Newspace parameters
| Level: | \( N \) | \(=\) | \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 660.q (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.27012653340\) |
| Analytic rank: | \(0\) |
| Dimension: | \(272\) |
| Relative dimension: | \(136\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 263.1 | −1.41316 | + | 0.0545388i | −1.01245 | − | 1.40533i | 1.99405 | − | 0.154144i | 0.885678 | − | 2.05319i | 1.50740 | + | 1.93074i | −2.56545 | + | 2.56545i | −2.80951 | + | 0.326584i | −0.949886 | + | 2.84565i | −1.13963 | + | 2.94979i |
| 263.2 | −1.41316 | + | 0.0545388i | 1.40533 | + | 1.01245i | 1.99405 | − | 0.154144i | −0.885678 | + | 2.05319i | −2.04117 | − | 1.35411i | 2.56545 | − | 2.56545i | −2.80951 | + | 0.326584i | 0.949886 | + | 2.84565i | 1.13963 | − | 2.94979i |
| 263.3 | −1.40679 | + | 0.144721i | −1.45917 | + | 0.933178i | 1.95811 | − | 0.407185i | 0.447844 | + | 2.19076i | 1.91769 | − | 1.52396i | 0.996328 | − | 0.996328i | −2.69572 | + | 0.856204i | 1.25836 | − | 2.72333i | −0.947072 | − | 3.01713i |
| 263.4 | −1.40679 | + | 0.144721i | −0.933178 | + | 1.45917i | 1.95811 | − | 0.407185i | −0.447844 | − | 2.19076i | 1.10161 | − | 2.18780i | −0.996328 | + | 0.996328i | −2.69572 | + | 0.856204i | −1.25836 | − | 2.72333i | 0.947072 | + | 3.01713i |
| 263.5 | −1.40556 | − | 0.156193i | 0.294457 | − | 1.70684i | 1.95121 | + | 0.439078i | −0.570762 | + | 2.16200i | −0.680474 | + | 2.35307i | −1.16434 | + | 1.16434i | −2.67396 | − | 0.921917i | −2.82659 | − | 1.00518i | 1.13993 | − | 2.94967i |
| 263.6 | −1.40556 | − | 0.156193i | 1.70684 | − | 0.294457i | 1.95121 | + | 0.439078i | 0.570762 | − | 2.16200i | −2.44506 | + | 0.147281i | 1.16434 | − | 1.16434i | −2.67396 | − | 0.921917i | 2.82659 | − | 1.00518i | −1.13993 | + | 2.94967i |
| 263.7 | −1.38038 | + | 0.307489i | −1.69839 | − | 0.339787i | 1.81090 | − | 0.848903i | −2.06589 | + | 0.855630i | 2.44891 | − | 0.0532017i | −2.79985 | + | 2.79985i | −2.23871 | + | 1.72864i | 2.76909 | + | 1.15418i | 2.58862 | − | 1.81633i |
| 263.8 | −1.38038 | + | 0.307489i | 0.339787 | + | 1.69839i | 1.81090 | − | 0.848903i | 2.06589 | − | 0.855630i | −0.991272 | − | 2.23995i | 2.79985 | − | 2.79985i | −2.23871 | + | 1.72864i | −2.76909 | + | 1.15418i | −2.58862 | + | 1.81633i |
| 263.9 | −1.37611 | + | 0.326057i | 0.966493 | − | 1.43732i | 1.78737 | − | 0.897382i | 2.10401 | + | 0.757062i | −0.861355 | + | 2.29305i | −1.04504 | + | 1.04504i | −2.16703 | + | 1.81768i | −1.13178 | − | 2.77832i | −3.14220 | − | 0.355776i |
| 263.10 | −1.37611 | + | 0.326057i | 1.43732 | − | 0.966493i | 1.78737 | − | 0.897382i | −2.10401 | − | 0.757062i | −1.66278 | + | 1.79865i | 1.04504 | − | 1.04504i | −2.16703 | + | 1.81768i | 1.13178 | − | 2.77832i | 3.14220 | + | 0.355776i |
| 263.11 | −1.36529 | − | 0.368772i | −1.65797 | − | 0.501122i | 1.72802 | + | 1.00696i | −2.02092 | − | 0.957021i | 2.07881 | + | 1.29559i | 1.11368 | − | 1.11368i | −1.98790 | − | 2.01203i | 2.49775 | + | 1.66169i | 2.40621 | + | 2.05186i |
| 263.12 | −1.36529 | − | 0.368772i | 0.501122 | + | 1.65797i | 1.72802 | + | 1.00696i | 2.02092 | + | 0.957021i | −0.0727618 | − | 2.44841i | −1.11368 | + | 1.11368i | −1.98790 | − | 2.01203i | −2.49775 | + | 1.66169i | −2.40621 | − | 2.05186i |
| 263.13 | −1.36263 | − | 0.378470i | −1.41774 | − | 0.994990i | 1.71352 | + | 1.03143i | 2.23603 | + | 0.0137570i | 1.55528 | + | 1.89238i | 2.87910 | − | 2.87910i | −1.94453 | − | 2.05397i | 1.01999 | + | 2.82128i | −3.04167 | − | 0.865015i |
| 263.14 | −1.36263 | − | 0.378470i | 0.994990 | + | 1.41774i | 1.71352 | + | 1.03143i | −2.23603 | − | 0.0137570i | −0.819230 | − | 2.30843i | −2.87910 | + | 2.87910i | −1.94453 | − | 2.05397i | −1.01999 | + | 2.82128i | 3.04167 | + | 0.865015i |
| 263.15 | −1.35866 | − | 0.392474i | −1.54420 | + | 0.784496i | 1.69193 | + | 1.06648i | 2.03340 | − | 0.930205i | 2.40595 | − | 0.459805i | −1.16315 | + | 1.16315i | −1.88019 | − | 2.11302i | 1.76913 | − | 2.42284i | −3.12779 | + | 0.465778i |
| 263.16 | −1.35866 | − | 0.392474i | −0.784496 | + | 1.54420i | 1.69193 | + | 1.06648i | −2.03340 | + | 0.930205i | 1.67192 | − | 1.79016i | 1.16315 | − | 1.16315i | −1.88019 | − | 2.11302i | −1.76913 | − | 2.42284i | 3.12779 | − | 0.465778i |
| 263.17 | −1.30005 | + | 0.556656i | −0.894923 | − | 1.48294i | 1.38027 | − | 1.44736i | 1.67125 | + | 1.48557i | 1.98893 | + | 1.42973i | 0.953873 | − | 0.953873i | −0.988735 | + | 2.64998i | −1.39822 | + | 2.65424i | −2.99967 | − | 1.00100i |
| 263.18 | −1.30005 | + | 0.556656i | 1.48294 | + | 0.894923i | 1.38027 | − | 1.44736i | −1.67125 | − | 1.48557i | −2.42606 | − | 0.337959i | −0.953873 | + | 0.953873i | −0.988735 | + | 2.64998i | 1.39822 | + | 2.65424i | 2.99967 | + | 1.00100i |
| 263.19 | −1.26919 | + | 0.623817i | −1.71948 | + | 0.208336i | 1.22171 | − | 1.58349i | −0.365963 | − | 2.20592i | 2.05238 | − | 1.33706i | 3.60927 | − | 3.60927i | −0.562774 | + | 2.77187i | 2.91319 | − | 0.716457i | 1.84057 | + | 2.57144i |
| 263.20 | −1.26919 | + | 0.623817i | −0.208336 | + | 1.71948i | 1.22171 | − | 1.58349i | 0.365963 | + | 2.20592i | −0.808219 | − | 2.31231i | −3.60927 | + | 3.60927i | −0.562774 | + | 2.77187i | −2.91319 | − | 0.716457i | −1.84057 | − | 2.57144i |
| See next 80 embeddings (of 272 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 4.b | odd | 2 | 1 | inner |
| 5.c | odd | 4 | 1 | inner |
| 11.b | odd | 2 | 1 | inner |
| 12.b | even | 2 | 1 | inner |
| 15.e | even | 4 | 1 | inner |
| 20.e | even | 4 | 1 | inner |
| 33.d | even | 2 | 1 | inner |
| 44.c | even | 2 | 1 | inner |
| 55.e | even | 4 | 1 | inner |
| 60.l | odd | 4 | 1 | inner |
| 132.d | odd | 2 | 1 | inner |
| 165.l | odd | 4 | 1 | inner |
| 220.i | odd | 4 | 1 | inner |
| 660.q | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 660.2.q.a | ✓ | 272 |
| 3.b | odd | 2 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 4.b | odd | 2 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 5.c | odd | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 11.b | odd | 2 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 12.b | even | 2 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 15.e | even | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 20.e | even | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 33.d | even | 2 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 44.c | even | 2 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 55.e | even | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 60.l | odd | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 132.d | odd | 2 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 165.l | odd | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 220.i | odd | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| 660.q | even | 4 | 1 | inner | 660.2.q.a | ✓ | 272 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 660.2.q.a | ✓ | 272 | 1.a | even | 1 | 1 | trivial |
| 660.2.q.a | ✓ | 272 | 3.b | odd | 2 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 4.b | odd | 2 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 5.c | odd | 4 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 11.b | odd | 2 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 12.b | even | 2 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 15.e | even | 4 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 20.e | even | 4 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 33.d | even | 2 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 44.c | even | 2 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 55.e | even | 4 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 60.l | odd | 4 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 132.d | odd | 2 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 165.l | odd | 4 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 220.i | odd | 4 | 1 | inner |
| 660.2.q.a | ✓ | 272 | 660.q | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(660, [\chi])\).