i 0.598267 0.434667i −0.246996 0.969016i \(-0.579443\pi\)
0.845263 + 0.534350i \(0.179443\pi\)
\(240\) 0 0
\(241\) −28.8264 −1.85687 −0.928435 0.371494i \(-0.878846\pi\)
−0.928435 + 0.371494i \(0.878846\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −4.08758 + 2.96980i −0.261146 + 0.189734i
\(246\) 0 0
\(247\) 0.321672 + 0.990006i 0.0204675 + 0.0629926i
\(248\) 0 0
\(249\) 2.78426 + 2.02288i 0.176445 + 0.128195i
\(250\) 0 0
\(251\) 0.591102 1.81922i 0.0373100 0.114828i −0.930667 0.365868i \(-0.880772\pi\)
0.967977 + 0.251039i \(0.0807723\pi\)
\(252\) 0 0
\(253\) 0.945218 4.65101i 0.0594254 0.292406i
\(254\) 0 0
\(255\) −1.46847 + 4.51948i −0.0919590 + 0.283021i
\(256\) 0 0
\(257\) 6.68938 + 4.86012i 0.417272 + 0.303166i 0.776539 0.630069i \(-0.216973\pi\)
−0.359267 + 0.933235i \(0.616973\pi\)
\(258\) 0 0
\(259\) −0.275976 0.849368i −0.0171483 0.0527772i
\(260\) 0 0
\(261\) 7.72730 5.61421i 0.478308 0.347511i
\(262\) 0 0
\(263\) −0.344325 −0.0212320 −0.0106160 0.999944i \(-0.503379\pi\)
−0.0106160 + 0.999944i \(0.503379\pi\)
\(264\) 0 0
\(265\) 11.5055 0.706774
\(266\) 0 0
\(267\) −8.90557 + 6.47028i −0.545012 + 0.395975i
\(268\) 0 0
\(269\) 4.26218 + 13.1177i 0.259870 + 0.799797i 0.992831 + 0.119527i \(0.0381377\pi\)
−0.732961 + 0.680271i \(0.761862\pi\)
\(270\) 0 0
\(271\) −0.297213 0.215938i −0.0180544 0.0131173i 0.578721 0.815525i \(-0.303552\pi\)
−0.596776 + 0.802408i \(0.703552\pi\)
\(272\) 0 0
\(273\) −0.825825 + 2.54163i −0.0499812 + 0.153826i
\(274\) 0 0
\(275\) −1.37603 3.01770i −0.0829777 0.181974i
\(276\) 0 0
\(277\) 2.19584 6.75810i 0.131935 0.406055i −0.863166 0.504921i \(-0.831522\pi\)
0.995101 + 0.0988663i \(0.0315216\pi\)
\(278\) 0 0
\(279\) 7.66029 + 5.56553i 0.458610 + 0.333199i
\(280\) 0 0
\(281\) −4.75271 14.6273i −0.283523 0.872594i −0.986837 0.161715i \(-0.948297\pi\)
0.703314 0.710879i \(-0.251703\pi\)
\(282\) 0 0
\(283\) 13.6235 9.89802i 0.809830 0.588376i −0.103951 0.994582i \(-0.533149\pi\)
0.913781 + 0.406206i \(0.133149\pi\)
\(284\) 0 0
\(285\) 0.543577 0.0321987
\(286\) 0 0
\(287\) −5.74339 −0.339021
\(288\) 0 0
\(289\) −4.51599 + 3.28106i −0.265647 + 0.193004i
\(290\) 0 0
\(291\) 4.07271 + 12.5345i 0.238746 + 0.734786i
\(292\) 0 0
\(293\) 18.2697 + 13.2737i 1.06733 + 0.775457i 0.975430 0.220311i \(-0.0707073\pi\)
0.0918959 + 0.995769i \(0.470707\pi\)
\(294\) 0 0
\(295\) 2.47524 7.61802i 0.144114 0.443538i
\(296\) 0 0
\(297\) −3.29522 + 0.376160i −0.191208 + 0.0218270i
\(298\) 0 0
\(299\) 0.846821 2.60625i 0.0489729 0.150723i
\(300\) 0 0
\(301\) 8.86088 + 6.43780i 0.510733 + 0.371069i
\(302\) 0 0
\(303\) −2.78793 8.58036i −0.160162 0.492929i
\(304\) 0 0
\(305\) −4.85127 + 3.52466i −0.277783 + 0.201821i
\(306\) 0 0
\(307\) 20.5602 1.17343 0.586717 0.809792i \(-0.300420\pi\)
0.586717 + 0.809792i \(0.300420\pi\)
\(308\) 0 0
\(309\) 4.01627 0.228478
\(310\) 0 0
\(311\) −2.91393 + 2.11709i −0.165234 + 0.120049i −0.667329 0.744763i \(-0.732563\pi\)
0.502096 + 0.864812i \(0.332563\pi\)
\(312\) 0 0
\(313\) 6.04375 + 18.6007i 0.341613 + 1.05138i 0.963372 + 0.268168i \(0.0864182\pi\)
−0.621759 + 0.783208i \(0.713582\pi\)
\(314\) 0 0
\(315\) 1.12900 + 0.820265i 0.0636118 + 0.0462167i
\(316\) 0 0
\(317\) −4.19627 + 12.9148i −0.235686 + 0.725366i 0.761344 + 0.648348i \(0.224540\pi\)
−0.997030 + 0.0770180i \(0.975460\pi\)
\(318\) 0 0
\(319\) −23.3514 + 21.4068i −1.30742 + 1.19855i
\(320\) 0 0
\(321\) −2.92220 + 8.99359i −0.163101 + 0.501973i
\(322\) 0 0
\(323\) 2.08978 + 1.51831i 0.116279 + 0.0844813i
\(324\) 0 0
\(325\) −0.591770 1.82128i −0.0328255 0.101026i
\(326\) 0 0
\(327\) −15.2295 + 11.0649i −0.842193 + 0.611889i
\(328\) 0 0
\(329\) 16.2767 0.897365
\(330\) 0 0
\(331\) 28.4887 1.56588 0.782940 0.622097i \(-0.213719\pi\)
0.782940 + 0.622097i \(0.213719\pi\)
\(332\) 0 0
\(333\) 0.517740 0.376160i 0.0283720 0.0206135i
\(334\) 0 0
\(335\) −2.98729 9.19393i −0.163213 0.502318i
\(336\) 0 0
\(337\) 9.80070 + 7.12063i 0.533878 + 0.387885i 0.821806 0.569767i \(-0.192966\pi\)
−0.287928 + 0.957652i \(0.592966\pi\)
\(338\) 0 0
\(339\) 1.86640 5.74419i 0.101369 0.311982i
\(340\) 0 0
\(341\) −27.3359 15.4582i −1.48032 0.837106i
\(342\) 0 0
\(343\) −5.19752 + 15.9963i −0.280640 + 0.863720i
\(344\) 0 0
\(345\) −1.15770 0.841120i −0.0623286 0.0452844i
\(346\) 0 0
\(347\) −6.08950 18.7416i −0.326902 1.00610i −0.970575 0.240799i \(-0.922590\pi\)
0.643673 0.765300i \(-0.277410\pi\)
\(348\) 0 0
\(349\) −11.7532 + 8.53918i −0.629133 + 0.457092i −0.856100 0.516810i \(-0.827119\pi\)
0.226967 + 0.973903i \(0.427119\pi\)
\(350\) 0 0
\(351\) −1.91501 −0.102215
\(352\) 0 0
\(353\) −28.0107 −1.49086 −0.745429 0.666584i \(-0.767756\pi\)
−0.745429 + 0.666584i \(0.767756\pi\)
\(354\) 0 0
\(355\) 0.869254 0.631550i 0.0461352 0.0335192i
\(356\) 0 0
\(357\) 2.04927 + 6.30701i 0.108459 + 0.333803i
\(358\) 0 0
\(359\) −24.4377 17.7550i −1.28977 0.937075i −0.289972 0.957035i \(-0.593646\pi\)
−0.999801 + 0.0199603i \(0.993646\pi\)
\(360\) 0 0
\(361\) −5.78002 + 17.7891i −0.304211 + 0.936266i
\(362\) 0 0
\(363\) 10.7170 2.47906i 0.562497 0.130117i
\(364\) 0 0
\(365\) −3.16623 + 9.74464i −0.165728 + 0.510058i
\(366\) 0 0
\(367\) −0.800944 0.581920i −0.0418089 0.0303760i 0.566685 0.823935i \(-0.308226\pi\)
−0.608493 + 0.793559i \(0.708226\pi\)
\(368\) 0 0
\(369\) −1.27179 3.91416i −0.0662067 0.203763i
\(370\) 0 0
\(371\) 12.9896 9.43752i 0.674388 0.489972i
\(372\) 0 0
\(373\) 11.5466 0.597860 0.298930 0.954275i \(-0.403370\pi\)
0.298930 + 0.954275i \(0.403370\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −14.7978 + 10.7513i −0.762127 + 0.553718i
\(378\) 0 0
\(379\) 5.72849 + 17.6305i 0.294253 + 0.905617i 0.983471 + 0.181063i \(0.0579540\pi\)
−0.689219 + 0.724553i \(0.742046\pi\)
\(380\) 0 0
\(381\) 10.7192 + 7.78793i 0.549160 + 0.398988i
\(382\) 0 0
\(383\) 1.34559 4.14131i 0.0687566 0.211611i −0.910774 0.412904i \(-0.864514\pi\)
0.979531 + 0.201293i \(0.0645144\pi\)
\(384\) 0 0
\(385\) −4.02885 2.27827i −0.205329 0.116112i
\(386\) 0 0
\(387\) −2.42530 + 7.46431i −0.123285 + 0.379432i
\(388\) 0 0
\(389\) 20.7009 + 15.0401i 1.04958 + 0.762563i 0.972132 0.234434i \(-0.0753236\pi\)
0.0774456 + 0.996997i \(0.475324\pi\)
\(390\) 0 0
\(391\) −2.10137 6.46737i −0.106271 0.327069i
\(392\) 0 0
\(393\) 0.311846 0.226569i 0.0157305 0.0114289i
\(394\) 0 0
\(395\) 7.56231 0.380501
\(396\) 0 0
\(397\) 22.4876 1.12862 0.564311 0.825562i \(-0.309142\pi\)
0.564311 + 0.825562i \(0.309142\pi\)
\(398\) 0 0
\(399\) 0.613698 0.445877i 0.0307233 0.0223218i
\(400\) 0 0
\(401\) 4.43365 + 13.6454i 0.221406 + 0.681418i 0.998637 + 0.0522020i \(0.0166240\pi\)
−0.777230 + 0.629216i \(0.783376\pi\)
\(402\) 0 0
\(403\) −14.6695 10.6580i −0.730740 0.530914i
\(404\) 0 0
\(405\) −0.309017 + 0.951057i −0.0153552 + 0.0472584i
\(406\) 0 0
\(407\) −1.56457 + 1.43429i −0.0775530 + 0.0710949i
\(408\) 0 0
\(409\) −1.82268 + 5.60962i −0.0901255 + 0.277378i −0.985953 0.167025i \(-0.946584\pi\)
0.895827 + 0.444403i \(0.146584\pi\)
\(410\) 0 0
\(411\) −1.96672 1.42891i −0.0970111 0.0704827i
\(412\) 0 0
\(413\) −3.45425 10.6311i −0.169972 0.523121i
\(414\) 0 0
\(415\) −2.78426 + 2.02288i −0.136674 + 0.0992994i
\(416\) 0 0
\(417\) 12.8750 0.630491
\(418\) 0 0
\(419\) −12.4887 −0.610113 −0.305057 0.952334i \(-0.598675\pi\)
−0.305057 + 0.952334i \(0.598675\pi\)
\(420\) 0 0
\(421\) −7.06988 + 5.13657i −0.344565 + 0.250341i −0.746585 0.665290i \(-0.768308\pi\)
0.402020 + 0.915631i \(0.368308\pi\)
\(422\) 0 0
\(423\) 3.60424 + 11.0927i 0.175244 + 0.539346i
\(424\) 0 0
\(425\) −3.84450 2.79319i −0.186486 0.135490i
\(426\) 0 0
\(427\) −2.58593 + 7.95866i −0.125142 + 0.385147i
\(428\) 0 0
\(429\) 6.31038 0.720349i 0.304668 0.0347788i
\(430\) 0 0
\(431\) 1.25893 3.87458i 0.0606404 0.186632i −0.916147 0.400842i \(-0.868718\pi\)
0.976788 + 0.214210i \(0.0687177\pi\)
\(432\) 0 0
\(433\) −4.05979 2.94961i −0.195101 0.141749i 0.485946 0.873989i \(-0.338475\pi\)
−0.681047 + 0.732240i \(0.738475\pi\)
\(434\) 0 0
\(435\) 2.95157 + 9.08399i 0.141517 + 0.435544i
\(436\) 0 0
\(437\) −0.629300 + 0.457214i −0.0301035 + 0.0218715i
\(438\) 0 0
\(439\) −36.6472 −1.74908 −0.874539 0.484956i \(-0.838836\pi\)
−0.874539 + 0.484956i \(0.838836\pi\)
\(440\) 0 0
\(441\) −5.05253 −0.240597
\(442\) 0 0
\(443\) −4.92876 + 3.58095i −0.234172 + 0.170136i −0.698683 0.715431i \(-0.746230\pi\)
0.464511 + 0.885568i \(0.346230\pi\)
\(444\) 0 0
\(445\) −3.40163 10.4691i −0.161253 0.496284i
\(446\) 0 0
\(447\) 13.6905 + 9.94670i 0.647537 + 0.470463i
\(448\) 0 0
\(449\) 8.10724 24.9515i 0.382604 1.17754i −0.555599 0.831451i \(-0.687511\pi\)
0.938203 0.346085i \(-0.112489\pi\)
\(450\) 0 0
\(451\) 5.66318 + 12.4196i 0.266669 + 0.584818i
\(452\) 0 0
\(453\) −0.515713 + 1.58720i −0.0242303 + 0.0745732i
\(454\) 0 0
\(455\) −2.16204 1.57081i −0.101358 0.0736408i
\(456\) 0 0
\(457\) 4.66530 + 14.3583i 0.218234 + 0.671654i 0.998908 + 0.0467164i \(0.0148757\pi\)
−0.780674 + 0.624938i \(0.785124\pi\)
\(458\) 0 0
\(459\) −3.84450 + 2.79319i −0.179446 + 0.130375i
\(460\) 0 0
\(461\) −7.31588 −0.340735 −0.170367 0.985381i \(-0.554495\pi\)
−0.170367 + 0.985381i \(0.554495\pi\)
\(462\) 0 0
\(463\) 21.4870 0.998587 0.499293 0.866433i \(-0.333593\pi\)
0.499293 + 0.866433i \(0.333593\pi\)
\(464\) 0 0
\(465\) −7.66029 + 5.56553i −0.355237 + 0.258095i
\(466\) 0 0
\(467\) −8.91829 27.4477i −0.412689 1.27013i −0.914302 0.405034i \(-0.867260\pi\)
0.501613 0.865092i \(-0.332740\pi\)
\(468\) 0 0
\(469\) −10.9141 7.92956i −0.503966 0.366153i
\(470\) 0 0
\(471\) −2.14866 + 6.61289i −0.0990050 + 0.304706i
\(472\) 0 0
\(473\) 5.18414 25.5089i 0.238367 1.17290i
\(474\) 0 0
\(475\) −0.167975 + 0.516973i −0.00770720 + 0.0237203i
\(476\) 0 0
\(477\) 9.30811 + 6.76274i 0.426189 + 0.309644i
\(478\) 0 0
\(479\) −10.5727 32.5395i −0.483080 1.48677i −0.834742 0.550641i \(-0.814383\pi\)
0.351662 0.936127i \(-0.385617\pi\)
\(480\) 0 0
\(481\) −0.991476 + 0.720349i −0.0452074 + 0.0328451i
\(482\) 0 0
\(483\) −1.99698 −0.0908659
\(484\) 0 0
\(485\) −13.1796 −0.598453
\(486\) 0 0
\(487\) 26.9647 19.5910i 1.22189 0.887752i 0.225630 0.974213i \(-0.427556\pi\)
0.996255 + 0.0864612i \(0.0275559\pi\)
\(488\) 0 0
\(489\) −3.62548 11.1581i −0.163950 0.504586i
\(490\) 0 0
\(491\) 31.5917 + 22.9527i 1.42571 + 1.03584i 0.990795 + 0.135370i \(0.0432223\pi\)
0.434917 + 0.900471i \(0.356778\pi\)
\(492\) 0 0
\(493\) −14.0260 + 43.1677i −0.631700 + 1.94417i
\(494\) 0 0
\(495\) 0.660531 3.25018i 0.0296886 0.146085i
\(496\) 0 0
\(497\) 0.463348 1.42604i 0.0207840 0.0639665i
\(498\) 0 0
\(499\) 16.7584 + 12.1757i 0.750208 + 0.545058i 0.895891 0.444273i \(-0.146538\pi\)
−0.145683 + 0.989331i \(0.546538\pi\)
\(500\) 0 0
\(501\) −5.52466 17.0032i −0.246824 0.759646i
\(502\) 0 0
\(503\) 27.2658 19.8098i 1.21572 0.883273i 0.219984 0.975504i \(-0.429400\pi\)
0.995738 + 0.0922304i \(0.0293996\pi\)
\(504\) 0 0
\(505\) 9.02193 0.401471
\(506\) 0 0
\(507\) −9.33275 −0.414482
\(508\) 0 0
\(509\) −32.4760 + 23.5952i −1.43947 + 1.04584i −0.451322 + 0.892361i \(0.649047\pi\)
−0.988152 + 0.153478i \(0.950953\pi\)
\(510\) 0 0
\(511\) 4.41853 + 13.5988i 0.195464 + 0.601577i
\(512\) 0 0
\(513\) 0.439763 + 0.319507i 0.0194160 + 0.0141066i
\(514\) 0 0
\(515\) −1.24110 + 3.81970i −0.0546892 + 0.168316i
\(516\) 0 0
\(517\) −16.0494 35.1972i −0.705853 1.54797i
\(518\) 0 0
\(519\) −2.98485 + 9.18642i −0.131020 + 0.403239i
\(520\) 0 0
\(521\) 3.15742 + 2.29400i 0.138329 + 0.100502i 0.654798 0.755804i \(-0.272754\pi\)
−0.516469 + 0.856306i \(0.672754\pi\)
\(522\) 0 0
\(523\) 7.63051 + 23.4843i 0.333659 + 1.02690i 0.967379 + 0.253334i \(0.0815270\pi\)
−0.633720 + 0.773562i \(0.718473\pi\)
\(524\) 0 0
\(525\) −1.12900 + 0.820265i −0.0492735 + 0.0357993i
\(526\) 0 0
\(527\) −44.9955 −1.96004
\(528\) 0 0
\(529\) −20.9522 −0.910967
\(530\) 0 0
\(531\) 6.48027 4.70819i 0.281220 0.204318i
\(532\) 0 0
\(533\) 2.43548 + 7.49565i 0.105492 + 0.324673i
\(534\) 0 0
\(535\) −7.65041 5.55835i −0.330756 0.240308i
\(536\) 0 0
\(537\) −3.65988 + 11.2639i −0.157935 + 0.486075i
\(538\) 0 0
\(539\) 16.6492 1.90056i 0.717133 0.0818629i
\(540\) 0 0
\(541\) 12.6897 39.0548i 0.545571 1.67910i −0.174057 0.984736i \(-0.555688\pi\)
0.719628 0.694360i \(-0.244312\pi\)
\(542\) 0 0
\(543\) 2.44021 + 1.77292i 0.104720 + 0.0760833i
\(544\) 0 0
\(545\) −5.81715 17.9034i −0.249179 0.766895i
\(546\) 0 0
\(547\) 24.3370 17.6819i 1.04058 0.756023i 0.0701781 0.997534i \(-0.477643\pi\)
0.970398 + 0.241512i \(0.0776432\pi\)
\(548\) 0 0
\(549\) −5.99650 −0.255925
\(550\) 0 0
\(551\) 5.19196 0.221185
\(552\) 0 0
\(553\) 8.53783 6.20310i 0.363065 0.263782i
\(554\) 0 0
\(555\) 0.197759 + 0.608640i 0.00839441 + 0.0258353i
\(556\) 0 0
\(557\) 9.82015 + 7.13476i 0.416093 + 0.302309i 0.776064 0.630654i \(-0.217213\pi\)
−0.359971 + 0.932964i \(0.617213\pi\)
\(558\) 0 0
\(559\) 4.64447 14.2942i 0.196440 0.604581i
\(560\) 0 0
\(561\) 11.6178 10.6503i 0.490504 0.449658i
\(562\) 0 0
\(563\) 6.29173 19.3639i 0.265165 0.816093i −0.726491 0.687176i \(-0.758850\pi\)
0.991655 0.128917i \(-0.0411500\pi\)
\(564\) 0 0
\(565\) 4.88630 + 3.55011i 0.205568 + 0.149354i
\(566\) 0 0
\(567\) 0.431239 + 1.32722i 0.0181103 + 0.0557379i
\(568\) 0 0
\(569\) −25.9035 + 18.8200i −1.08593 + 0.788976i −0.978708 0.205259i \(-0.934196\pi\)
−0.107224 + 0.994235i \(0.534196\pi\)
\(570\) 0 0
\(571\) 27.1436 1.13593 0.567963 0.823054i \(-0.307732\pi\)
0.567963 + 0.823054i \(0.307732\pi\)
\(572\) 0 0
\(573\) 0.607200 0.0253662
\(574\) 0 0
\(575\) 1.15770 0.841120i 0.0482795 0.0350771i
\(576\) 0 0
\(577\) 4.45657 + 13.7159i 0.185529 + 0.571001i 0.999957 0.00926412i \(-0.00294890\pi\)
−0.814428 + 0.580265i \(0.802949\pi\)
\(578\) 0 0
\(579\) 1.60843 + 1.16859i 0.0668440 + 0.0485650i
\(580\) 0 0
\(581\) −1.48412 + 4.56766i −0.0615718 + 0.189499i
\(582\) 0 0
\(583\) −33.2162 18.7834i −1.37567 0.777929i
\(584\) 0 0
\(585\) 0.591770 1.82128i 0.0244667 0.0753006i
\(586\) 0 0
\(587\) 1.35151 + 0.981932i 0.0557829 + 0.0405287i 0.615327 0.788272i \(-0.289024\pi\)
−0.559544 + 0.828800i \(0.689024\pi\)
\(588\) 0 0
\(589\) 1.59049 + 4.89503i 0.0655350 + 0.201696i
\(590\) 0 0
\(591\) 8.20363 5.96028i 0.337452 0.245173i
\(592\) 0 0
\(593\) 27.8693 1.14446 0.572228 0.820094i \(-0.306079\pi\)
0.572228 + 0.820094i \(0.306079\pi\)
\(594\) 0 0
\(595\) −6.63159 −0.271869
\(596\) 0 0
\(597\) −9.28992 + 6.74952i −0.380211 + 0.276239i
\(598\) 0 0
\(599\) −8.27079 25.4549i −0.337935 1.04006i −0.965258 0.261298i \(-0.915849\pi\)
0.627323 0.778759i \(-0.284151\pi\)
\(600\) 0 0
\(601\) −21.5788 15.6779i −0.880217 0.639515i 0.0530918 0.998590i \(-0.483092\pi\)
−0.933309 + 0.359074i \(0.883092\pi\)
\(602\) 0 0
\(603\) 2.98729 9.19393i 0.121652 0.374406i
\(604\) 0 0
\(605\) −0.954007 + 10.9586i −0.0387859 + 0.445529i
\(606\) 0 0
\(607\) 10.0670 30.9831i 0.408608 1.25757i −0.509237 0.860627i \(-0.670072\pi\)
0.917845 0.396940i \(-0.129928\pi\)
\(608\) 0 0
\(609\) 10.7836 + 7.83474i 0.436973 + 0.317480i
\(610\) 0 0
\(611\) −6.90215 21.2426i −0.279231 0.859384i
\(612\) 0 0
\(613\) 24.6158 17.8844i 0.994223 0.722345i 0.0333812 0.999443i \(-0.489372\pi\)
0.960842 + 0.277097i \(0.0893725\pi\)
\(614\) 0 0
\(615\) 4.11559 0.165957
\(616\) 0 0
\(617\) 21.7638 0.876177 0.438089 0.898932i \(-0.355656\pi\)
0.438089 + 0.898932i \(0.355656\pi\)
\(618\) 0 0
\(619\) −27.5685 + 20.0297i −1.10807 + 0.805061i −0.982359 0.187006i \(-0.940122\pi\)
−0.125712 + 0.992067i \(0.540122\pi\)
\(620\) 0 0
\(621\) −0.442203 1.36096i −0.0177450 0.0546135i
\(622\) 0 0
\(623\) −12.4279 9.02939i −0.497913 0.361755i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) −1.56930 0.887425i −0.0626720 0.0354403i
\(628\) 0 0
\(629\) −0.939763 + 2.89229i −0.0374708 + 0.115323i
\(630\) 0 0
\(631\) 26.1837 + 19.0236i 1.04236 + 0.757317i 0.970744 0.240115i \(-0.0771853\pi\)
0.0716131 + 0.997432i \(0.477185\pi\)
\(632\) 0 0
\(633\) 0.125891 + 0.387451i 0.00500370 + 0.0153998i
\(634\) 0 0
\(635\) −10.7192 + 7.78793i −0.425377 + 0.309055i
\(636\) 0 0
\(637\) 9.67563 0.383362
\(638\) 0 0
\(639\) 1.07446 0.0425049
\(640\) 0 0
\(641\) 27.7945 20.1939i 1.09782 0.797611i 0.117115 0.993118i \(-0.462635\pi\)
0.980702 + 0.195507i \(0.0626352\pi\)
\(642\) 0 0
\(643\) −9.82594 30.2411i −0.387497 1.19259i −0.934652 0.355563i \(-0.884289\pi\)
0.547155 0.837031i \(-0.315711\pi\)
\(644\) 0 0
\(645\) −6.34953 4.61320i −0.250012 0.181645i
\(646\) 0 0
\(647\) 9.70223 29.8604i 0.381434 1.17393i −0.557601 0.830109i \(-0.688278\pi\)
0.939034 0.343823i \(-0.111722\pi\)
\(648\) 0 0
\(649\) −19.5829 + 17.9522i −0.768697 + 0.704684i
\(650\) 0 0
\(651\) −4.08325 + 12.5669i −0.160035 + 0.492537i
\(652\) 0 0
\(653\) −19.4155 14.1062i −0.759786 0.552017i 0.139059 0.990284i \(-0.455592\pi\)
−0.898845 + 0.438268i \(0.855592\pi\)
\(654\) 0 0
\(655\) 0.119114 + 0.366597i 0.00465419 + 0.0143241i
\(656\) 0 0
\(657\) −8.28929 + 6.02252i −0.323396 + 0.234961i
\(658\) 0 0
\(659\) 44.0862 1.71735 0.858677 0.512517i \(-0.171287\pi\)
0.858677 + 0.512517i \(0.171287\pi\)
\(660\) 0 0
\(661\) −36.0143 −1.40079 −0.700396 0.713754i \(-0.746993\pi\)
−0.700396 + 0.713754i \(0.746993\pi\)
\(662\) 0 0
\(663\) 7.36224 5.34898i 0.285926 0.207737i
\(664\) 0 0
\(665\) 0.234412 + 0.721445i 0.00909009 + 0.0279764i
\(666\) 0 0
\(667\) −11.0578 8.03393i −0.428158 0.311075i
\(668\) 0 0
\(669\) 9.08527 27.9616i 0.351257 1.08106i
\(670\) 0 0
\(671\) 19.7598 2.25565i 0.762820 0.0870782i
\(672\) 0 0
\(673\) 13.6013 41.8605i 0.524292 1.61360i −0.241420 0.970421i \(-0.577613\pi\)
0.765712 0.643184i \(-0.222387\pi\)
\(674\) 0 0
\(675\) −0.809017 0.587785i −0.0311391 0.0226239i
\(676\) 0 0
\(677\) −2.15811 6.64197i −0.0829427 0.255272i 0.900982 0.433857i \(-0.142848\pi\)
−0.983924 + 0.178586i \(0.942848\pi\)
\(678\) 0 0
\(679\) −14.8797 + 10.8107i −0.571030 + 0.414878i
\(680\) 0 0
\(681\) 2.80109 0.107338
\(682\) 0 0
\(683\) 37.2317 1.42463 0.712315 0.701859i \(-0.247647\pi\)
0.712315 + 0.701859i \(0.247647\pi\)
\(684\) 0 0
\(685\) 1.96672 1.42891i 0.0751445 0.0545957i
\(686\) 0 0
\(687\) −4.71861 14.5224i −0.180026 0.554063i
\(688\) 0 0
\(689\) −17.8251 12.9507i −0.679082 0.493382i
\(690\) 0 0
\(691\) −2.88019 + 8.86433i −0.109568 + 0.337215i −0.990775 0.135515i \(-0.956731\pi\)
0.881208 + 0.472729i \(0.156731\pi\)
\(692\) 0 0
\(693\) −1.92027 4.21126i −0.0729452 0.159973i
\(694\) 0 0
\(695\) −3.97859 + 12.2448i −0.150917 + 0.464473i
\(696\) 0 0
\(697\) 15.8224 + 11.4956i 0.599316 + 0.435428i
\(698\) 0 0
\(699\) −2.20294 6.77994i −0.0833227 0.256441i
\(700\) 0 0
\(701\) −6.38173 + 4.63660i −0.241034 + 0.175122i −0.701744 0.712429i \(-0.747595\pi\)
0.460710 + 0.887551i \(0.347595\pi\)
\(702\) 0 0
\(703\) 0.347869 0.0131201
\(704\) 0 0
\(705\) −11.6636 −0.439275
\(706\) 0 0
\(707\) 10.1857 7.40037i 0.383074 0.278320i
\(708\) 0 0
\(709\) −5.14449 15.8331i −0.193205 0.594624i −0.999993 0.00378295i \(-0.998796\pi\)
0.806788 0.590842i \(-0.201204\pi\)
\(710\) 0 0
\(711\) 6.11803 + 4.44501i 0.229444 + 0.166701i
\(712\) 0 0
\(713\) 4.18706 12.8864i 0.156807 0.482601i
\(714\) 0 0
\(715\) −1.26492 + 6.22412i −0.0473053 + 0.232769i
\(716\) 0 0
\(717\) −3.53280 + 10.8728i −0.131935 + 0.406054i
\(718\) 0 0
\(719\) −7.34648 5.33753i −0.273977 0.199056i 0.442309 0.896863i \(-0.354160\pi\)
−0.716286 + 0.697807i \(0.754160\pi\)
\(720\) 0 0
\(721\) 1.73197 + 5.33046i 0.0645020 + 0.198517i
\(722\) 0 0
\(723\) 23.3210 16.9437i 0.867318 0.630144i
\(724\) 0 0
\(725\) −9.55147 −0.354733
\(726\) 0 0
\(727\) −2.09806 −0.0778129 −0.0389065 0.999243i \(-0.512387\pi\)
−0.0389065 + 0.999243i \(0.512387\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) −11.5252 35.4709i −0.426274 1.31194i
\(732\) 0 0
\(733\) 25.3733 + 18.4348i 0.937186 + 0.680905i 0.947742 0.319039i \(-0.103360\pi\)
−0.0105558 + 0.999944i \(0.503360\pi\)
\(734\) 0 0
\(735\) 1.56132 4.80524i 0.0575901 0.177244i
\(736\) 0 0
\(737\) −6.38539 + 31.4197i −0.235209 + 1.15736i
\(738\) 0 0
\(739\) −0.703653 + 2.16562i −0.0258843 + 0.0796637i −0.963164 0.268914i \(-0.913335\pi\)
0.937280 + 0.348578i \(0.113335\pi\)
\(740\) 0 0
\(741\) −0.842149 0.611857i −0.0309371 0.0224771i
\(742\) 0 0
\(743\) 11.8208 + 36.3808i 0.433664 + 1.33468i 0.894449 + 0.447170i \(0.147568\pi\)
−0.460785 + 0.887512i \(0.652432\pi\)
\(744\) 0 0
\(745\) −13.6905 + 9.94670i −0.501580 + 0.364419i
\(746\) 0 0
\(747\) −3.44154 −0.125919
\(748\) 0 0
\(749\) −13.1966 −0.482194
\(750\) 0 0
\(751\) 5.49732 3.99404i 0.200600 0.145744i −0.482950 0.875648i \(-0.660435\pi\)
0.683551 + 0.729903i \(0.260435\pi\)
\(752\) 0 0
\(753\) 0.591102 + 1.81922i 0.0215409 + 0.0662962i
\(754\) 0 0
\(755\) −1.35015 0.980945i −0.0491372 0.0357002i
\(756\) 0 0
\(757\) −1.64882 + 5.07454i −0.0599273 + 0.184437i −0.976539 0.215342i \(-0.930913\pi\)
0.916611 + 0.399780i \(0.130913\pi\)
\(758\) 0 0
\(759\) 1.96910 + 4.31833i 0.0714737 + 0.156745i
\(760\) 0 0
\(761\) −0.522421 + 1.60785i −0.0189378 + 0.0582844i −0.960079 0.279730i \(-0.909755\pi\)
0.941141 + 0.338014i \(0.109755\pi\)
\(762\) 0 0
\(763\) −21.2530 15.4412i −0.769412 0.559011i
\(764\) 0 0
\(765\) −1.46847 4.51948i −0.0530925 0.163402i
\(766\) 0 0
\(767\) −12.4098 + 9.01622i −0.448091 + 0.325557i
\(768\) 0 0
\(769\) 2.91325 0.105054 0.0525272 0.998619i \(-0.483272\pi\)
0.0525272 + 0.998619i \(0.483272\pi\)
\(770\) 0 0
\(771\) −8.26853 −0.297784
\(772\) 0 0
\(773\) −40.2154 + 29.2182i −1.44645 + 1.05091i −0.459802 + 0.888021i \(0.652080\pi\)
−0.986645 + 0.162884i \(0.947920\pi\)
\(774\) 0 0
\(775\) −2.92597 9.00521i −0.105104 0.323477i
\(776\) 0 0
\(777\) 0.722516 + 0.524938i 0.0259201 + 0.0188321i
\(778\) 0 0
\(779\) 0.691315 2.12765i 0.0247689 0.0762310i
\(780\) 0 0
\(781\) −3.54058 + 0.404168i −0.126692 + 0.0144623i
\(782\) 0 0
\(783\) −2.95157 + 9.08399i −0.105480 + 0.324635i
\(784\) 0 0
\(785\) −5.62526 4.08699i −0.200774 0.145871i
\(786\) 0 0
\(787\) −4.96321 15.2752i −0.176919 0.544501i 0.822797 0.568336i \(-0.192413\pi\)
−0.999716 + 0.0238344i \(0.992413\pi\)
\(788\) 0 0
\(789\) 0.278565 0.202389i 0.00991717 0.00720524i
\(790\) 0 0
\(791\) 8.42865 0.299688
\(792\) 0 0
\(793\) 11.4833 0.407785
\(794\) 0 0
\(795\) −9.30811 + 6.76274i −0.330125 + 0.239850i
\(796\) 0 0
\(797\) 17.0949 + 52.6127i 0.605532 + 1.86364i 0.493091 + 0.869978i \(0.335867\pi\)
0.112441 + 0.993658i \(0.464133\pi\)
\(798\) 0 0
\(799\) −44.8406 32.5786i −1.58635 1.15255i
\(800\) 0 0
\(801\) 3.40163 10.4691i 0.120191 0.369909i
\(802\) 0 0
\(803\) 25.0496 22.9637i 0.883982 0.810370i
\(804\) 0 0
\(805\) 0.617102 1.89925i 0.0217500 0.0669396i
\(806\) 0 0
\(807\) −11.1585 8.10716i −0.392799 0.285385i
\(808\) 0 0
\(809\) 3.37192 + 10.3777i 0.118550 + 0.364861i 0.992671 0.120848i \(-0.0385614\pi\)
−0.874121 + 0.485709i \(0.838561\pi\)
\(810\) 0 0
\(811\) 44.8730 32.6022i 1.57571 1.14482i 0.654287 0.756247i \(-0.272969\pi\)
0.921419 0.388570i \(-0.127031\pi\)
\(812\) 0 0
\(813\) 0.367375 0.0128844
\(814\) 0 0
\(815\) 11.7323 0.410964
\(816\) 0 0
\(817\) −3.45146 + 2.50763i −0.120751 + 0.0877309i
\(818\) 0 0
\(819\) −0.825825 2.54163i −0.0288567 0.0888117i
\(820\) 0 0
\(821\) 15.9477 + 11.5867i 0.556580 + 0.404379i 0.830206 0.557457i \(-0.188223\pi\)
−0.273626 + 0.961836i \(0.588223\pi\)
\(822\) 0 0
\(823\) −13.4107 + 41.2738i −0.467467 + 1.43871i 0.388387 + 0.921496i \(0.373032\pi\)
−0.855854 + 0.517218i \(0.826968\pi\)
\(824\) 0 0
\(825\) 2.88699 + 1.63256i 0.100512 + 0.0568386i
\(826\) 0 0
\(827\) −11.6513 + 35.8591i −0.405156 + 1.24694i 0.515608 + 0.856825i \(0.327566\pi\)
−0.920765 + 0.390119i \(0.872434\pi\)
\(828\) 0 0
\(829\) −7.69227 5.58876i −0.267164 0.194106i 0.446136 0.894965i \(-0.352800\pi\)
−0.713299 + 0.700860i \(0.752800\pi\)
\(830\) 0 0
\(831\) 2.19584 + 6.75810i 0.0761728 + 0.234436i
\(832\) 0 0
\(833\) 19.4244 14.1127i 0.673017 0.488975i
\(834\) 0 0
\(835\) 17.8782 0.618700
\(836\) 0 0
\(837\) −9.46864 −0.327284
\(838\) 0 0
\(839\) −16.6202 + 12.0753i −0.573792 + 0.416884i −0.836481 0.547996i \(-0.815391\pi\)
0.262689 + 0.964881i \(0.415391\pi\)
\(840\) 0 0
\(841\) 19.2303 + 59.1848i 0.663114 + 2.04086i
\(842\) 0 0
\(843\) 12.4428 + 9.04020i 0.428552 + 0.311361i
\(844\) 0 0
\(845\) 2.88398 8.87597i 0.0992119 0.305343i
\(846\) 0 0
\(847\) 7.91185 + 13.1547i 0.271854 + 0.452002i
\(848\) 0 0
\(849\) −5.20370 + 16.0153i −0.178590 + 0.549645i
\(850\) 0 0
\(851\) −0.740885 0.538285i −0.0253972 0.0184522i
\(852\) 0 0
\(853\) 8.56308 + 26.3545i 0.293194 + 0.902359i 0.983822 + 0.179149i \(0.0573343\pi\)
−0.690628 + 0.723210i \(0.742666\pi\)
\(854\) 0 0
\(855\) −0.439763 + 0.319507i −0.0150396 + 0.0109269i
\(856\) 0 0
\(857\) 19.4762 0.665296 0.332648 0.943051i \(-0.392058\pi\)
0.332648 + 0.943051i \(0.392058\pi\)
\(858\) 0 0
\(859\) 51.3540 1.75218 0.876088 0.482152i \(-0.160145\pi\)
0.876088 + 0.482152i \(0.160145\pi\)
\(860\) 0 0
\(861\) 4.64650 3.37588i 0.158352 0.115050i
\(862\) 0 0
\(863\) 10.9398 + 33.6693i 0.372395 + 1.14612i 0.945219 + 0.326437i \(0.105848\pi\)
−0.572824 + 0.819679i \(0.694152\pi\)
\(864\) 0 0
\(865\) −7.81443 5.67752i −0.265699 0.193041i
\(866\) 0 0
\(867\) 1.72496 5.30887i 0.0585826 0.180299i
\(868\) 0 0
\(869\) −21.8323 12.3460i −0.740611 0.418808i
\(870\) 0 0
\(871\) −5.72068 + 17.6064i −0.193838 + 0.596571i
\(872\) 0 0
\(873\) −10.6625 7.74675i −0.360871 0.262188i
\(874\) 0 0
\(875\) −0.431239 1.32722i −0.0145785 0.0448681i
\(876\) 0 0
\(877\) 0.753208 0.547238i 0.0254340 0.0184789i −0.574996 0.818156i \(-0.694996\pi\)
0.600430 + 0.799678i \(0.294996\pi\)
\(878\) 0 0
\(879\) −22.5826 −0.761691
\(880\) 0 0
\(881\) −11.0121 −0.371008 −0.185504 0.982643i \(-0.559392\pi\)
−0.185504 + 0.982643i \(0.559392\pi\)
\(882\) 0 0
\(883\) 43.4193 31.5459i 1.46117 1.06161i 0.478120 0.878295i \(-0.341318\pi\)
0.983055 0.183311i \(-0.0586815\pi\)
\(884\) 0 0
\(885\) 2.47524 + 7.61802i 0.0832044 + 0.256077i
\(886\) 0 0
\(887\) 13.2997 + 9.66278i 0.446559 + 0.324444i 0.788236 0.615373i \(-0.210995\pi\)
−0.341677 + 0.939818i \(0.610995\pi\)
\(888\) 0 0
\(889\) −5.71375 + 17.5851i −0.191633 + 0.589786i
\(890\) 0 0
\(891\) 2.44479 2.24120i 0.0819036 0.0750832i
\(892\) 0 0
\(893\) −1.95918 + 6.02975i −0.0655616 + 0.201778i
\(894\) 0 0
\(895\) −9.58168 6.96150i −0.320280 0.232697i
\(896\) 0 0
\(897\) 0.846821 + 2.60625i 0.0282745 + 0.0870201i
\(898\) 0 0
\(899\) −73.1670 + 53.1590i −2.44026 + 1.77295i
\(900\) 0 0
\(901\) −54.6746 −1.82148
\(902\) 0 0
\(903\) −10.9526 −0.364481
\(904\) 0 0
\(905\) −2.44021 + 1.77292i −0.0811155 + 0.0589338i
\(906\) 0 0
\(907\) −5.30635 16.3313i −0.176194 0.542270i 0.823492 0.567328i \(-0.192023\pi\)
−0.999686 + 0.0250580i \(0.992023\pi\)
\(908\) 0 0
\(909\) 7.29889 + 5.30296i 0.242089 + 0.175888i
\(910\) 0 0
\(911\) −5.72588 + 17.6224i −0.189707 + 0.583857i −0.999998 0.00217056i \(-0.999309\pi\)
0.810291 + 0.586028i \(0.199309\pi\)
\(912\) 0 0
\(913\) 11.3406 1.29457i 0.375320 0.0428440i
\(914\) 0 0
\(915\) 1.85302 5.70301i 0.0612590 0.188536i
\(916\) 0 0
\(917\) 0.435186 + 0.316181i 0.0143711 + 0.0104412i
\(918\) 0 0
\(919\) 5.43115 + 16.7154i 0.179157 + 0.551389i 0.999799 0.0200542i \(-0.00638389\pi\)
−0.820642 + 0.571443i \(0.806384\pi\)
\(920\) 0 0
\(921\) −16.6336 + 12.0850i −0.548095 + 0.398214i
\(922\) 0 0
\(923\) −2.05759 −0.0677265
\(924\) 0 0
\(925\) −0.639962 −0.0210418
\(926\) 0 0
\(927\) −3.24923 + 2.36070i −0.106719 + 0.0775357i
\(928\) 0 0
\(929\) 0.892461 + 2.74671i 0.0292807 + 0.0901167i 0.964629 0.263612i \(-0.0849137\pi\)
−0.935348 + 0.353728i \(0.884914\pi\)
\(930\) 0 0
\(931\) −2.22192 1.61432i −0.0728204 0.0529071i
\(932\) 0 0
\(933\) 1.11302 3.42553i 0.0364387 0.112147i
\(934\) 0 0
\(935\) 6.53898 + 14.3403i 0.213847 + 0.468978i
\(936\) 0 0
\(937\) 16.3594 50.3492i 0.534439 1.64484i −0.210418 0.977612i \(-0.567482\pi\)
0.744857 0.667224i \(-0.232518\pi\)
\(938\) 0 0
\(939\) −15.8227 11.4959i −0.516356 0.375154i
\(940\) 0 0
\(941\) 4.72833 + 14.5523i 0.154139 + 0.474391i 0.998073 0.0620564i \(-0.0197659\pi\)
−0.843934 + 0.536448i \(0.819766\pi\)
\(942\) 0 0
\(943\) −4.76463 + 3.46171i −0.155158 + 0.112729i
\(944\) 0 0
\(945\) −1.39552 −0.0453962
\(946\) 0 0
\(947\) −16.7641 −0.544759 −0.272379 0.962190i \(-0.587811\pi\)
−0.272379 + 0.962190i \(0.587811\pi\)
\(948\) 0 0
\(949\) 15.8740 11.5332i 0.515293 0.374382i
\(950\) 0 0
\(951\) −4.19627 12.9148i −0.136073 0.418790i
\(952\) 0 0
\(953\) 46.7909 + 33.9956i 1.51571 + 1.10123i 0.963565 + 0.267476i \(0.0861896\pi\)
0.552143 + 0.833750i \(0.313810\pi\)
\(954\) 0 0
\(955\) −0.187635 + 0.577482i −0.00607173 + 0.0186869i
\(956\) 0 0
\(957\) 6.30904 31.0440i 0.203942 1.00351i
\(958\) 0 0
\(959\) 1.04834 3.22646i 0.0338527 0.104188i
\(960\) 0 0
\(961\) −47.4530 34.4766i −1.53074 1.11215i
\(962\) 0 0
\(963\) −2.92220 8.99359i −0.0941664 0.289814i
\(964\) 0 0
\(965\) −1.60843 + 1.16859i −0.0517772 + 0.0376183i
\(966\) 0 0
\(967\) −9.60043 −0.308729 −0.154364 0.988014i \(-0.549333\pi\)
−0.154364 + 0.988014i \(0.549333\pi\)
\(968\) 0 0
\(969\) −2.58311 −0.0829815
\(970\) 0 0
\(971\) −15.9408 + 11.5817i −0.511564 + 0.371673i −0.813416 0.581682i \(-0.802395\pi\)
0.301853 + 0.953355i \(0.402395\pi\)
\(972\) 0 0
\(973\) 5.55220 + 17.0879i 0.177995 + 0.547813i
\(974\) 0 0
\(975\) 1.54927 + 1.12561i 0.0496164 + 0.0360485i
\(976\) 0 0
\(977\) −6.80611 + 20.9470i −0.217747 + 0.670155i 0.781201 + 0.624280i \(0.214608\pi\)
−0.998947 + 0.0458750i \(0.985392\pi\)
\(978\) 0 0
\(979\) −7.27105 + 35.7777i −0.232384 + 1.14346i
\(980\) 0 0
\(981\) 5.81715 17.9034i 0.185727 0.571610i
\(982\) 0 0
\(983\) 13.4794 + 9.79336i 0.429926 + 0.312360i 0.781619 0.623756i \(-0.214394\pi\)
−0.351693 + 0.936115i \(0.614394\pi\)
\(984\) 0 0
\(985\) 3.13351 + 9.64394i 0.0998418 + 0.307282i
\(986\) 0 0
\(987\) −13.1681 + 9.56722i −0.419147 + 0.304528i
\(988\) 0 0
\(989\) 11.2311 0.357129
\(990\) 0 0
\(991\) 44.6873 1.41954 0.709770 0.704433i \(-0.248799\pi\)
0.709770 + 0.704433i \(0.248799\pi\)
\(992\) 0 0
\(993\) −23.0478 + 16.7452i −0.731401 + 0.531394i
\(994\) 0 0
\(995\) −3.54843 10.9210i −0.112493 0.346217i
\(996\) 0 0
\(997\) −47.6954 34.6527i −1.51053 1.09746i −0.965942 0.258759i \(-0.916686\pi\)
−0.544587 0.838704i \(-0.683314\pi\)
\(998\) 0 0
\(999\) −0.197759 + 0.608640i −0.00625682 + 0.0192565i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 660.2.y.b.361.1 yes 8
3.2 odd 2 1980.2.z.b.361.1 8
11.4 even 5 7260.2.a.be.1.4 4
11.5 even 5 inner 660.2.y.b.181.1 8
11.7 odd 10 7260.2.a.bg.1.1 4
33.5 odd 10 1980.2.z.b.181.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
660.2.y.b.181.1 8 11.5 even 5 inner
660.2.y.b.361.1 yes 8 1.1 even 1 trivial
1980.2.z.b.181.1 8 33.5 odd 10
1980.2.z.b.361.1 8 3.2 odd 2
7260.2.a.be.1.4 4 11.4 even 5
7260.2.a.bg.1.1 4 11.7 odd 10