Properties

Label 66.3.g.a.59.6
Level $66$
Weight $3$
Character 66.59
Analytic conductor $1.798$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [66,3,Mod(5,66)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("66.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(66, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 66.g (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79836974478\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 59.6
Character \(\chi\) \(=\) 66.59
Dual form 66.3.g.a.47.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.831254 - 1.14412i) q^{2} +(1.02326 - 2.82009i) q^{3} +(-0.618034 - 1.90211i) q^{4} +(3.31466 + 4.56224i) q^{5} +(-2.37594 - 3.51495i) q^{6} +(-1.24997 - 3.84700i) q^{7} +(-2.68999 - 0.874032i) q^{8} +(-6.90587 - 5.77140i) q^{9} +7.97508 q^{10} +(-10.5955 + 2.95553i) q^{11} +(-5.99655 - 0.203448i) q^{12} +(16.9796 + 12.3364i) q^{13} +(-5.44049 - 1.76772i) q^{14} +(16.2577 - 4.67928i) q^{15} +(-3.23607 + 2.35114i) q^{16} +(11.8269 + 16.2783i) q^{17} +(-12.3437 + 3.10366i) q^{18} +(-3.25301 + 10.0117i) q^{19} +(6.62932 - 9.12447i) q^{20} +(-12.1280 - 0.411471i) q^{21} +(-5.42607 + 14.5794i) q^{22} -21.5005i q^{23} +(-5.21742 + 6.69167i) q^{24} +(-2.10161 + 6.46810i) q^{25} +(28.2287 - 9.17205i) q^{26} +(-23.3424 + 13.5695i) q^{27} +(-6.54492 + 4.75516i) q^{28} +(-27.9234 + 9.07286i) q^{29} +(8.16061 - 22.4905i) q^{30} +(15.6952 + 11.4033i) q^{31} +5.65685i q^{32} +(-2.50713 + 32.9046i) q^{33} +28.4556 q^{34} +(13.4077 - 18.4542i) q^{35} +(-6.70979 + 16.7027i) q^{36} +(-13.4612 - 41.4293i) q^{37} +(8.75057 + 12.0441i) q^{38} +(52.1643 - 35.2606i) q^{39} +(-4.92887 - 15.1695i) q^{40} +(-53.4514 - 17.3674i) q^{41} +(-10.5522 + 13.5338i) q^{42} -7.63681 q^{43} +(12.1701 + 18.3272i) q^{44} +(3.43989 - 50.6364i) q^{45} +(-24.5992 - 17.8724i) q^{46} +(-36.8620 - 11.9772i) q^{47} +(3.31909 + 11.5319i) q^{48} +(26.4048 - 19.1842i) q^{49} +(5.65333 + 7.78114i) q^{50} +(58.0085 - 16.6960i) q^{51} +(12.9712 - 39.9214i) q^{52} +(-13.2137 + 18.1871i) q^{53} +(-3.87825 + 37.9863i) q^{54} +(-48.6043 - 38.5427i) q^{55} +11.4409i q^{56} +(24.9053 + 19.4184i) q^{57} +(-12.8310 + 39.4897i) q^{58} +(100.895 - 32.7829i) q^{59} +(-18.9483 - 28.0320i) q^{60} +(-29.3348 + 21.3130i) q^{61} +(26.0935 - 8.47828i) q^{62} +(-13.5705 + 33.7810i) q^{63} +(6.47214 + 4.70228i) q^{64} +118.356i q^{65} +(35.5629 + 30.2206i) q^{66} -27.9454 q^{67} +(23.6538 - 32.5567i) q^{68} +(-60.6335 - 22.0007i) q^{69} +(-9.96859 - 30.6802i) q^{70} +(-57.4186 - 79.0299i) q^{71} +(13.5324 + 21.5610i) q^{72} +(6.13612 + 18.8850i) q^{73} +(-58.5899 - 19.0370i) q^{74} +(16.0902 + 12.5453i) q^{75} +21.0539 q^{76} +(24.6140 + 37.0667i) q^{77} +(3.01931 - 88.9929i) q^{78} +(27.5593 + 20.0230i) q^{79} +(-21.4529 - 6.97048i) q^{80} +(14.3820 + 79.7130i) q^{81} +(-64.3021 + 46.7182i) q^{82} +(52.3490 + 72.0522i) q^{83} +(6.71283 + 23.3231i) q^{84} +(-35.0635 + 107.914i) q^{85} +(-6.34812 + 8.73744i) q^{86} +(-2.98666 + 88.0306i) q^{87} +(31.0851 + 1.31047i) q^{88} +44.9681i q^{89} +(-55.0748 - 46.0274i) q^{90} +(26.2342 - 80.7406i) q^{91} +(-40.8964 + 13.2880i) q^{92} +(48.2186 - 32.5935i) q^{93} +(-44.3450 + 32.2186i) q^{94} +(-56.4585 + 18.3445i) q^{95} +(15.9529 + 5.78845i) q^{96} +(-148.040 - 107.557i) q^{97} -46.1573i q^{98} +(90.2287 + 40.7404i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 16 q^{4} + 12 q^{6} - 8 q^{7} + 26 q^{9} + 16 q^{10} - 24 q^{12} + 8 q^{13} - 82 q^{15} - 32 q^{16} - 8 q^{18} - 4 q^{19} - 100 q^{21} - 24 q^{24} - 88 q^{25} - 106 q^{27} - 24 q^{28} - 36 q^{30}+ \cdots + 470 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.831254 1.14412i 0.415627 0.572061i
\(3\) 1.02326 2.82009i 0.341088 0.940031i
\(4\) −0.618034 1.90211i −0.154508 0.475528i
\(5\) 3.31466 + 4.56224i 0.662932 + 0.912447i 0.999574 0.0291853i \(-0.00929130\pi\)
−0.336642 + 0.941633i \(0.609291\pi\)
\(6\) −2.37594 3.51495i −0.395990 0.585826i
\(7\) −1.24997 3.84700i −0.178567 0.549572i 0.821212 0.570624i \(-0.193299\pi\)
−0.999778 + 0.0210517i \(0.993299\pi\)
\(8\) −2.68999 0.874032i −0.336249 0.109254i
\(9\) −6.90587 5.77140i −0.767318 0.641266i
\(10\) 7.97508 0.797508
\(11\) −10.5955 + 2.95553i −0.963228 + 0.268684i
\(12\) −5.99655 0.203448i −0.499712 0.0169540i
\(13\) 16.9796 + 12.3364i 1.30612 + 0.948952i 0.999995 0.00303880i \(-0.000967283\pi\)
0.306125 + 0.951991i \(0.400967\pi\)
\(14\) −5.44049 1.76772i −0.388606 0.126266i
\(15\) 16.2577 4.67928i 1.08385 0.311952i
\(16\) −3.23607 + 2.35114i −0.202254 + 0.146946i
\(17\) 11.8269 + 16.2783i 0.695701 + 0.957550i 0.999988 + 0.00496931i \(0.00158179\pi\)
−0.304287 + 0.952580i \(0.598418\pi\)
\(18\) −12.3437 + 3.10366i −0.685762 + 0.172426i
\(19\) −3.25301 + 10.0117i −0.171211 + 0.526933i −0.999440 0.0334564i \(-0.989349\pi\)
0.828229 + 0.560389i \(0.189349\pi\)
\(20\) 6.62932 9.12447i 0.331466 0.456224i
\(21\) −12.1280 0.411471i −0.577522 0.0195939i
\(22\) −5.42607 + 14.5794i −0.246640 + 0.662698i
\(23\) 21.5005i 0.934805i −0.884045 0.467402i \(-0.845190\pi\)
0.884045 0.467402i \(-0.154810\pi\)
\(24\) −5.21742 + 6.69167i −0.217393 + 0.278820i
\(25\) −2.10161 + 6.46810i −0.0840645 + 0.258724i
\(26\) 28.2287 9.17205i 1.08572 0.352771i
\(27\) −23.3424 + 13.5695i −0.864533 + 0.502575i
\(28\) −6.54492 + 4.75516i −0.233747 + 0.169827i
\(29\) −27.9234 + 9.07286i −0.962876 + 0.312857i −0.747937 0.663770i \(-0.768955\pi\)
−0.214939 + 0.976627i \(0.568955\pi\)
\(30\) 8.16061 22.4905i 0.272020 0.749683i
\(31\) 15.6952 + 11.4033i 0.506298 + 0.367847i 0.811418 0.584467i \(-0.198696\pi\)
−0.305119 + 0.952314i \(0.598696\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −2.50713 + 32.9046i −0.0759736 + 0.997110i
\(34\) 28.4556 0.836929
\(35\) 13.4077 18.4542i 0.383078 0.527262i
\(36\) −6.70979 + 16.7027i −0.186383 + 0.463963i
\(37\) −13.4612 41.4293i −0.363817 1.11971i −0.950719 0.310054i \(-0.899653\pi\)
0.586902 0.809658i \(-0.300347\pi\)
\(38\) 8.75057 + 12.0441i 0.230278 + 0.316951i
\(39\) 52.1643 35.2606i 1.33755 0.904119i
\(40\) −4.92887 15.1695i −0.123222 0.379238i
\(41\) −53.4514 17.3674i −1.30369 0.423595i −0.426828 0.904333i \(-0.640369\pi\)
−0.876864 + 0.480738i \(0.840369\pi\)
\(42\) −10.5522 + 13.5338i −0.251243 + 0.322234i
\(43\) −7.63681 −0.177600 −0.0888001 0.996049i \(-0.528303\pi\)
−0.0888001 + 0.996049i \(0.528303\pi\)
\(44\) 12.1701 + 18.3272i 0.276594 + 0.416528i
\(45\) 3.43989 50.6364i 0.0764420 1.12525i
\(46\) −24.5992 17.8724i −0.534766 0.388530i
\(47\) −36.8620 11.9772i −0.784298 0.254834i −0.110624 0.993862i \(-0.535285\pi\)
−0.673674 + 0.739029i \(0.735285\pi\)
\(48\) 3.31909 + 11.5319i 0.0691477 + 0.240247i
\(49\) 26.4048 19.1842i 0.538874 0.391515i
\(50\) 5.65333 + 7.78114i 0.113067 + 0.155623i
\(51\) 58.0085 16.6960i 1.13742 0.327372i
\(52\) 12.9712 39.9214i 0.249447 0.767719i
\(53\) −13.2137 + 18.1871i −0.249315 + 0.343152i −0.915271 0.402838i \(-0.868024\pi\)
0.665956 + 0.745991i \(0.268024\pi\)
\(54\) −3.87825 + 37.9863i −0.0718194 + 0.703450i
\(55\) −48.6043 38.5427i −0.883715 0.700776i
\(56\) 11.4409i 0.204302i
\(57\) 24.9053 + 19.4184i 0.436936 + 0.340674i
\(58\) −12.8310 + 39.4897i −0.221224 + 0.680856i
\(59\) 100.895 32.7829i 1.71009 0.555642i 0.719742 0.694242i \(-0.244260\pi\)
0.990348 + 0.138600i \(0.0442602\pi\)
\(60\) −18.9483 28.0320i −0.315806 0.467201i
\(61\) −29.3348 + 21.3130i −0.480899 + 0.349393i −0.801674 0.597762i \(-0.796057\pi\)
0.320775 + 0.947155i \(0.396057\pi\)
\(62\) 26.0935 8.47828i 0.420862 0.136746i
\(63\) −13.5705 + 33.7810i −0.215405 + 0.536206i
\(64\) 6.47214 + 4.70228i 0.101127 + 0.0734732i
\(65\) 118.356i 1.82086i
\(66\) 35.5629 + 30.2206i 0.538831 + 0.457887i
\(67\) −27.9454 −0.417095 −0.208548 0.978012i \(-0.566874\pi\)
−0.208548 + 0.978012i \(0.566874\pi\)
\(68\) 23.6538 32.5567i 0.347850 0.478775i
\(69\) −60.6335 22.0007i −0.878746 0.318850i
\(70\) −9.96859 30.6802i −0.142408 0.438288i
\(71\) −57.4186 79.0299i −0.808712 1.11310i −0.991521 0.129948i \(-0.958519\pi\)
0.182809 0.983148i \(-0.441481\pi\)
\(72\) 13.5324 + 21.5610i 0.187949 + 0.299458i
\(73\) 6.13612 + 18.8850i 0.0840564 + 0.258699i 0.984247 0.176796i \(-0.0565733\pi\)
−0.900191 + 0.435495i \(0.856573\pi\)
\(74\) −58.5899 19.0370i −0.791756 0.257257i
\(75\) 16.0902 + 12.5453i 0.214535 + 0.167271i
\(76\) 21.0539 0.277025
\(77\) 24.6140 + 37.0667i 0.319662 + 0.481385i
\(78\) 3.01931 88.9929i 0.0387091 1.14094i
\(79\) 27.5593 + 20.0230i 0.348852 + 0.253456i 0.748387 0.663262i \(-0.230828\pi\)
−0.399535 + 0.916718i \(0.630828\pi\)
\(80\) −21.4529 6.97048i −0.268162 0.0871310i
\(81\) 14.3820 + 79.7130i 0.177555 + 0.984111i
\(82\) −64.3021 + 46.7182i −0.784172 + 0.569734i
\(83\) 52.3490 + 72.0522i 0.630711 + 0.868099i 0.998078 0.0619773i \(-0.0197406\pi\)
−0.367367 + 0.930076i \(0.619741\pi\)
\(84\) 6.71283 + 23.3231i 0.0799146 + 0.277655i
\(85\) −35.0635 + 107.914i −0.412512 + 1.26958i
\(86\) −6.34812 + 8.73744i −0.0738154 + 0.101598i
\(87\) −2.98666 + 88.0306i −0.0343294 + 1.01185i
\(88\) 31.0851 + 1.31047i 0.353240 + 0.0148917i
\(89\) 44.9681i 0.505259i 0.967563 + 0.252630i \(0.0812954\pi\)
−0.967563 + 0.252630i \(0.918705\pi\)
\(90\) −55.0748 46.0274i −0.611943 0.511415i
\(91\) 26.2342 80.7406i 0.288288 0.887259i
\(92\) −40.8964 + 13.2880i −0.444526 + 0.144435i
\(93\) 48.2186 32.5935i 0.518480 0.350468i
\(94\) −44.3450 + 32.2186i −0.471756 + 0.342751i
\(95\) −56.4585 + 18.3445i −0.594300 + 0.193100i
\(96\) 15.9529 + 5.78845i 0.166176 + 0.0602964i
\(97\) −148.040 107.557i −1.52618 1.10884i −0.958314 0.285718i \(-0.907768\pi\)
−0.567869 0.823119i \(-0.692232\pi\)
\(98\) 46.1573i 0.470993i
\(99\) 90.2287 + 40.7404i 0.911401 + 0.411519i
\(100\) 13.6019 0.136019
\(101\) 100.252 137.985i 0.992597 1.36619i 0.0628383 0.998024i \(-0.479985\pi\)
0.929759 0.368169i \(-0.120015\pi\)
\(102\) 29.1176 80.2475i 0.285466 0.786740i
\(103\) 21.9087 + 67.4280i 0.212706 + 0.654641i 0.999309 + 0.0371816i \(0.0118380\pi\)
−0.786603 + 0.617459i \(0.788162\pi\)
\(104\) −34.8926 48.0255i −0.335505 0.461783i
\(105\) −38.3228 56.6945i −0.364979 0.539948i
\(106\) 9.82433 + 30.2362i 0.0926823 + 0.285247i
\(107\) −84.1874 27.3541i −0.786798 0.255646i −0.112058 0.993702i \(-0.535744\pi\)
−0.674740 + 0.738056i \(0.735744\pi\)
\(108\) 40.2372 + 36.0135i 0.372567 + 0.333458i
\(109\) 122.131 1.12047 0.560234 0.828334i \(-0.310711\pi\)
0.560234 + 0.828334i \(0.310711\pi\)
\(110\) −84.5001 + 23.5706i −0.768182 + 0.214278i
\(111\) −130.609 4.43124i −1.17666 0.0399210i
\(112\) 13.0898 + 9.51032i 0.116873 + 0.0849136i
\(113\) 122.728 + 39.8768i 1.08609 + 0.352892i 0.796735 0.604329i \(-0.206559\pi\)
0.289356 + 0.957222i \(0.406559\pi\)
\(114\) 42.9197 12.3531i 0.376489 0.108361i
\(115\) 98.0904 71.2669i 0.852960 0.619712i
\(116\) 34.5152 + 47.5061i 0.297545 + 0.409536i
\(117\) −46.0605 183.189i −0.393679 1.56572i
\(118\) 46.3620 142.688i 0.392898 1.20922i
\(119\) 47.8396 65.8456i 0.402014 0.553324i
\(120\) −47.8230 1.62251i −0.398525 0.0135209i
\(121\) 103.530 62.6306i 0.855617 0.517609i
\(122\) 51.2791i 0.420321i
\(123\) −103.673 + 132.966i −0.842866 + 1.08103i
\(124\) 11.9901 36.9017i 0.0966944 0.297595i
\(125\) 97.6056 31.7140i 0.780845 0.253712i
\(126\) 27.3690 + 43.6068i 0.217215 + 0.346086i
\(127\) −3.82636 + 2.78001i −0.0301288 + 0.0218899i −0.602748 0.797932i \(-0.705927\pi\)
0.572619 + 0.819822i \(0.305927\pi\)
\(128\) 10.7600 3.49613i 0.0840623 0.0273135i
\(129\) −7.81446 + 21.5365i −0.0605772 + 0.166950i
\(130\) 135.413 + 98.3836i 1.04164 + 0.756797i
\(131\) 82.4708i 0.629548i −0.949167 0.314774i \(-0.898071\pi\)
0.949167 0.314774i \(-0.101929\pi\)
\(132\) 64.1378 15.5673i 0.485892 0.117934i
\(133\) 42.5813 0.320160
\(134\) −23.2297 + 31.9729i −0.173356 + 0.238604i
\(135\) −139.280 61.5152i −1.03170 0.455668i
\(136\) −17.5865 54.1257i −0.129313 0.397983i
\(137\) 41.4798 + 57.0921i 0.302772 + 0.416730i 0.933110 0.359590i \(-0.117084\pi\)
−0.630338 + 0.776321i \(0.717084\pi\)
\(138\) −75.5733 + 51.0840i −0.547632 + 0.370174i
\(139\) 79.8398 + 245.722i 0.574387 + 1.76778i 0.638257 + 0.769823i \(0.279656\pi\)
−0.0638699 + 0.997958i \(0.520344\pi\)
\(140\) −43.3883 14.0977i −0.309917 0.100698i
\(141\) −71.4963 + 91.6985i −0.507066 + 0.650344i
\(142\) −138.149 −0.972882
\(143\) −216.368 80.5267i −1.51306 0.563124i
\(144\) 35.9172 + 2.43997i 0.249425 + 0.0169442i
\(145\) −133.949 97.3197i −0.923787 0.671171i
\(146\) 26.7075 + 8.67778i 0.182928 + 0.0594368i
\(147\) −27.0822 94.0945i −0.184233 0.640099i
\(148\) −70.4838 + 51.2095i −0.476242 + 0.346010i
\(149\) −32.5506 44.8020i −0.218460 0.300685i 0.685695 0.727889i \(-0.259498\pi\)
−0.904155 + 0.427204i \(0.859498\pi\)
\(150\) 27.7284 7.98077i 0.184856 0.0532051i
\(151\) −8.70590 + 26.7940i −0.0576549 + 0.177444i −0.975737 0.218948i \(-0.929738\pi\)
0.918082 + 0.396391i \(0.129738\pi\)
\(152\) 17.5011 24.0883i 0.115139 0.158475i
\(153\) 12.2737 180.674i 0.0802206 1.18087i
\(154\) 62.8693 + 2.65040i 0.408242 + 0.0172104i
\(155\) 109.403i 0.705828i
\(156\) −99.3090 77.4302i −0.636596 0.496347i
\(157\) −70.7523 + 217.753i −0.450651 + 1.38696i 0.425514 + 0.904952i \(0.360093\pi\)
−0.876165 + 0.482010i \(0.839907\pi\)
\(158\) 45.8176 14.8870i 0.289985 0.0942218i
\(159\) 37.7682 + 55.8740i 0.237536 + 0.351409i
\(160\) −25.8079 + 18.7505i −0.161299 + 0.117191i
\(161\) −82.7126 + 26.8749i −0.513743 + 0.166925i
\(162\) 103.156 + 49.8070i 0.636768 + 0.307451i
\(163\) −61.7634 44.8737i −0.378916 0.275299i 0.381982 0.924170i \(-0.375242\pi\)
−0.760899 + 0.648871i \(0.775242\pi\)
\(164\) 112.404i 0.685391i
\(165\) −158.429 + 97.6295i −0.960175 + 0.591694i
\(166\) 125.952 0.758746
\(167\) −36.1481 + 49.7536i −0.216456 + 0.297925i −0.903412 0.428773i \(-0.858946\pi\)
0.686957 + 0.726698i \(0.258946\pi\)
\(168\) 32.2645 + 11.7071i 0.192051 + 0.0696850i
\(169\) 83.8957 + 258.204i 0.496424 + 1.52784i
\(170\) 94.3206 + 129.821i 0.554827 + 0.763654i
\(171\) 80.2465 50.3652i 0.469278 0.294534i
\(172\) 4.71981 + 14.5261i 0.0274407 + 0.0844539i
\(173\) 98.4104 + 31.9755i 0.568846 + 0.184829i 0.579298 0.815116i \(-0.303327\pi\)
−0.0104515 + 0.999945i \(0.503327\pi\)
\(174\) 98.2351 + 76.5929i 0.564570 + 0.440189i
\(175\) 27.5098 0.157199
\(176\) 27.3389 34.4758i 0.155335 0.195885i
\(177\) 10.7916 318.080i 0.0609698 1.79706i
\(178\) 51.4490 + 37.3799i 0.289039 + 0.209999i
\(179\) 180.570 + 58.6707i 1.00877 + 0.327769i 0.766365 0.642406i \(-0.222064\pi\)
0.242405 + 0.970175i \(0.422064\pi\)
\(180\) −98.4421 + 24.7520i −0.546901 + 0.137511i
\(181\) 114.896 83.4770i 0.634786 0.461199i −0.223269 0.974757i \(-0.571673\pi\)
0.858055 + 0.513558i \(0.171673\pi\)
\(182\) −70.5698 97.1311i −0.387746 0.533687i
\(183\) 30.0874 + 104.536i 0.164412 + 0.571234i
\(184\) −18.7921 + 57.8362i −0.102131 + 0.314327i
\(185\) 144.391 198.737i 0.780493 1.07426i
\(186\) 2.79093 82.2616i 0.0150050 0.442266i
\(187\) −173.423 137.523i −0.927397 0.735415i
\(188\) 77.5180i 0.412330i
\(189\) 81.3793 + 72.8368i 0.430578 + 0.385380i
\(190\) −25.9430 + 79.8443i −0.136542 + 0.420233i
\(191\) −289.190 + 93.9635i −1.51408 + 0.491955i −0.944088 0.329693i \(-0.893055\pi\)
−0.569995 + 0.821648i \(0.693055\pi\)
\(192\) 19.8836 13.4404i 0.103560 0.0700019i
\(193\) 76.0544 55.2568i 0.394064 0.286305i −0.373055 0.927809i \(-0.621690\pi\)
0.767119 + 0.641505i \(0.221690\pi\)
\(194\) −246.117 + 79.9683i −1.26865 + 0.412208i
\(195\) 333.774 + 121.109i 1.71166 + 0.621072i
\(196\) −52.8096 38.3684i −0.269437 0.195757i
\(197\) 202.364i 1.02723i −0.858021 0.513614i \(-0.828306\pi\)
0.858021 0.513614i \(-0.171694\pi\)
\(198\) 121.615 69.3671i 0.614217 0.350339i
\(199\) −159.417 −0.801090 −0.400545 0.916277i \(-0.631179\pi\)
−0.400545 + 0.916277i \(0.631179\pi\)
\(200\) 11.3067 15.5623i 0.0565333 0.0778114i
\(201\) −28.5955 + 78.8086i −0.142266 + 0.392083i
\(202\) −74.5372 229.402i −0.368996 1.13565i
\(203\) 69.8067 + 96.0807i 0.343875 + 0.473304i
\(204\) −67.6089 100.020i −0.331416 0.490294i
\(205\) −97.9389 301.425i −0.477751 1.47036i
\(206\) 95.3576 + 30.9836i 0.462901 + 0.150406i
\(207\) −124.088 + 148.480i −0.599459 + 0.717293i
\(208\) −83.9516 −0.403614
\(209\) 4.87734 115.694i 0.0233366 0.553558i
\(210\) −96.7215 3.28152i −0.460579 0.0156263i
\(211\) 139.991 + 101.709i 0.663463 + 0.482034i 0.867831 0.496860i \(-0.165514\pi\)
−0.204368 + 0.978894i \(0.565514\pi\)
\(212\) 42.7604 + 13.8937i 0.201700 + 0.0655363i
\(213\) −281.626 + 81.0574i −1.32219 + 0.380551i
\(214\) −101.278 + 73.5825i −0.473260 + 0.343843i
\(215\) −25.3134 34.8409i −0.117737 0.162051i
\(216\) 74.6511 16.1000i 0.345607 0.0745369i
\(217\) 24.2499 74.6334i 0.111751 0.343933i
\(218\) 101.522 139.733i 0.465697 0.640977i
\(219\) 59.5364 + 2.01992i 0.271856 + 0.00922338i
\(220\) −43.2734 + 116.272i −0.196697 + 0.528507i
\(221\) 422.301i 1.91086i
\(222\) −113.639 + 145.749i −0.511888 + 0.656528i
\(223\) 96.6507 297.460i 0.433411 1.33390i −0.461295 0.887247i \(-0.652615\pi\)
0.894706 0.446656i \(-0.147385\pi\)
\(224\) 21.7619 7.07088i 0.0971515 0.0315664i
\(225\) 51.8434 32.5386i 0.230415 0.144616i
\(226\) 147.642 107.268i 0.653285 0.474639i
\(227\) 142.562 46.3213i 0.628028 0.204059i 0.0223264 0.999751i \(-0.492893\pi\)
0.605701 + 0.795692i \(0.292893\pi\)
\(228\) 21.5437 59.3740i 0.0944898 0.260412i
\(229\) −66.8573 48.5747i −0.291953 0.212117i 0.432161 0.901796i \(-0.357751\pi\)
−0.724114 + 0.689680i \(0.757751\pi\)
\(230\) 171.468i 0.745514i
\(231\) 129.718 31.4848i 0.561550 0.136298i
\(232\) 83.0438 0.357947
\(233\) −106.571 + 146.683i −0.457387 + 0.629539i −0.973964 0.226701i \(-0.927206\pi\)
0.516577 + 0.856241i \(0.327206\pi\)
\(234\) −247.879 99.5779i −1.05931 0.425547i
\(235\) −67.5421 207.873i −0.287413 0.884567i
\(236\) −124.713 171.653i −0.528447 0.727345i
\(237\) 84.6672 57.2311i 0.357246 0.241481i
\(238\) −35.5686 109.469i −0.149448 0.459953i
\(239\) −147.850 48.0393i −0.618619 0.201001i −0.0170917 0.999854i \(-0.505441\pi\)
−0.601527 + 0.798853i \(0.705441\pi\)
\(240\) −41.6094 + 53.3666i −0.173372 + 0.222361i
\(241\) −8.20602 −0.0340499 −0.0170249 0.999855i \(-0.505419\pi\)
−0.0170249 + 0.999855i \(0.505419\pi\)
\(242\) 14.4023 170.513i 0.0595138 0.704598i
\(243\) 239.515 + 41.0089i 0.985657 + 0.168761i
\(244\) 58.6696 + 42.6260i 0.240449 + 0.174697i
\(245\) 175.046 + 56.8758i 0.714473 + 0.232146i
\(246\) 65.9518 + 229.143i 0.268097 + 0.931476i
\(247\) −178.743 + 129.864i −0.723656 + 0.525767i
\(248\) −32.2533 44.3929i −0.130054 0.179003i
\(249\) 256.761 73.9007i 1.03117 0.296790i
\(250\) 44.8504 138.035i 0.179401 0.552141i
\(251\) −87.4201 + 120.324i −0.348287 + 0.479377i −0.946839 0.321708i \(-0.895743\pi\)
0.598552 + 0.801084i \(0.295743\pi\)
\(252\) 72.6422 + 4.93482i 0.288263 + 0.0195826i
\(253\) 63.5453 + 227.809i 0.251167 + 0.900430i
\(254\) 6.68872i 0.0263336i
\(255\) 268.449 + 209.307i 1.05274 + 0.820812i
\(256\) 4.94427 15.2169i 0.0193136 0.0594410i
\(257\) −179.297 + 58.2572i −0.697654 + 0.226682i −0.636308 0.771435i \(-0.719539\pi\)
−0.0613460 + 0.998117i \(0.519539\pi\)
\(258\) 18.1446 + 26.8430i 0.0703280 + 0.104043i
\(259\) −142.553 + 103.571i −0.550397 + 0.399887i
\(260\) 225.126 73.1479i 0.865869 0.281338i
\(261\) 245.198 + 98.5011i 0.939457 + 0.377399i
\(262\) −94.3567 68.5542i −0.360140 0.261657i
\(263\) 225.855i 0.858765i −0.903123 0.429383i \(-0.858731\pi\)
0.903123 0.429383i \(-0.141269\pi\)
\(264\) 35.5039 86.3219i 0.134484 0.326977i
\(265\) −126.773 −0.478387
\(266\) 35.3959 48.7183i 0.133067 0.183151i
\(267\) 126.814 + 46.0142i 0.474959 + 0.172338i
\(268\) 17.2712 + 53.1553i 0.0644447 + 0.198341i
\(269\) −58.6740 80.7579i −0.218119 0.300215i 0.685910 0.727687i \(-0.259404\pi\)
−0.904029 + 0.427471i \(0.859404\pi\)
\(270\) −186.158 + 108.218i −0.689472 + 0.400808i
\(271\) −52.5846 161.839i −0.194039 0.597191i −0.999986 0.00520380i \(-0.998344\pi\)
0.805947 0.591987i \(-0.201656\pi\)
\(272\) −76.5454 24.8711i −0.281417 0.0914379i
\(273\) −200.852 156.602i −0.735720 0.573633i
\(274\) 99.8006 0.364236
\(275\) 3.15102 74.7442i 0.0114583 0.271797i
\(276\) −4.37423 + 128.929i −0.0158487 + 0.467134i
\(277\) −66.8096 48.5400i −0.241190 0.175235i 0.460623 0.887596i \(-0.347626\pi\)
−0.701813 + 0.712361i \(0.747626\pi\)
\(278\) 347.503 + 112.911i 1.25001 + 0.406153i
\(279\) −42.5765 169.333i −0.152604 0.606928i
\(280\) −52.1962 + 37.9228i −0.186415 + 0.135439i
\(281\) 2.65837 + 3.65893i 0.00946038 + 0.0130211i 0.813721 0.581256i \(-0.197438\pi\)
−0.804261 + 0.594277i \(0.797438\pi\)
\(282\) 45.4827 + 158.025i 0.161286 + 0.560373i
\(283\) −126.009 + 387.817i −0.445262 + 1.37038i 0.436934 + 0.899494i \(0.356064\pi\)
−0.882196 + 0.470883i \(0.843936\pi\)
\(284\) −114.837 + 158.060i −0.404356 + 0.556548i
\(285\) −6.03873 + 177.989i −0.0211885 + 0.624524i
\(286\) −271.989 + 180.613i −0.951010 + 0.631515i
\(287\) 227.336i 0.792113i
\(288\) 32.6480 39.0655i 0.113361 0.135644i
\(289\) −35.8028 + 110.190i −0.123885 + 0.381279i
\(290\) −222.691 + 72.3568i −0.767902 + 0.249506i
\(291\) −454.805 + 307.427i −1.56290 + 1.05645i
\(292\) 32.1291 23.3432i 0.110031 0.0799424i
\(293\) −121.156 + 39.3658i −0.413500 + 0.134354i −0.508377 0.861135i \(-0.669754\pi\)
0.0948767 + 0.995489i \(0.469754\pi\)
\(294\) −130.168 47.2311i −0.442748 0.160650i
\(295\) 483.997 + 351.644i 1.64067 + 1.19201i
\(296\) 123.210i 0.416251i
\(297\) 207.220 212.765i 0.697709 0.716381i
\(298\) −78.3168 −0.262808
\(299\) 265.238 365.069i 0.887085 1.22097i
\(300\) 13.9184 38.3587i 0.0463945 0.127862i
\(301\) 9.54576 + 29.3788i 0.0317135 + 0.0976041i
\(302\) 23.4188 + 32.2332i 0.0775457 + 0.106733i
\(303\) −286.548 423.916i −0.945702 1.39906i
\(304\) −13.0120 40.0469i −0.0428027 0.131733i
\(305\) −194.470 63.1871i −0.637606 0.207171i
\(306\) −196.510 164.229i −0.642191 0.536694i
\(307\) −153.177 −0.498947 −0.249473 0.968382i \(-0.580257\pi\)
−0.249473 + 0.968382i \(0.580257\pi\)
\(308\) 55.2927 69.7270i 0.179522 0.226386i
\(309\) 212.572 + 7.21202i 0.687934 + 0.0233399i
\(310\) 125.171 + 90.9420i 0.403777 + 0.293361i
\(311\) 30.6291 + 9.95201i 0.0984860 + 0.0320000i 0.357845 0.933781i \(-0.383511\pi\)
−0.259360 + 0.965781i \(0.583511\pi\)
\(312\) −171.141 + 49.2576i −0.548528 + 0.157877i
\(313\) 198.484 144.207i 0.634133 0.460725i −0.223696 0.974659i \(-0.571812\pi\)
0.857830 + 0.513934i \(0.171812\pi\)
\(314\) 190.323 + 261.957i 0.606125 + 0.834259i
\(315\) −199.098 + 50.0606i −0.632058 + 0.158922i
\(316\) 21.0535 64.7959i 0.0666248 0.205050i
\(317\) 20.3067 27.9497i 0.0640589 0.0881694i −0.775786 0.630997i \(-0.782646\pi\)
0.839844 + 0.542827i \(0.182646\pi\)
\(318\) 95.3217 + 3.23403i 0.299754 + 0.0101699i
\(319\) 269.048 178.660i 0.843410 0.560063i
\(320\) 45.1139i 0.140981i
\(321\) −163.287 + 209.426i −0.508683 + 0.652417i
\(322\) −38.0069 + 116.973i −0.118034 + 0.363271i
\(323\) −201.447 + 65.4542i −0.623676 + 0.202645i
\(324\) 142.735 76.6214i 0.440539 0.236486i
\(325\) −115.477 + 83.8993i −0.355315 + 0.258152i
\(326\) −102.682 + 33.3634i −0.314976 + 0.102342i
\(327\) 124.972 344.421i 0.382178 1.05328i
\(328\) 128.604 + 93.4364i 0.392086 + 0.284867i
\(329\) 156.779i 0.476533i
\(330\) −19.9946 + 262.417i −0.0605896 + 0.795203i
\(331\) 58.5743 0.176962 0.0884808 0.996078i \(-0.471799\pi\)
0.0884808 + 0.996078i \(0.471799\pi\)
\(332\) 104.698 144.104i 0.315355 0.434049i
\(333\) −146.144 + 363.795i −0.438871 + 1.09248i
\(334\) 26.8759 + 82.7157i 0.0804669 + 0.247652i
\(335\) −92.6294 127.493i −0.276506 0.380577i
\(336\) 40.2143 27.1830i 0.119686 0.0809018i
\(337\) 98.4177 + 302.898i 0.292041 + 0.898808i 0.984199 + 0.177063i \(0.0566597\pi\)
−0.692159 + 0.721745i \(0.743340\pi\)
\(338\) 365.156 + 118.646i 1.08034 + 0.351025i
\(339\) 238.040 305.301i 0.702182 0.900592i
\(340\) 226.936 0.667458
\(341\) −200.002 74.4357i −0.586516 0.218286i
\(342\) 9.08118 133.678i 0.0265532 0.390872i
\(343\) −267.157 194.101i −0.778884 0.565893i
\(344\) 20.5430 + 6.67481i 0.0597179 + 0.0194035i
\(345\) −100.607 349.549i −0.291614 1.01319i
\(346\) 118.388 86.0138i 0.342162 0.248595i
\(347\) 29.8163 + 41.0386i 0.0859260 + 0.118267i 0.849816 0.527080i \(-0.176713\pi\)
−0.763890 + 0.645346i \(0.776713\pi\)
\(348\) 169.290 48.7249i 0.486465 0.140014i
\(349\) 151.663 466.770i 0.434564 1.33745i −0.458968 0.888453i \(-0.651781\pi\)
0.893533 0.448998i \(-0.148219\pi\)
\(350\) 22.8676 31.4745i 0.0653360 0.0899273i
\(351\) −563.743 57.5559i −1.60611 0.163977i
\(352\) −16.7190 59.9373i −0.0474971 0.170276i
\(353\) 359.397i 1.01812i 0.860731 + 0.509060i \(0.170007\pi\)
−0.860731 + 0.509060i \(0.829993\pi\)
\(354\) −354.952 276.752i −1.00269 0.781786i
\(355\) 170.230 523.914i 0.479521 1.47581i
\(356\) 85.5343 27.7918i 0.240265 0.0780668i
\(357\) −136.738 202.290i −0.383020 0.566637i
\(358\) 217.226 157.824i 0.606776 0.440849i
\(359\) 23.4437 7.61733i 0.0653029 0.0212182i −0.276183 0.961105i \(-0.589070\pi\)
0.341486 + 0.939887i \(0.389070\pi\)
\(360\) −53.5111 + 133.205i −0.148642 + 0.370014i
\(361\) 202.403 + 147.054i 0.560672 + 0.407352i
\(362\) 200.846i 0.554823i
\(363\) −70.6862 356.051i −0.194728 0.980857i
\(364\) −169.791 −0.466460
\(365\) −65.8188 + 90.5918i −0.180325 + 0.248197i
\(366\) 144.612 + 52.4721i 0.395115 + 0.143366i
\(367\) 111.647 + 343.615i 0.304216 + 0.936281i 0.979968 + 0.199153i \(0.0638189\pi\)
−0.675752 + 0.737129i \(0.736181\pi\)
\(368\) 50.5507 + 69.5771i 0.137366 + 0.189068i
\(369\) 268.894 + 428.426i 0.728709 + 1.16105i
\(370\) −107.354 330.402i −0.290147 0.892980i
\(371\) 86.4825 + 28.0999i 0.233106 + 0.0757409i
\(372\) −91.7974 71.5734i −0.246767 0.192402i
\(373\) −76.6743 −0.205561 −0.102781 0.994704i \(-0.532774\pi\)
−0.102781 + 0.994704i \(0.532774\pi\)
\(374\) −301.502 + 84.1013i −0.806154 + 0.224870i
\(375\) 10.4398 307.709i 0.0278394 0.820557i
\(376\) 88.6901 + 64.4371i 0.235878 + 0.171375i
\(377\) −586.054 190.420i −1.55452 0.505094i
\(378\) 150.981 32.5620i 0.399421 0.0861429i
\(379\) 150.923 109.652i 0.398213 0.289318i −0.370600 0.928793i \(-0.620848\pi\)
0.768813 + 0.639474i \(0.220848\pi\)
\(380\) 69.7865 + 96.0529i 0.183649 + 0.252771i
\(381\) 3.92453 + 13.6354i 0.0103006 + 0.0357884i
\(382\) −132.884 + 408.976i −0.347865 + 1.07062i
\(383\) 198.180 272.771i 0.517441 0.712196i −0.467711 0.883881i \(-0.654921\pi\)
0.985152 + 0.171686i \(0.0549213\pi\)
\(384\) 1.15087 33.9216i 0.00299707 0.0883375i
\(385\) −87.5200 + 235.158i −0.227325 + 0.610800i
\(386\) 132.948i 0.344425i
\(387\) 52.7387 + 44.0750i 0.136276 + 0.113889i
\(388\) −113.092 + 348.062i −0.291475 + 0.897068i
\(389\) 705.064 229.089i 1.81251 0.588919i 0.812523 0.582929i \(-0.198093\pi\)
0.999982 0.00598950i \(-0.00190653\pi\)
\(390\) 416.015 281.206i 1.06670 0.721042i
\(391\) 349.993 254.285i 0.895122 0.650344i
\(392\) −87.7964 + 28.5268i −0.223970 + 0.0727724i
\(393\) −232.575 84.3893i −0.591795 0.214731i
\(394\) −231.529 168.216i −0.587637 0.426944i
\(395\) 192.102i 0.486333i
\(396\) 21.7285 196.804i 0.0548700 0.496980i
\(397\) 176.069 0.443500 0.221750 0.975104i \(-0.428823\pi\)
0.221750 + 0.975104i \(0.428823\pi\)
\(398\) −132.516 + 182.392i −0.332955 + 0.458273i
\(399\) 43.5719 120.083i 0.109203 0.300961i
\(400\) −8.40645 25.8724i −0.0210161 0.0646810i
\(401\) 214.238 + 294.874i 0.534260 + 0.735346i 0.987772 0.155904i \(-0.0498290\pi\)
−0.453512 + 0.891250i \(0.649829\pi\)
\(402\) 66.3966 + 98.2267i 0.165166 + 0.244345i
\(403\) 125.824 + 387.245i 0.312217 + 0.960906i
\(404\) −324.423 105.412i −0.803028 0.260920i
\(405\) −315.998 + 329.835i −0.780242 + 0.814408i
\(406\) 167.955 0.413683
\(407\) 265.074 + 399.180i 0.651287 + 0.980787i
\(408\) −170.635 5.78923i −0.418224 0.0141893i
\(409\) −585.125 425.118i −1.43062 1.03941i −0.989900 0.141765i \(-0.954722\pi\)
−0.440722 0.897644i \(-0.645278\pi\)
\(410\) −426.279 138.506i −1.03970 0.337821i
\(411\) 203.450 58.5568i 0.495012 0.142474i
\(412\) 114.715 83.3456i 0.278435 0.202295i
\(413\) −252.232 347.167i −0.610731 0.840599i
\(414\) 66.7303 + 265.396i 0.161184 + 0.641053i
\(415\) −155.200 + 477.657i −0.373976 + 1.15098i
\(416\) −69.7851 + 96.0510i −0.167753 + 0.230892i
\(417\) 774.655 + 26.2821i 1.85769 + 0.0630266i
\(418\) −128.314 101.751i −0.306970 0.243424i
\(419\) 602.254i 1.43736i −0.695341 0.718680i \(-0.744747\pi\)
0.695341 0.718680i \(-0.255253\pi\)
\(420\) −84.1546 + 107.933i −0.200368 + 0.256984i
\(421\) 7.05641 21.7174i 0.0167611 0.0515853i −0.942326 0.334696i \(-0.891366\pi\)
0.959087 + 0.283111i \(0.0913664\pi\)
\(422\) 232.736 75.6204i 0.551506 0.179195i
\(423\) 185.439 + 295.458i 0.438390 + 0.698482i
\(424\) 51.4408 37.3740i 0.121323 0.0881461i
\(425\) −130.146 + 42.2869i −0.306225 + 0.0994985i
\(426\) −141.363 + 389.594i −0.331838 + 0.914540i
\(427\) 118.659 + 86.2106i 0.277889 + 0.201898i
\(428\) 177.040i 0.413644i
\(429\) −448.494 + 527.778i −1.04544 + 1.23025i
\(430\) −60.9041 −0.141638
\(431\) 119.827 164.928i 0.278021 0.382663i −0.647056 0.762442i \(-0.724000\pi\)
0.925077 + 0.379779i \(0.124000\pi\)
\(432\) 43.6337 98.7932i 0.101004 0.228688i
\(433\) 129.442 + 398.382i 0.298943 + 0.920051i 0.981869 + 0.189563i \(0.0607071\pi\)
−0.682926 + 0.730488i \(0.739293\pi\)
\(434\) −65.2320 89.7841i −0.150304 0.206876i
\(435\) −411.516 + 278.165i −0.946014 + 0.639461i
\(436\) −75.4811 232.307i −0.173122 0.532814i
\(437\) 215.257 + 69.9413i 0.492579 + 0.160049i
\(438\) 51.8009 66.4379i 0.118267 0.151685i
\(439\) −699.480 −1.59335 −0.796674 0.604409i \(-0.793409\pi\)
−0.796674 + 0.604409i \(0.793409\pi\)
\(440\) 97.0578 + 146.161i 0.220586 + 0.332185i
\(441\) −293.068 19.9090i −0.664553 0.0451452i
\(442\) 483.164 + 351.039i 1.09313 + 0.794206i
\(443\) 89.7362 + 29.1570i 0.202565 + 0.0658173i 0.408542 0.912739i \(-0.366037\pi\)
−0.205977 + 0.978557i \(0.566037\pi\)
\(444\) 72.2921 + 251.172i 0.162820 + 0.565702i
\(445\) −205.155 + 149.054i −0.461022 + 0.334952i
\(446\) −259.990 357.845i −0.582937 0.802344i
\(447\) −159.654 + 45.9514i −0.357167 + 0.102800i
\(448\) 9.99974 30.7760i 0.0223208 0.0686965i
\(449\) −205.908 + 283.409i −0.458593 + 0.631200i −0.974216 0.225616i \(-0.927561\pi\)
0.515623 + 0.856816i \(0.327561\pi\)
\(450\) 5.86692 86.3631i 0.0130376 0.191918i
\(451\) 617.674 + 26.0395i 1.36957 + 0.0577373i
\(452\) 258.088i 0.570992i
\(453\) 66.6532 + 51.9688i 0.147137 + 0.114721i
\(454\) 65.5082 201.614i 0.144291 0.444083i
\(455\) 455.315 147.941i 1.00069 0.325145i
\(456\) −50.0229 74.0035i −0.109699 0.162288i
\(457\) −549.667 + 399.356i −1.20277 + 0.873865i −0.994555 0.104218i \(-0.966766\pi\)
−0.208217 + 0.978083i \(0.566766\pi\)
\(458\) −111.151 + 36.1151i −0.242687 + 0.0788539i
\(459\) −496.958 219.490i −1.08270 0.478192i
\(460\) −196.181 142.534i −0.426480 0.309856i
\(461\) 98.3560i 0.213354i −0.994294 0.106677i \(-0.965979\pi\)
0.994294 0.106677i \(-0.0340210\pi\)
\(462\) 71.8062 174.585i 0.155425 0.377890i
\(463\) −476.548 −1.02926 −0.514631 0.857412i \(-0.672071\pi\)
−0.514631 + 0.857412i \(0.672071\pi\)
\(464\) 69.0305 95.0123i 0.148773 0.204768i
\(465\) 308.528 + 111.948i 0.663501 + 0.240749i
\(466\) 79.2353 + 243.861i 0.170033 + 0.523307i
\(467\) 282.702 + 389.106i 0.605358 + 0.833204i 0.996186 0.0872598i \(-0.0278110\pi\)
−0.390827 + 0.920464i \(0.627811\pi\)
\(468\) −319.980 + 200.829i −0.683717 + 0.429123i
\(469\) 34.9308 + 107.506i 0.0744793 + 0.229224i
\(470\) −293.977 95.5190i −0.625484 0.203232i
\(471\) 541.686 + 422.347i 1.15008 + 0.896702i
\(472\) −300.061 −0.635723
\(473\) 80.9159 22.5708i 0.171069 0.0477184i
\(474\) 4.90060 144.443i 0.0103388 0.304733i
\(475\) −57.9203 42.0816i −0.121937 0.0885928i
\(476\) −154.812 50.3015i −0.325236 0.105676i
\(477\) 196.217 49.3361i 0.411356 0.103430i
\(478\) −177.864 + 129.225i −0.372100 + 0.270346i
\(479\) 523.348 + 720.327i 1.09258 + 1.50381i 0.844863 + 0.534983i \(0.179682\pi\)
0.247722 + 0.968831i \(0.420318\pi\)
\(480\) 26.4700 + 91.9675i 0.0551459 + 0.191599i
\(481\) 282.523 869.515i 0.587365 1.80772i
\(482\) −6.82129 + 9.38870i −0.0141521 + 0.0194786i
\(483\) −8.84684 + 260.757i −0.0183164 + 0.539870i
\(484\) −183.115 158.217i −0.378338 0.326895i
\(485\) 1031.91i 2.12764i
\(486\) 246.017 239.945i 0.506207 0.493715i
\(487\) −37.9160 + 116.693i −0.0778562 + 0.239617i −0.982408 0.186747i \(-0.940206\pi\)
0.904552 + 0.426364i \(0.140206\pi\)
\(488\) 97.5387 31.6923i 0.199874 0.0649431i
\(489\) −189.748 + 128.261i −0.388033 + 0.262292i
\(490\) 210.580 152.996i 0.429756 0.312236i
\(491\) −43.4997 + 14.1339i −0.0885940 + 0.0287859i −0.352979 0.935631i \(-0.614831\pi\)
0.264385 + 0.964417i \(0.414831\pi\)
\(492\) 316.990 + 115.019i 0.644290 + 0.233779i
\(493\) −477.939 347.243i −0.969450 0.704347i
\(494\) 312.454i 0.632499i
\(495\) 113.210 + 546.685i 0.228707 + 1.10441i
\(496\) −77.6016 −0.156455
\(497\) −232.257 + 319.674i −0.467318 + 0.643208i
\(498\) 128.882 355.196i 0.258799 0.713245i
\(499\) −267.175 822.281i −0.535421 1.64786i −0.742737 0.669583i \(-0.766473\pi\)
0.207315 0.978274i \(-0.433527\pi\)
\(500\) −120.647 166.057i −0.241294 0.332113i
\(501\) 103.321 + 152.852i 0.206229 + 0.305094i
\(502\) 64.9965 + 200.039i 0.129475 + 0.398484i
\(503\) 33.5539 + 10.9023i 0.0667075 + 0.0216746i 0.342181 0.939634i \(-0.388835\pi\)
−0.275473 + 0.961309i \(0.588835\pi\)
\(504\) 66.0302 79.0095i 0.131012 0.156765i
\(505\) 961.825 1.90460
\(506\) 313.464 + 116.663i 0.619493 + 0.230560i
\(507\) 814.008 + 27.6172i 1.60554 + 0.0544719i
\(508\) 7.65272 + 5.56003i 0.0150644 + 0.0109449i
\(509\) −239.674 77.8749i −0.470873 0.152996i 0.0639621 0.997952i \(-0.479626\pi\)
−0.534835 + 0.844956i \(0.679626\pi\)
\(510\) 462.623 133.152i 0.907103 0.261082i
\(511\) 64.9808 47.2113i 0.127164 0.0923901i
\(512\) −13.3001 18.3060i −0.0259767 0.0357538i
\(513\) −59.9215 277.840i −0.116806 0.541598i
\(514\) −82.3881 + 253.564i −0.160288 + 0.493316i
\(515\) −235.003 + 323.454i −0.456316 + 0.628065i
\(516\) 45.7945 + 1.55369i 0.0887490 + 0.00301103i
\(517\) 425.970 + 17.9578i 0.823927 + 0.0347346i
\(518\) 249.191i 0.481065i
\(519\) 190.874 244.807i 0.367772 0.471690i
\(520\) 103.447 318.376i 0.198936 0.612262i
\(521\) 190.709 61.9652i 0.366045 0.118935i −0.120219 0.992747i \(-0.538360\pi\)
0.486263 + 0.873812i \(0.338360\pi\)
\(522\) 316.519 198.658i 0.606359 0.380570i
\(523\) −206.580 + 150.089i −0.394991 + 0.286978i −0.767498 0.641052i \(-0.778498\pi\)
0.372506 + 0.928030i \(0.378498\pi\)
\(524\) −156.869 + 50.9698i −0.299368 + 0.0972705i
\(525\) 28.1497 77.5801i 0.0536185 0.147772i
\(526\) −258.406 187.743i −0.491266 0.356926i
\(527\) 390.358i 0.740717i
\(528\) −69.2502 112.376i −0.131156 0.212834i
\(529\) 66.7281 0.126140
\(530\) −105.380 + 145.043i −0.198831 + 0.273667i
\(531\) −885.972 355.913i −1.66850 0.670269i
\(532\) −26.3167 80.9945i −0.0494675 0.152245i
\(533\) −693.330 954.288i −1.30081 1.79041i
\(534\) 158.061 106.842i 0.295994 0.200078i
\(535\) −154.256 474.752i −0.288330 0.887388i
\(536\) 75.1729 + 24.4252i 0.140248 + 0.0455693i
\(537\) 350.227 449.188i 0.652192 0.836477i
\(538\) −141.170 −0.262398
\(539\) −223.073 + 281.307i −0.413864 + 0.521905i
\(540\) −30.9293 + 302.944i −0.0572766 + 0.561007i
\(541\) −570.240 414.304i −1.05405 0.765811i −0.0810702 0.996708i \(-0.525834\pi\)
−0.972978 + 0.230898i \(0.925834\pi\)
\(542\) −228.875 74.3659i −0.422278 0.137206i
\(543\) −117.844 409.437i −0.217024 0.754028i
\(544\) −92.0842 + 66.9031i −0.169272 + 0.122984i
\(545\) 404.823 + 557.191i 0.742794 + 1.02237i
\(546\) −346.130 + 99.6230i −0.633938 + 0.182460i
\(547\) 44.1358 135.836i 0.0806871 0.248329i −0.902573 0.430537i \(-0.858324\pi\)
0.983260 + 0.182208i \(0.0583243\pi\)
\(548\) 82.9596 114.184i 0.151386 0.208365i
\(549\) 325.588 + 22.1182i 0.593057 + 0.0402882i
\(550\) −82.8973 65.7366i −0.150722 0.119521i
\(551\) 309.076i 0.560936i
\(552\) 143.874 + 112.177i 0.260642 + 0.203220i
\(553\) 42.5804 131.049i 0.0769989 0.236978i
\(554\) −111.072 + 36.0893i −0.200490 + 0.0651432i
\(555\) −412.708 610.557i −0.743618 1.10010i
\(556\) 418.047 303.729i 0.751882 0.546275i
\(557\) 596.721 193.886i 1.07131 0.348090i 0.280313 0.959909i \(-0.409562\pi\)
0.790998 + 0.611818i \(0.209562\pi\)
\(558\) −229.130 92.0459i −0.410626 0.164957i
\(559\) −129.670 94.2105i −0.231967 0.168534i
\(560\) 91.2424i 0.162933i
\(561\) −565.284 + 348.348i −1.00764 + 0.620941i
\(562\) 6.39604 0.0113809
\(563\) −96.5581 + 132.901i −0.171506 + 0.236058i −0.886114 0.463467i \(-0.846605\pi\)
0.714608 + 0.699525i \(0.246605\pi\)
\(564\) 218.608 + 79.3213i 0.387603 + 0.140641i
\(565\) 224.875 + 692.093i 0.398008 + 1.22494i
\(566\) 338.964 + 466.544i 0.598876 + 0.824283i
\(567\) 288.679 154.966i 0.509134 0.273309i
\(568\) 85.3809 + 262.776i 0.150319 + 0.462633i
\(569\) −670.068 217.718i −1.17762 0.382633i −0.346141 0.938183i \(-0.612508\pi\)
−0.831484 + 0.555549i \(0.812508\pi\)
\(570\) 198.622 + 154.863i 0.348460 + 0.271690i
\(571\) −686.225 −1.20179 −0.600897 0.799326i \(-0.705190\pi\)
−0.600897 + 0.799326i \(0.705190\pi\)
\(572\) −19.4482 + 461.324i −0.0340004 + 0.806511i
\(573\) −30.9314 + 911.692i −0.0539815 + 1.59109i
\(574\) 260.101 + 188.974i 0.453137 + 0.329223i
\(575\) 139.067 + 45.1858i 0.241856 + 0.0785839i
\(576\) −17.5570 69.8266i −0.0304808 0.121227i
\(577\) −259.540 + 188.567i −0.449810 + 0.326806i −0.789521 0.613724i \(-0.789671\pi\)
0.339711 + 0.940530i \(0.389671\pi\)
\(578\) 96.3093 + 132.558i 0.166625 + 0.229340i
\(579\) −78.0056 271.023i −0.134725 0.468088i
\(580\) −102.328 + 314.933i −0.176428 + 0.542988i
\(581\) 211.751 291.450i 0.364459 0.501635i
\(582\) −26.3244 + 775.902i −0.0452310 + 1.33317i
\(583\) 86.2534 231.755i 0.147947 0.397521i
\(584\) 56.1638i 0.0961708i
\(585\) 683.078 817.349i 1.16765 1.39718i
\(586\) −55.6717 + 171.340i −0.0950029 + 0.292389i
\(587\) −468.265 + 152.149i −0.797726 + 0.259197i −0.679391 0.733777i \(-0.737756\pi\)
−0.118336 + 0.992974i \(0.537756\pi\)
\(588\) −162.241 + 109.667i −0.275920 + 0.186509i
\(589\) −165.223 + 120.042i −0.280515 + 0.203806i
\(590\) 804.648 261.446i 1.36381 0.443129i
\(591\) −570.685 207.071i −0.965626 0.350375i
\(592\) 140.968 + 102.419i 0.238121 + 0.173005i
\(593\) 490.333i 0.826869i 0.910534 + 0.413434i \(0.135671\pi\)
−0.910534 + 0.413434i \(0.864329\pi\)
\(594\) −71.1775 413.947i −0.119827 0.696880i
\(595\) 458.975 0.771387
\(596\) −65.1012 + 89.6041i −0.109230 + 0.150342i
\(597\) −163.125 + 449.571i −0.273242 + 0.753050i
\(598\) −197.204 606.931i −0.329772 1.01493i
\(599\) −132.418 182.258i −0.221065 0.304270i 0.684051 0.729434i \(-0.260216\pi\)
−0.905116 + 0.425164i \(0.860216\pi\)
\(600\) −32.3174 47.8101i −0.0538623 0.0796836i
\(601\) 39.5997 + 121.875i 0.0658897 + 0.202788i 0.978581 0.205862i \(-0.0659998\pi\)
−0.912691 + 0.408650i \(0.866000\pi\)
\(602\) 41.5479 + 13.4997i 0.0690165 + 0.0224248i
\(603\) 192.987 + 161.284i 0.320045 + 0.267469i
\(604\) 56.3457 0.0932877
\(605\) 628.901 + 264.728i 1.03951 + 0.437567i
\(606\) −723.206 24.5366i −1.19341 0.0404894i
\(607\) 435.915 + 316.711i 0.718146 + 0.521764i 0.885791 0.464083i \(-0.153616\pi\)
−0.167645 + 0.985847i \(0.553616\pi\)
\(608\) −56.6349 18.4018i −0.0931495 0.0302661i
\(609\) 342.387 98.5457i 0.562212 0.161816i
\(610\) −233.948 + 169.973i −0.383521 + 0.278644i
\(611\) −478.146 658.111i −0.782562 1.07710i
\(612\) −351.248 + 88.3165i −0.573934 + 0.144308i
\(613\) 205.844 633.523i 0.335798 1.03348i −0.630529 0.776165i \(-0.717162\pi\)
0.966328 0.257315i \(-0.0828378\pi\)
\(614\) −127.329 + 175.253i −0.207376 + 0.285428i
\(615\) −950.264 32.2401i −1.54514 0.0524229i
\(616\) −33.8140 121.223i −0.0548928 0.196790i
\(617\) 819.028i 1.32744i −0.747983 0.663718i \(-0.768978\pi\)
0.747983 0.663718i \(-0.231022\pi\)
\(618\) 184.953 237.213i 0.299276 0.383840i
\(619\) −325.530 + 1001.88i −0.525896 + 1.61854i 0.236642 + 0.971597i \(0.423953\pi\)
−0.762538 + 0.646944i \(0.776047\pi\)
\(620\) 208.098 67.6150i 0.335641 0.109056i
\(621\) 291.752 + 501.874i 0.469810 + 0.808170i
\(622\) 36.8469 26.7708i 0.0592394 0.0430399i
\(623\) 172.992 56.2086i 0.277676 0.0902225i
\(624\) −85.9046 + 236.751i −0.137668 + 0.379409i
\(625\) 605.768 + 440.117i 0.969230 + 0.704186i
\(626\) 346.962i 0.554253i
\(627\) −321.276 132.140i −0.512403 0.210749i
\(628\) 457.918 0.729169
\(629\) 515.197 709.107i 0.819073 1.12736i
\(630\) −108.226 + 269.406i −0.171787 + 0.427628i
\(631\) 143.011 + 440.144i 0.226643 + 0.697534i 0.998121 + 0.0612783i \(0.0195177\pi\)
−0.771478 + 0.636256i \(0.780482\pi\)
\(632\) −56.6337 77.9495i −0.0896102 0.123338i
\(633\) 430.077 290.712i 0.679426 0.459260i
\(634\) −15.0979 46.4666i −0.0238138 0.0732912i
\(635\) −25.3662 8.24196i −0.0399467 0.0129795i
\(636\) 82.9367 106.371i 0.130404 0.167251i
\(637\) 685.006 1.07536
\(638\) 19.2379 456.335i 0.0301535 0.715259i
\(639\) −59.5879 + 877.155i −0.0932518 + 1.37270i
\(640\) 51.6158 + 37.5011i 0.0806497 + 0.0585954i
\(641\) 49.5760 + 16.1082i 0.0773416 + 0.0251298i 0.347432 0.937705i \(-0.387054\pi\)
−0.270091 + 0.962835i \(0.587054\pi\)
\(642\) 103.876 + 360.907i 0.161800 + 0.562160i
\(643\) 65.2909 47.4366i 0.101541 0.0737739i −0.535856 0.844309i \(-0.680011\pi\)
0.637397 + 0.770535i \(0.280011\pi\)
\(644\) 102.238 + 140.719i 0.158755 + 0.218508i
\(645\) −124.157 + 35.7348i −0.192491 + 0.0554027i
\(646\) −92.5662 + 284.890i −0.143291 + 0.441006i
\(647\) −679.703 + 935.531i −1.05055 + 1.44595i −0.162211 + 0.986756i \(0.551862\pi\)
−0.888335 + 0.459196i \(0.848138\pi\)
\(648\) 30.9843 226.998i 0.0478153 0.350305i
\(649\) −972.147 + 645.550i −1.49791 + 0.994684i
\(650\) 201.862i 0.310557i
\(651\) −185.659 144.756i −0.285191 0.222360i
\(652\) −47.1830 + 145.214i −0.0723666 + 0.222721i
\(653\) −623.268 + 202.512i −0.954469 + 0.310126i −0.744530 0.667589i \(-0.767326\pi\)
−0.209939 + 0.977715i \(0.567326\pi\)
\(654\) −290.176 429.285i −0.443695 0.656399i
\(655\) 376.251 273.363i 0.574429 0.417347i
\(656\) 213.805 69.4696i 0.325923 0.105899i
\(657\) 66.6178 165.831i 0.101397 0.252407i
\(658\) 179.375 + 130.323i 0.272606 + 0.198060i
\(659\) 550.890i 0.835949i 0.908459 + 0.417974i \(0.137260\pi\)
−0.908459 + 0.417974i \(0.862740\pi\)
\(660\) 283.617 + 241.011i 0.429722 + 0.365169i
\(661\) 38.4015 0.0580960 0.0290480 0.999578i \(-0.490752\pi\)
0.0290480 + 0.999578i \(0.490752\pi\)
\(662\) 48.6901 67.0162i 0.0735500 0.101233i
\(663\) 1190.93 + 432.125i 1.79627 + 0.651772i
\(664\) −77.8425 239.575i −0.117233 0.360805i
\(665\) 141.143 + 194.266i 0.212244 + 0.292129i
\(666\) 294.744 + 469.613i 0.442559 + 0.705125i
\(667\) 195.071 + 600.367i 0.292461 + 0.900101i
\(668\) 116.978 + 38.0083i 0.175116 + 0.0568987i
\(669\) −739.967 576.944i −1.10608 0.862398i
\(670\) −222.867 −0.332637
\(671\) 247.826 312.522i 0.369339 0.465755i
\(672\) 2.32763 68.6061i 0.00346374 0.102092i
\(673\) 138.533 + 100.650i 0.205844 + 0.149554i 0.685931 0.727666i \(-0.259395\pi\)
−0.480087 + 0.877221i \(0.659395\pi\)
\(674\) 428.363 + 139.184i 0.635553 + 0.206504i
\(675\) −38.7124 179.499i −0.0573517 0.265924i
\(676\) 439.284 319.158i 0.649828 0.472127i
\(677\) −437.228 601.793i −0.645832 0.888911i 0.353078 0.935594i \(-0.385135\pi\)
−0.998910 + 0.0466827i \(0.985135\pi\)
\(678\) −151.430 526.129i −0.223348 0.776002i
\(679\) −228.728 + 703.952i −0.336860 + 1.03675i
\(680\) 188.641 259.642i 0.277413 0.381827i
\(681\) 15.2483 449.438i 0.0223910 0.659968i
\(682\) −251.416 + 166.952i −0.368645 + 0.244797i
\(683\) 373.222i 0.546444i 0.961951 + 0.273222i \(0.0880894\pi\)
−0.961951 + 0.273222i \(0.911911\pi\)
\(684\) −145.395 121.510i −0.212566 0.177647i
\(685\) −122.976 + 378.482i −0.179527 + 0.552528i
\(686\) −444.151 + 144.313i −0.647451 + 0.210369i
\(687\) −205.398 + 138.839i −0.298978 + 0.202095i
\(688\) 24.7132 17.9552i 0.0359204 0.0260977i
\(689\) −448.726 + 145.800i −0.651271 + 0.211611i
\(690\) −483.557 175.457i −0.700807 0.254286i
\(691\) −105.233 76.4562i −0.152291 0.110646i 0.509031 0.860748i \(-0.330004\pi\)
−0.661321 + 0.750103i \(0.730004\pi\)
\(692\) 206.950i 0.299060i
\(693\) 43.9457 398.034i 0.0634137 0.574364i
\(694\) 71.7382 0.103369
\(695\) −856.399 + 1178.73i −1.23223 + 1.69602i
\(696\) 84.9756 234.191i 0.122091 0.336482i
\(697\) −349.452 1075.50i −0.501366 1.54305i
\(698\) −407.972 561.526i −0.584488 0.804478i
\(699\) 304.609 + 450.636i 0.435778 + 0.644686i
\(700\) −17.0020 52.3267i −0.0242885 0.0747524i
\(701\) 653.822 + 212.440i 0.932699 + 0.303052i 0.735666 0.677345i \(-0.236869\pi\)
0.197033 + 0.980397i \(0.436869\pi\)
\(702\) −534.464 + 597.148i −0.761345 + 0.850638i
\(703\) 458.569 0.652303
\(704\) −82.4733 30.6945i −0.117150 0.0436002i
\(705\) −655.336 22.2339i −0.929554 0.0315374i
\(706\) 411.194 + 298.750i 0.582427 + 0.423158i
\(707\) −656.143 213.194i −0.928066 0.301547i
\(708\) −611.693 + 176.057i −0.863974 + 0.248668i
\(709\) 83.1869 60.4388i 0.117330 0.0852451i −0.527573 0.849510i \(-0.676898\pi\)
0.644903 + 0.764265i \(0.276898\pi\)
\(710\) −457.918 630.270i −0.644954 0.887704i
\(711\) −74.7602 297.332i −0.105148 0.418189i
\(712\) 39.3035 120.964i 0.0552016 0.169893i
\(713\) 245.176 337.456i 0.343865 0.473290i
\(714\) −345.108 11.7087i −0.483345 0.0163987i
\(715\) −349.804 1254.04i −0.489236 1.75390i
\(716\) 379.725i 0.530342i
\(717\) −286.765 + 367.794i −0.399951 + 0.512962i
\(718\) 10.7725 33.1544i 0.0150035 0.0461761i
\(719\) 884.332 287.337i 1.22995 0.399634i 0.379252 0.925293i \(-0.376181\pi\)
0.850695 + 0.525659i \(0.176181\pi\)
\(720\) 107.922 + 171.951i 0.149891 + 0.238820i
\(721\) 232.011 168.566i 0.321790 0.233794i
\(722\) 336.496 109.334i 0.466061 0.151432i
\(723\) −8.39692 + 23.1418i −0.0116140 + 0.0320080i
\(724\) −229.793 166.954i −0.317393 0.230600i
\(725\) 199.679i 0.275419i
\(726\) −466.124 215.095i −0.642045 0.296274i
\(727\) 574.556 0.790311 0.395156 0.918614i \(-0.370691\pi\)
0.395156 + 0.918614i \(0.370691\pi\)
\(728\) −141.140 + 194.262i −0.193873 + 0.266844i
\(729\) 360.735 633.491i 0.494836 0.868986i
\(730\) 48.9360 + 150.610i 0.0670356 + 0.206314i
\(731\) −90.3198 124.315i −0.123557 0.170061i
\(732\) 180.244 121.836i 0.246235 0.166443i
\(733\) −20.6685 63.6111i −0.0281971 0.0867819i 0.935968 0.352086i \(-0.114528\pi\)
−0.964165 + 0.265304i \(0.914528\pi\)
\(734\) 485.945 + 157.893i 0.662051 + 0.215113i
\(735\) 339.513 435.447i 0.461923 0.592445i
\(736\) 121.625 0.165252
\(737\) 296.096 82.5933i 0.401758 0.112067i
\(738\) 713.691 + 48.4833i 0.967061 + 0.0656955i
\(739\) 820.326 + 596.002i 1.11005 + 0.806498i 0.982671 0.185356i \(-0.0593440\pi\)
0.127378 + 0.991854i \(0.459344\pi\)
\(740\) −467.260 151.822i −0.631432 0.205165i
\(741\) 183.329 + 636.958i 0.247407 + 0.859593i
\(742\) 104.039 75.5885i 0.140214 0.101871i
\(743\) −18.5066 25.4722i −0.0249079 0.0342828i 0.796381 0.604795i \(-0.206745\pi\)
−0.821289 + 0.570512i \(0.806745\pi\)
\(744\) −158.196 + 45.5318i −0.212629 + 0.0611986i
\(745\) 96.5034 297.007i 0.129535 0.398667i
\(746\) −63.7358 + 87.7248i −0.0854368 + 0.117594i
\(747\) 54.3268 799.710i 0.0727266 1.07056i
\(748\) −154.402 + 414.864i −0.206420 + 0.554631i
\(749\) 358.061i 0.478052i
\(750\) −343.379 267.729i −0.457838 0.356971i
\(751\) 418.114 1286.82i 0.556743 1.71348i −0.134553 0.990906i \(-0.542960\pi\)
0.691296 0.722572i \(-0.257040\pi\)
\(752\) 147.448 47.9087i 0.196074 0.0637084i
\(753\) 249.870 + 369.656i 0.331832 + 0.490911i
\(754\) −705.024 + 512.230i −0.935045 + 0.679350i
\(755\) −151.098 + 49.0946i −0.200129 + 0.0650259i
\(756\) 88.2487 199.808i 0.116731 0.264297i
\(757\) −229.027 166.398i −0.302545 0.219812i 0.426146 0.904654i \(-0.359871\pi\)
−0.728691 + 0.684843i \(0.759871\pi\)
\(758\) 263.822i 0.348051i
\(759\) 707.466 + 53.9046i 0.932103 + 0.0710205i
\(760\) 167.907 0.220930
\(761\) −535.331 + 736.819i −0.703457 + 0.968225i 0.296456 + 0.955046i \(0.404195\pi\)
−0.999913 + 0.0131789i \(0.995805\pi\)
\(762\) 18.8628 + 6.84432i 0.0247544 + 0.00898205i
\(763\) −152.660 469.839i −0.200078 0.615778i
\(764\) 357.458 + 491.999i 0.467877 + 0.643978i
\(765\) 864.960 542.876i 1.13067 0.709642i
\(766\) −147.346 453.484i −0.192357 0.592015i
\(767\) 2117.58 + 688.044i 2.76086 + 0.897059i
\(768\) −37.8538 29.5142i −0.0492888 0.0384300i
\(769\) 186.619 0.242678 0.121339 0.992611i \(-0.461281\pi\)
0.121339 + 0.992611i \(0.461281\pi\)
\(770\) 196.298 + 295.610i 0.254933 + 0.383909i
\(771\) −19.1774 + 565.247i −0.0248734 + 0.733135i
\(772\) −152.109 110.514i −0.197032 0.143152i
\(773\) 219.371 + 71.2781i 0.283792 + 0.0922097i 0.447454 0.894307i \(-0.352331\pi\)
−0.163662 + 0.986516i \(0.552331\pi\)
\(774\) 94.2665 23.7021i 0.121791 0.0306228i
\(775\) −106.743 + 77.5532i −0.137733 + 0.100069i
\(776\) 304.218 + 418.720i 0.392033 + 0.539587i
\(777\) 146.210 + 507.992i 0.188173 + 0.653787i
\(778\) 323.981 997.112i 0.416428 1.28163i
\(779\) 347.755 478.644i 0.446413 0.614434i
\(780\) 24.0792 709.726i 0.0308708 0.909905i
\(781\) 841.954 + 667.660i 1.07805 + 0.854878i
\(782\) 611.810i 0.782365i
\(783\) 528.685 590.690i 0.675204 0.754393i
\(784\) −40.3430 + 124.163i −0.0514579 + 0.158371i
\(785\) −1227.96 + 398.989i −1.56428 + 0.508266i
\(786\) −289.881 + 195.946i −0.368805 + 0.249295i
\(787\) −1194.18 + 867.620i −1.51738 + 1.10244i −0.554610 + 0.832111i \(0.687132\pi\)
−0.962768 + 0.270329i \(0.912868\pi\)
\(788\) −384.919 + 125.068i −0.488476 + 0.158715i
\(789\) −636.933 231.109i −0.807266 0.292914i
\(790\) 219.788 + 159.685i 0.278212 + 0.202133i
\(791\) 521.981i 0.659900i
\(792\) −207.106 188.454i −0.261498 0.237947i
\(793\) −761.018 −0.959669
\(794\) 146.358 201.445i 0.184330 0.253709i
\(795\) −129.722 + 357.511i −0.163172 + 0.449699i
\(796\) 98.5250 + 303.229i 0.123775 + 0.380941i
\(797\) 616.341 + 848.320i 0.773326 + 1.06439i 0.995987 + 0.0894961i \(0.0285257\pi\)
−0.222661 + 0.974896i \(0.571474\pi\)
\(798\) −101.171 149.671i −0.126780 0.187558i
\(799\) −240.995 741.705i −0.301620 0.928292i
\(800\) −36.5891 11.8885i −0.0457364 0.0148607i
\(801\) 259.529 310.543i 0.324006 0.387695i
\(802\) 515.458 0.642716
\(803\) −120.830 181.961i −0.150474 0.226601i
\(804\) 167.576 + 5.68543i 0.208428 + 0.00707143i
\(805\) −396.774 288.273i −0.492887 0.358103i
\(806\) 547.647 + 177.941i 0.679463 + 0.220771i
\(807\) −287.784 + 82.8297i −0.356609 + 0.102639i
\(808\) −390.282 + 283.556i −0.483022 + 0.350936i
\(809\) −828.391 1140.18i −1.02397 1.40937i −0.909383 0.415959i \(-0.863446\pi\)
−0.114586 0.993413i \(-0.536554\pi\)
\(810\) 114.697 + 635.718i 0.141602 + 0.784836i
\(811\) −278.285 + 856.472i −0.343138 + 1.05607i 0.619436 + 0.785047i \(0.287361\pi\)
−0.962573 + 0.271022i \(0.912639\pi\)
\(812\) 139.613 192.161i 0.171938 0.236652i
\(813\) −510.209 17.3101i −0.627563 0.0212916i
\(814\) 677.055 + 28.5429i 0.831763 + 0.0350649i
\(815\) 430.520i 0.528246i
\(816\) −148.465 + 190.415i −0.181942 + 0.233352i
\(817\) 24.8426 76.4576i 0.0304071 0.0935834i
\(818\) −972.774 + 316.074i −1.18921 + 0.386398i
\(819\) −647.156 + 406.175i −0.790178 + 0.495941i
\(820\) −512.815 + 372.582i −0.625384 + 0.454368i
\(821\) −136.546 + 44.3665i −0.166317 + 0.0540396i −0.390992 0.920394i \(-0.627868\pi\)
0.224675 + 0.974434i \(0.427868\pi\)
\(822\) 102.122 281.447i 0.124236 0.342393i
\(823\) 133.936 + 97.3105i 0.162742 + 0.118239i 0.666175 0.745795i \(-0.267930\pi\)
−0.503434 + 0.864034i \(0.667930\pi\)
\(824\) 200.530i 0.243361i
\(825\) −207.561 85.3692i −0.251590 0.103478i
\(826\) −606.871 −0.734710
\(827\) −409.414 + 563.509i −0.495059 + 0.681390i −0.981311 0.192429i \(-0.938364\pi\)
0.486252 + 0.873818i \(0.338364\pi\)
\(828\) 359.116 + 144.264i 0.433715 + 0.174232i
\(829\) −83.6927 257.580i −0.100956 0.310711i 0.887804 0.460222i \(-0.152230\pi\)
−0.988760 + 0.149511i \(0.952230\pi\)
\(830\) 417.487 + 574.622i 0.502997 + 0.692316i
\(831\) −205.251 + 138.740i −0.246993 + 0.166956i
\(832\) 51.8850 + 159.685i 0.0623617 + 0.191930i
\(833\) 624.575 + 202.937i 0.749789 + 0.243621i
\(834\) 674.005 864.454i 0.808160 1.03652i
\(835\) −346.806 −0.415337
\(836\) −223.077 + 62.2254i −0.266838 + 0.0744323i
\(837\) −521.102 53.2024i −0.622583 0.0635632i
\(838\) −689.053 500.626i −0.822258 0.597406i
\(839\) −828.196 269.097i −0.987123 0.320736i −0.229415 0.973329i \(-0.573681\pi\)
−0.757709 + 0.652593i \(0.773681\pi\)
\(840\) 53.5354 + 186.003i 0.0637326 + 0.221432i
\(841\) 17.0164 12.3632i 0.0202336 0.0147005i
\(842\) −18.9817 26.1261i −0.0225436 0.0310286i
\(843\) 13.0387 3.75280i 0.0154671 0.00445172i
\(844\) 106.943 329.138i 0.126710 0.389974i
\(845\) −899.904 + 1238.61i −1.06497 + 1.46581i
\(846\) 492.187 + 33.4358i 0.581781 + 0.0395222i
\(847\) −370.349 319.993i −0.437248 0.377796i
\(848\) 89.9219i 0.106040i
\(849\) 964.739 + 752.196i 1.13632 + 0.885979i
\(850\) −59.8026 + 184.054i −0.0703561 + 0.216534i
\(851\) −890.752 + 289.423i −1.04671 + 0.340097i
\(852\) 328.235 + 485.588i 0.385252 + 0.569939i
\(853\) −732.575 + 532.247i −0.858821 + 0.623970i −0.927564 0.373664i \(-0.878101\pi\)
0.0687427 + 0.997634i \(0.478101\pi\)
\(854\) 197.271 64.0973i 0.230997 0.0750553i
\(855\) 495.768 + 199.160i 0.579845 + 0.232935i
\(856\) 202.555 + 147.165i 0.236630 + 0.171922i
\(857\) 1064.31i 1.24190i −0.783849 0.620952i \(-0.786746\pi\)
0.783849 0.620952i \(-0.213254\pi\)
\(858\) 231.030 + 951.849i 0.269266 + 1.10938i
\(859\) 453.288 0.527693 0.263847 0.964565i \(-0.415009\pi\)
0.263847 + 0.964565i \(0.415009\pi\)
\(860\) −50.6268 + 69.6818i −0.0588684 + 0.0810254i
\(861\) 641.110 + 232.625i 0.744611 + 0.270180i
\(862\) −89.0910 274.194i −0.103354 0.318090i
\(863\) 410.437 + 564.919i 0.475594 + 0.654599i 0.977651 0.210236i \(-0.0674232\pi\)
−0.502057 + 0.864835i \(0.667423\pi\)
\(864\) −76.7609 132.045i −0.0888436 0.152829i
\(865\) 180.317 + 554.959i 0.208459 + 0.641571i
\(866\) 563.397 + 183.059i 0.650574 + 0.211384i
\(867\) 274.110 + 213.720i 0.316159 + 0.246506i
\(868\) −156.948 −0.180816
\(869\) −351.184 130.702i −0.404124 0.150405i
\(870\) −23.8188 + 702.051i −0.0273780 + 0.806955i
\(871\) −474.500 344.745i −0.544777 0.395803i
\(872\) −328.532 106.746i −0.376757 0.122416i
\(873\) 401.587 + 1597.17i 0.460008 + 1.82952i
\(874\) 258.955 188.142i 0.296287 0.215265i
\(875\) −244.008 335.848i −0.278866 0.383826i
\(876\) −32.9534 114.493i −0.0376180 0.130700i
\(877\) −388.143 + 1194.58i −0.442580 + 1.36212i 0.442535 + 0.896751i \(0.354079\pi\)
−0.885116 + 0.465371i \(0.845921\pi\)
\(878\) −581.445 + 800.291i −0.662238 + 0.911493i
\(879\) −12.9587 + 381.952i −0.0147425 + 0.434530i
\(880\) 247.906 + 10.4511i 0.281711 + 0.0118762i
\(881\) 346.744i 0.393581i 0.980446 + 0.196790i \(0.0630518\pi\)
−0.980446 + 0.196790i \(0.936948\pi\)
\(882\) −266.392 + 318.756i −0.302032 + 0.361401i
\(883\) 238.130 732.889i 0.269683 0.829999i −0.720894 0.693045i \(-0.756269\pi\)
0.990577 0.136954i \(-0.0437313\pi\)
\(884\) 803.263 260.996i 0.908669 0.295244i
\(885\) 1486.93 1005.09i 1.68014 1.13570i
\(886\) 107.953 78.4323i 0.121843 0.0885240i
\(887\) 778.193 252.850i 0.877331 0.285062i 0.164482 0.986380i \(-0.447405\pi\)
0.712849 + 0.701318i \(0.247405\pi\)
\(888\) 347.464 + 126.076i 0.391289 + 0.141978i
\(889\) 15.4775 + 11.2451i 0.0174101 + 0.0126492i
\(890\) 358.624i 0.402948i
\(891\) −387.978 802.094i −0.435441 0.900217i
\(892\) −625.537 −0.701274
\(893\) 239.825 330.090i 0.268561 0.369642i
\(894\) −80.1387 + 220.861i −0.0896406 + 0.247048i
\(895\) 330.858 + 1018.28i 0.369674 + 1.13774i
\(896\) −26.8992 37.0236i −0.0300215 0.0413210i
\(897\) −758.122 1121.56i −0.845175 1.25035i
\(898\) 153.092 + 471.169i 0.170481 + 0.524687i
\(899\) −541.725 176.017i −0.602586 0.195792i
\(900\) −93.9331 78.5021i −0.104370 0.0872246i
\(901\) −452.333 −0.502034
\(902\) 543.237 685.050i 0.602258 0.759479i
\(903\) 92.6189 + 3.14233i 0.102568 + 0.00347987i
\(904\) −295.285 214.537i −0.326642 0.237320i
\(905\) 761.684 + 247.486i 0.841640 + 0.273465i
\(906\) 114.864 33.0602i 0.126782 0.0364903i
\(907\) 976.272 709.303i 1.07637 0.782032i 0.0993274 0.995055i \(-0.468331\pi\)
0.977047 + 0.213023i \(0.0683309\pi\)
\(908\) −176.217 242.541i −0.194071 0.267116i
\(909\) −1488.70 + 374.313i −1.63773 + 0.411786i
\(910\) 209.220 643.913i 0.229912 0.707596i
\(911\) 847.792 1166.89i 0.930616 1.28088i −0.0290022 0.999579i \(-0.509233\pi\)
0.959619 0.281304i \(-0.0907670\pi\)
\(912\) −126.251 4.28337i −0.138433 0.00469668i
\(913\) −767.617 608.711i −0.840763 0.666715i
\(914\) 960.853i 1.05126i
\(915\) −377.187 + 483.766i −0.412227 + 0.528706i
\(916\) −51.0744 + 157.191i −0.0557581 + 0.171606i
\(917\) −317.266 + 103.086i −0.345982 + 0.112416i
\(918\) −664.222 + 386.129i −0.723553 + 0.420620i
\(919\) 851.674 618.778i 0.926740 0.673316i −0.0184523 0.999830i \(-0.505874\pi\)
0.945193 + 0.326514i \(0.105874\pi\)
\(920\) −326.152 + 105.973i −0.354513 + 0.115188i
\(921\) −156.740 + 431.972i −0.170185 + 0.469025i
\(922\) −112.531 81.7588i −0.122051 0.0886755i
\(923\) 2050.23i 2.22127i
\(924\) −140.058 227.280i −0.151578 0.245974i
\(925\) 296.259 0.320281
\(926\) −396.132 + 545.230i −0.427789 + 0.588801i
\(927\) 237.855 592.093i 0.256586 0.638719i
\(928\) −51.3239 157.959i −0.0553059 0.170214i
\(929\) −59.0269 81.2435i −0.0635381 0.0874527i 0.776065 0.630652i \(-0.217213\pi\)
−0.839604 + 0.543200i \(0.817213\pi\)
\(930\) 384.548 259.936i 0.413492 0.279501i
\(931\) 106.172 + 326.764i 0.114041 + 0.350982i
\(932\) 344.872 + 112.056i 0.370034 + 0.120231i
\(933\) 59.4073 76.1935i 0.0636734 0.0816651i
\(934\) 680.183 0.728247
\(935\) 52.5719 1247.04i 0.0562266 1.33373i
\(936\) −36.2108 + 533.036i −0.0386868 + 0.569483i
\(937\) −550.771 400.159i −0.587803 0.427064i 0.253726 0.967276i \(-0.418344\pi\)
−0.841529 + 0.540213i \(0.818344\pi\)
\(938\) 152.036 + 49.3996i 0.162086 + 0.0526648i
\(939\) −203.576 707.304i −0.216801 0.753253i
\(940\) −353.655 + 256.946i −0.376229 + 0.273346i
\(941\) 905.041 + 1245.68i 0.961787 + 1.32379i 0.946088 + 0.323909i \(0.104997\pi\)
0.0156984 + 0.999877i \(0.495003\pi\)
\(942\) 933.495 268.678i 0.990972 0.285221i
\(943\) −373.408 + 1149.23i −0.395979 + 1.21870i
\(944\) −249.427 + 343.307i −0.264223 + 0.363672i
\(945\) −62.5543 + 612.701i −0.0661950 + 0.648361i
\(946\) 41.4379 111.340i 0.0438032 0.117695i
\(947\) 635.059i 0.670601i −0.942111 0.335301i \(-0.891162\pi\)
0.942111 0.335301i \(-0.108838\pi\)
\(948\) −161.187 125.676i −0.170029 0.132570i
\(949\) −128.784 + 396.357i −0.135705 + 0.417658i
\(950\) −96.2929 + 31.2875i −0.101361 + 0.0329342i
\(951\) −58.0418 85.8666i −0.0610324 0.0902909i
\(952\) −186.239 + 135.311i −0.195630 + 0.142133i
\(953\) 1354.43 440.079i 1.42122 0.461783i 0.505232 0.862983i \(-0.331407\pi\)
0.915990 + 0.401200i \(0.131407\pi\)
\(954\) 106.659 265.507i 0.111802 0.278309i
\(955\) −1387.25 1007.90i −1.45262 1.05539i
\(956\) 310.917i 0.325227i
\(957\) −228.532 941.556i −0.238800 0.983862i
\(958\) 1259.18 1.31438
\(959\) 167.785 230.936i 0.174958 0.240810i
\(960\) 127.225 + 46.1634i 0.132526 + 0.0480868i
\(961\) −180.659 556.011i −0.187991 0.578576i
\(962\) −759.984 1046.03i −0.790004 1.08735i
\(963\) 423.515 + 674.783i 0.439787 + 0.700709i
\(964\) 5.07160 + 15.6088i 0.00526100 + 0.0161917i
\(965\) 504.189 + 163.821i 0.522476 + 0.169763i
\(966\) 290.984 + 226.877i 0.301226 + 0.234863i
\(967\) −969.749 −1.00284 −0.501421 0.865203i \(-0.667189\pi\)
−0.501421 + 0.865203i \(0.667189\pi\)
\(968\) −333.236 + 77.9878i −0.344252 + 0.0805659i
\(969\) −21.5466 + 635.077i −0.0222359 + 0.655395i
\(970\) −1180.63 857.777i −1.21714 0.884306i
\(971\) 1196.16 + 388.656i 1.23188 + 0.400264i 0.851397 0.524522i \(-0.175756\pi\)
0.380488 + 0.924786i \(0.375756\pi\)
\(972\) −70.0247 480.929i −0.0720418 0.494783i
\(973\) 845.495 614.288i 0.868957 0.631334i
\(974\) 101.994 + 140.382i 0.104716 + 0.144130i
\(975\) 118.440 + 411.508i 0.121477 + 0.422060i
\(976\) 44.8196 137.941i 0.0459217 0.141333i
\(977\) −795.131 + 1094.40i −0.813850 + 1.12017i 0.176868 + 0.984235i \(0.443403\pi\)
−0.990718 + 0.135933i \(0.956597\pi\)
\(978\) −10.9828 + 323.713i −0.0112298 + 0.330995i
\(979\) −132.904 476.460i −0.135755 0.486680i
\(980\) 368.108i 0.375621i
\(981\) −843.420 704.867i −0.859756 0.718518i
\(982\) −19.9884 + 61.5178i −0.0203547 + 0.0626454i
\(983\) −451.820 + 146.805i −0.459634 + 0.149344i −0.529676 0.848200i \(-0.677686\pi\)
0.0700425 + 0.997544i \(0.477686\pi\)
\(984\) 395.095 267.066i 0.401520 0.271408i
\(985\) 923.232 670.767i 0.937291 0.680982i
\(986\) −794.577 + 258.174i −0.805859 + 0.261839i
\(987\) 442.132 + 160.426i 0.447956 + 0.162539i
\(988\) 357.486 + 259.729i 0.361828 + 0.262884i
\(989\) 164.195i 0.166021i
\(990\) 719.581 + 324.908i 0.726850 + 0.328190i
\(991\) −947.231 −0.955833 −0.477917 0.878405i \(-0.658608\pi\)
−0.477917 + 0.878405i \(0.658608\pi\)
\(992\) −64.5066 + 88.7857i −0.0650268 + 0.0895017i
\(993\) 59.9369 165.185i 0.0603594 0.166350i
\(994\) 172.682 + 531.461i 0.173724 + 0.534669i
\(995\) −528.413 727.297i −0.531068 0.730952i
\(996\) −299.254 442.715i −0.300456 0.444493i
\(997\) −326.005 1003.34i −0.326986 1.00636i −0.970536 0.240955i \(-0.922539\pi\)
0.643550 0.765404i \(-0.277461\pi\)
\(998\) −1162.88 377.843i −1.16521 0.378600i
\(999\) 876.394 + 784.398i 0.877271 + 0.785183i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 66.3.g.a.59.6 yes 32
3.2 odd 2 inner 66.3.g.a.59.3 yes 32
11.3 even 5 inner 66.3.g.a.47.3 32
11.5 even 5 726.3.c.h.485.16 16
11.6 odd 10 726.3.c.i.485.8 16
33.5 odd 10 726.3.c.h.485.8 16
33.14 odd 10 inner 66.3.g.a.47.6 yes 32
33.17 even 10 726.3.c.i.485.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.g.a.47.3 32 11.3 even 5 inner
66.3.g.a.47.6 yes 32 33.14 odd 10 inner
66.3.g.a.59.3 yes 32 3.2 odd 2 inner
66.3.g.a.59.6 yes 32 1.1 even 1 trivial
726.3.c.h.485.8 16 33.5 odd 10
726.3.c.h.485.16 16 11.5 even 5
726.3.c.i.485.8 16 11.6 odd 10
726.3.c.i.485.16 16 33.17 even 10