Properties

Label 66.3.g.a.53.7
Level $66$
Weight $3$
Character 66.53
Analytic conductor $1.798$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [66,3,Mod(5,66)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("66.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(66, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 66.g (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79836974478\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 53.7
Character \(\chi\) \(=\) 66.53
Dual form 66.3.g.a.5.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34500 + 0.437016i) q^{2} +(1.95466 - 2.27581i) q^{3} +(1.61803 + 1.17557i) q^{4} +(-1.55423 + 0.504998i) q^{5} +(3.62358 - 2.20673i) q^{6} +(0.373199 + 0.271145i) q^{7} +(1.66251 + 2.28825i) q^{8} +(-1.35858 - 8.89687i) q^{9} -2.31112 q^{10} +(-7.63276 + 7.92092i) q^{11} +(5.83808 - 1.38449i) q^{12} +(-1.47781 + 4.54823i) q^{13} +(0.383457 + 0.527784i) q^{14} +(-1.88871 + 4.52422i) q^{15} +(1.23607 + 3.80423i) q^{16} +(7.34866 - 2.38773i) q^{17} +(2.06079 - 12.5600i) q^{18} +(-19.8950 + 14.4546i) q^{19} +(-3.10845 - 1.01000i) q^{20} +(1.34655 - 0.319331i) q^{21} +(-13.7276 + 7.31798i) q^{22} -22.4669i q^{23} +(8.45725 + 0.689206i) q^{24} +(-18.0648 + 13.1249i) q^{25} +(-3.97530 + 5.47153i) q^{26} +(-22.9031 - 14.2985i) q^{27} +(0.285099 + 0.877444i) q^{28} +(21.3868 - 29.4364i) q^{29} +(-4.51746 + 5.25966i) q^{30} +(5.71622 - 17.5927i) q^{31} +5.65685i q^{32} +(3.10701 + 32.8534i) q^{33} +10.9274 q^{34} +(-0.716964 - 0.232956i) q^{35} +(8.26067 - 15.9925i) q^{36} +(19.2530 + 13.9881i) q^{37} +(-33.0756 + 10.7469i) q^{38} +(7.46227 + 12.2535i) q^{39} +(-3.73947 - 2.71689i) q^{40} +(38.6755 + 53.2323i) q^{41} +(1.95066 + 0.158965i) q^{42} +64.1379 q^{43} +(-21.6617 + 3.84348i) q^{44} +(6.60444 + 13.1417i) q^{45} +(9.81842 - 30.2180i) q^{46} +(-40.1636 - 55.2805i) q^{47} +(11.0738 + 4.62293i) q^{48} +(-15.0761 - 46.3994i) q^{49} +(-30.0329 + 9.75829i) q^{50} +(8.93017 - 21.3913i) q^{51} +(-7.73792 + 5.62193i) q^{52} +(93.7067 + 30.4471i) q^{53} +(-24.5559 - 29.2405i) q^{54} +(7.86297 - 16.1654i) q^{55} +1.30475i q^{56} +(-5.99226 + 73.5310i) q^{57} +(41.6294 - 30.2455i) q^{58} +(15.0359 - 20.6951i) q^{59} +(-8.37453 + 5.10002i) q^{60} +(-3.97349 - 12.2291i) q^{61} +(15.3766 - 21.1641i) q^{62} +(1.90532 - 3.68868i) q^{63} +(-2.47214 + 7.60845i) q^{64} -7.81527i q^{65} +(-10.1785 + 45.5456i) q^{66} -45.1058 q^{67} +(14.6973 + 4.77545i) q^{68} +(-51.1304 - 43.9153i) q^{69} +(-0.862509 - 0.626649i) q^{70} +(-107.664 + 34.9821i) q^{71} +(18.0996 - 17.8999i) q^{72} +(9.15291 + 6.64998i) q^{73} +(19.7822 + 27.2279i) q^{74} +(-5.44102 + 66.7667i) q^{75} -49.1832 q^{76} +(-4.99626 + 0.886499i) q^{77} +(4.68177 + 19.7420i) q^{78} +(15.8300 - 48.7197i) q^{79} +(-3.84226 - 5.28841i) q^{80} +(-77.3085 + 24.1742i) q^{81} +(28.7551 + 88.4991i) q^{82} +(-97.0734 + 31.5411i) q^{83} +(2.55417 + 1.06628i) q^{84} +(-10.2157 + 7.42213i) q^{85} +(86.2653 + 28.0293i) q^{86} +(-25.1876 - 106.211i) q^{87} +(-30.8145 - 4.29702i) q^{88} +8.59365i q^{89} +(3.13984 + 20.5617i) q^{90} +(-1.78475 + 1.29670i) q^{91} +(26.4115 - 36.3523i) q^{92} +(-28.8643 - 47.3969i) q^{93} +(-29.8615 - 91.9042i) q^{94} +(23.6218 - 32.5126i) q^{95} +(12.8739 + 11.0572i) q^{96} +(-23.3643 + 71.9079i) q^{97} -68.9955i q^{98} +(80.8411 + 57.1464i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 16 q^{4} + 12 q^{6} - 8 q^{7} + 26 q^{9} + 16 q^{10} - 24 q^{12} + 8 q^{13} - 82 q^{15} - 32 q^{16} - 8 q^{18} - 4 q^{19} - 100 q^{21} - 24 q^{24} - 88 q^{25} - 106 q^{27} - 24 q^{28} - 36 q^{30}+ \cdots + 470 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34500 + 0.437016i 0.672499 + 0.218508i
\(3\) 1.95466 2.27581i 0.651555 0.758602i
\(4\) 1.61803 + 1.17557i 0.404508 + 0.293893i
\(5\) −1.55423 + 0.504998i −0.310845 + 0.101000i −0.460285 0.887771i \(-0.652253\pi\)
0.149440 + 0.988771i \(0.452253\pi\)
\(6\) 3.62358 2.20673i 0.603930 0.367789i
\(7\) 0.373199 + 0.271145i 0.0533142 + 0.0387350i 0.614123 0.789210i \(-0.289510\pi\)
−0.560809 + 0.827945i \(0.689510\pi\)
\(8\) 1.66251 + 2.28825i 0.207813 + 0.286031i
\(9\) −1.35858 8.89687i −0.150953 0.988541i
\(10\) −2.31112 −0.231112
\(11\) −7.63276 + 7.92092i −0.693887 + 0.720084i
\(12\) 5.83808 1.38449i 0.486507 0.115374i
\(13\) −1.47781 + 4.54823i −0.113678 + 0.349864i −0.991669 0.128813i \(-0.958883\pi\)
0.877991 + 0.478677i \(0.158883\pi\)
\(14\) 0.383457 + 0.527784i 0.0273898 + 0.0376988i
\(15\) −1.88871 + 4.52422i −0.125914 + 0.301614i
\(16\) 1.23607 + 3.80423i 0.0772542 + 0.237764i
\(17\) 7.34866 2.38773i 0.432274 0.140454i −0.0847941 0.996398i \(-0.527023\pi\)
0.517068 + 0.855944i \(0.327023\pi\)
\(18\) 2.06079 12.5600i 0.114488 0.697777i
\(19\) −19.8950 + 14.4546i −1.04711 + 0.760767i −0.971660 0.236383i \(-0.924038\pi\)
−0.0754456 + 0.997150i \(0.524038\pi\)
\(20\) −3.10845 1.01000i −0.155423 0.0504998i
\(21\) 1.34655 0.319331i 0.0641216 0.0152063i
\(22\) −13.7276 + 7.31798i −0.623982 + 0.332636i
\(23\) 22.4669i 0.976824i −0.872613 0.488412i \(-0.837576\pi\)
0.872613 0.488412i \(-0.162424\pi\)
\(24\) 8.45725 + 0.689206i 0.352385 + 0.0287169i
\(25\) −18.0648 + 13.1249i −0.722593 + 0.524995i
\(26\) −3.97530 + 5.47153i −0.152896 + 0.210444i
\(27\) −22.9031 14.2985i −0.848263 0.529575i
\(28\) 0.285099 + 0.877444i 0.0101821 + 0.0313373i
\(29\) 21.3868 29.4364i 0.737477 1.01505i −0.261283 0.965262i \(-0.584146\pi\)
0.998760 0.0497875i \(-0.0158544\pi\)
\(30\) −4.51746 + 5.25966i −0.150582 + 0.175322i
\(31\) 5.71622 17.5927i 0.184394 0.567507i −0.815543 0.578696i \(-0.803562\pi\)
0.999937 + 0.0111891i \(0.00356167\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 3.10701 + 32.8534i 0.0941519 + 0.995558i
\(34\) 10.9274 0.321394
\(35\) −0.716964 0.232956i −0.0204847 0.00665588i
\(36\) 8.26067 15.9925i 0.229463 0.444237i
\(37\) 19.2530 + 13.9881i 0.520352 + 0.378058i 0.816736 0.577011i \(-0.195781\pi\)
−0.296385 + 0.955069i \(0.595781\pi\)
\(38\) −33.0756 + 10.7469i −0.870411 + 0.282814i
\(39\) 7.46227 + 12.2535i 0.191340 + 0.314192i
\(40\) −3.73947 2.71689i −0.0934868 0.0679221i
\(41\) 38.6755 + 53.2323i 0.943305 + 1.29835i 0.954438 + 0.298410i \(0.0964564\pi\)
−0.0111323 + 0.999938i \(0.503544\pi\)
\(42\) 1.95066 + 0.158965i 0.0464444 + 0.00378489i
\(43\) 64.1379 1.49158 0.745790 0.666181i \(-0.232072\pi\)
0.745790 + 0.666181i \(0.232072\pi\)
\(44\) −21.6617 + 3.84348i −0.492311 + 0.0873519i
\(45\) 6.60444 + 13.1417i 0.146765 + 0.292037i
\(46\) 9.81842 30.2180i 0.213444 0.656913i
\(47\) −40.1636 55.2805i −0.854545 1.17618i −0.982843 0.184445i \(-0.940951\pi\)
0.128298 0.991736i \(-0.459049\pi\)
\(48\) 11.0738 + 4.62293i 0.230704 + 0.0963111i
\(49\) −15.0761 46.3994i −0.307675 0.946926i
\(50\) −30.0329 + 9.75829i −0.600658 + 0.195166i
\(51\) 8.93017 21.3913i 0.175101 0.419438i
\(52\) −7.73792 + 5.62193i −0.148806 + 0.108114i
\(53\) 93.7067 + 30.4471i 1.76805 + 0.574474i 0.997983 0.0634880i \(-0.0202224\pi\)
0.770068 + 0.637962i \(0.220222\pi\)
\(54\) −24.5559 29.2405i −0.454739 0.541491i
\(55\) 7.86297 16.1654i 0.142963 0.293917i
\(56\) 1.30475i 0.0232992i
\(57\) −5.99226 + 73.5310i −0.105127 + 1.29002i
\(58\) 41.6294 30.2455i 0.717749 0.521475i
\(59\) 15.0359 20.6951i 0.254846 0.350765i −0.662355 0.749190i \(-0.730443\pi\)
0.917201 + 0.398425i \(0.130443\pi\)
\(60\) −8.37453 + 5.10002i −0.139576 + 0.0850004i
\(61\) −3.97349 12.2291i −0.0651391 0.200478i 0.913190 0.407535i \(-0.133611\pi\)
−0.978329 + 0.207057i \(0.933611\pi\)
\(62\) 15.3766 21.1641i 0.248010 0.341356i
\(63\) 1.90532 3.68868i 0.0302432 0.0585505i
\(64\) −2.47214 + 7.60845i −0.0386271 + 0.118882i
\(65\) 7.81527i 0.120235i
\(66\) −10.1785 + 45.5456i −0.154220 + 0.690084i
\(67\) −45.1058 −0.673220 −0.336610 0.941644i \(-0.609280\pi\)
−0.336610 + 0.941644i \(0.609280\pi\)
\(68\) 14.6973 + 4.77545i 0.216137 + 0.0702272i
\(69\) −51.1304 43.9153i −0.741020 0.636454i
\(70\) −0.862509 0.626649i −0.0123216 0.00895213i
\(71\) −107.664 + 34.9821i −1.51639 + 0.492706i −0.944748 0.327796i \(-0.893694\pi\)
−0.571644 + 0.820502i \(0.693694\pi\)
\(72\) 18.0996 17.8999i 0.251383 0.248609i
\(73\) 9.15291 + 6.64998i 0.125382 + 0.0910956i 0.648709 0.761037i \(-0.275309\pi\)
−0.523327 + 0.852132i \(0.675309\pi\)
\(74\) 19.7822 + 27.2279i 0.267327 + 0.367944i
\(75\) −5.44102 + 66.7667i −0.0725470 + 0.890223i
\(76\) −49.1832 −0.647147
\(77\) −4.99626 + 0.886499i −0.0648865 + 0.0115130i
\(78\) 4.68177 + 19.7420i 0.0600227 + 0.253103i
\(79\) 15.8300 48.7197i 0.200379 0.616705i −0.799492 0.600677i \(-0.794898\pi\)
0.999872 0.0160279i \(-0.00510206\pi\)
\(80\) −3.84226 5.28841i −0.0480282 0.0661051i
\(81\) −77.3085 + 24.1742i −0.954426 + 0.298447i
\(82\) 28.7551 + 88.4991i 0.350672 + 1.07926i
\(83\) −97.0734 + 31.5411i −1.16956 + 0.380013i −0.828478 0.560021i \(-0.810793\pi\)
−0.341081 + 0.940034i \(0.610793\pi\)
\(84\) 2.55417 + 1.06628i 0.0304067 + 0.0126938i
\(85\) −10.2157 + 7.42213i −0.120184 + 0.0873191i
\(86\) 86.2653 + 28.0293i 1.00309 + 0.325922i
\(87\) −25.1876 106.211i −0.289512 1.22081i
\(88\) −30.8145 4.29702i −0.350165 0.0488298i
\(89\) 8.59365i 0.0965579i 0.998834 + 0.0482789i \(0.0153736\pi\)
−0.998834 + 0.0482789i \(0.984626\pi\)
\(90\) 3.13984 + 20.5617i 0.0348871 + 0.228464i
\(91\) −1.78475 + 1.29670i −0.0196126 + 0.0142494i
\(92\) 26.4115 36.3523i 0.287081 0.395134i
\(93\) −28.8643 47.3969i −0.310369 0.509644i
\(94\) −29.8615 91.9042i −0.317676 0.977705i
\(95\) 23.6218 32.5126i 0.248650 0.342238i
\(96\) 12.8739 + 11.0572i 0.134103 + 0.115180i
\(97\) −23.3643 + 71.9079i −0.240869 + 0.741318i 0.755420 + 0.655241i \(0.227433\pi\)
−0.996288 + 0.0860770i \(0.972567\pi\)
\(98\) 68.9955i 0.704036i
\(99\) 80.8411 + 57.1464i 0.816577 + 0.577236i
\(100\) −44.6587 −0.446587
\(101\) −45.5964 14.8152i −0.451449 0.146685i 0.0744627 0.997224i \(-0.476276\pi\)
−0.525912 + 0.850539i \(0.676276\pi\)
\(102\) 21.3594 24.8687i 0.209406 0.243810i
\(103\) −61.3405 44.5665i −0.595539 0.432684i 0.248754 0.968567i \(-0.419979\pi\)
−0.844293 + 0.535883i \(0.819979\pi\)
\(104\) −12.8643 + 4.17988i −0.123696 + 0.0401911i
\(105\) −1.93158 + 1.17632i −0.0183960 + 0.0112030i
\(106\) 112.729 + 81.9026i 1.06348 + 0.772666i
\(107\) 43.3978 + 59.7319i 0.405587 + 0.558242i 0.962135 0.272573i \(-0.0878746\pi\)
−0.556548 + 0.830815i \(0.687875\pi\)
\(108\) −20.2491 50.0597i −0.187492 0.463516i
\(109\) 137.096 1.25776 0.628880 0.777502i \(-0.283514\pi\)
0.628880 + 0.777502i \(0.283514\pi\)
\(110\) 17.6402 18.3062i 0.160366 0.166420i
\(111\) 69.4674 16.4740i 0.625833 0.148415i
\(112\) −0.570198 + 1.75489i −0.00509105 + 0.0156687i
\(113\) −29.6047 40.7474i −0.261989 0.360597i 0.657676 0.753301i \(-0.271540\pi\)
−0.919665 + 0.392704i \(0.871540\pi\)
\(114\) −40.1938 + 96.2802i −0.352577 + 0.844563i
\(115\) 11.3458 + 34.9187i 0.0986589 + 0.303641i
\(116\) 69.2092 22.4874i 0.596631 0.193857i
\(117\) 42.4728 + 6.96875i 0.363015 + 0.0595619i
\(118\) 29.2673 21.2640i 0.248028 0.180203i
\(119\) 3.38994 + 1.10146i 0.0284869 + 0.00925595i
\(120\) −13.4925 + 3.19971i −0.112438 + 0.0266643i
\(121\) −4.48209 120.917i −0.0370421 0.999314i
\(122\) 18.1846i 0.149054i
\(123\) 196.744 + 16.0333i 1.59954 + 0.130352i
\(124\) 29.9305 21.7458i 0.241375 0.175369i
\(125\) 45.4629 62.5743i 0.363703 0.500594i
\(126\) 4.17466 4.12861i 0.0331323 0.0327667i
\(127\) 71.2349 + 219.239i 0.560905 + 1.72629i 0.679815 + 0.733383i \(0.262060\pi\)
−0.118910 + 0.992905i \(0.537940\pi\)
\(128\) −6.65003 + 9.15298i −0.0519534 + 0.0715077i
\(129\) 125.368 145.965i 0.971846 1.13152i
\(130\) 3.41540 10.5115i 0.0262723 0.0808578i
\(131\) 166.511i 1.27107i 0.772071 + 0.635537i \(0.219221\pi\)
−0.772071 + 0.635537i \(0.780779\pi\)
\(132\) −33.5942 + 56.8104i −0.254502 + 0.430382i
\(133\) −11.3441 −0.0852939
\(134\) −60.6671 19.7119i −0.452740 0.147104i
\(135\) 42.8173 + 10.6571i 0.317165 + 0.0789414i
\(136\) 17.6809 + 12.8459i 0.130007 + 0.0944554i
\(137\) −26.7012 + 8.67575i −0.194899 + 0.0633266i −0.404840 0.914387i \(-0.632673\pi\)
0.209941 + 0.977714i \(0.432673\pi\)
\(138\) −49.5785 81.4108i −0.359265 0.589933i
\(139\) −134.117 97.4417i −0.964870 0.701019i −0.0105936 0.999944i \(-0.503372\pi\)
−0.954277 + 0.298925i \(0.903372\pi\)
\(140\) −0.886216 1.21977i −0.00633011 0.00871266i
\(141\) −204.314 16.6502i −1.44904 0.118086i
\(142\) −160.095 −1.12743
\(143\) −24.7464 46.4212i −0.173052 0.324624i
\(144\) 32.1664 16.1655i 0.223378 0.112260i
\(145\) −18.3746 + 56.5512i −0.126721 + 0.390008i
\(146\) 9.40449 + 12.9442i 0.0644143 + 0.0886587i
\(147\) −135.065 56.3850i −0.918807 0.383571i
\(148\) 14.7080 + 45.2666i 0.0993784 + 0.305855i
\(149\) 67.4845 21.9271i 0.452916 0.147161i −0.0736708 0.997283i \(-0.523471\pi\)
0.526587 + 0.850121i \(0.323471\pi\)
\(150\) −36.4963 + 87.4233i −0.243309 + 0.582822i
\(151\) −51.2445 + 37.2313i −0.339368 + 0.246565i −0.744395 0.667740i \(-0.767262\pi\)
0.405027 + 0.914305i \(0.367262\pi\)
\(152\) −66.1512 21.4938i −0.435205 0.141407i
\(153\) −31.2270 62.1362i −0.204098 0.406119i
\(154\) −7.10737 0.991107i −0.0461518 0.00643576i
\(155\) 30.2297i 0.195031i
\(156\) −2.33062 + 28.5990i −0.0149398 + 0.183327i
\(157\) −182.834 + 132.837i −1.16455 + 0.846093i −0.990346 0.138617i \(-0.955734\pi\)
−0.174201 + 0.984710i \(0.555734\pi\)
\(158\) 42.5825 58.6098i 0.269510 0.370948i
\(159\) 252.457 153.744i 1.58778 0.966945i
\(160\) −2.85670 8.79203i −0.0178544 0.0549502i
\(161\) 6.09181 8.38465i 0.0378373 0.0520786i
\(162\) −114.544 1.27081i −0.707063 0.00784451i
\(163\) −19.0464 + 58.6189i −0.116849 + 0.359625i −0.992328 0.123631i \(-0.960546\pi\)
0.875479 + 0.483256i \(0.160546\pi\)
\(164\) 131.597i 0.802423i
\(165\) −21.4199 49.4926i −0.129818 0.299955i
\(166\) −144.347 −0.869562
\(167\) −162.492 52.7968i −0.973006 0.316149i −0.220977 0.975279i \(-0.570925\pi\)
−0.752029 + 0.659130i \(0.770925\pi\)
\(168\) 2.96936 + 2.55035i 0.0176748 + 0.0151807i
\(169\) 118.221 + 85.8929i 0.699535 + 0.508242i
\(170\) −16.9837 + 5.51832i −0.0999038 + 0.0324607i
\(171\) 155.629 + 157.366i 0.910113 + 0.920266i
\(172\) 103.777 + 75.3987i 0.603357 + 0.438364i
\(173\) −13.4384 18.4964i −0.0776788 0.106916i 0.768409 0.639958i \(-0.221048\pi\)
−0.846088 + 0.533043i \(0.821048\pi\)
\(174\) 12.5385 153.860i 0.0720606 0.884255i
\(175\) −10.3005 −0.0588602
\(176\) −39.5676 19.2459i −0.224816 0.109352i
\(177\) −17.7080 74.6708i −0.100045 0.421869i
\(178\) −3.75556 + 11.5584i −0.0210987 + 0.0649350i
\(179\) 176.104 + 242.386i 0.983819 + 1.35411i 0.934746 + 0.355316i \(0.115627\pi\)
0.0490727 + 0.998795i \(0.484373\pi\)
\(180\) −4.76273 + 29.0276i −0.0264596 + 0.161265i
\(181\) −24.2046 74.4941i −0.133727 0.411570i 0.861663 0.507481i \(-0.169423\pi\)
−0.995390 + 0.0959116i \(0.969423\pi\)
\(182\) −2.96716 + 0.964089i −0.0163031 + 0.00529719i
\(183\) −35.5979 14.8610i −0.194524 0.0812074i
\(184\) 51.4099 37.3515i 0.279402 0.202997i
\(185\) −36.9875 12.0180i −0.199932 0.0649620i
\(186\) −18.1092 76.3628i −0.0973615 0.410553i
\(187\) −37.1776 + 76.4331i −0.198811 + 0.408733i
\(188\) 136.661i 0.726920i
\(189\) −4.67045 11.5463i −0.0247114 0.0610914i
\(190\) 45.9798 33.4062i 0.241999 0.175822i
\(191\) 153.717 211.573i 0.804799 1.10771i −0.187306 0.982302i \(-0.559975\pi\)
0.992105 0.125410i \(-0.0400245\pi\)
\(192\) 12.4832 + 20.4981i 0.0650165 + 0.106761i
\(193\) −44.5869 137.224i −0.231020 0.711007i −0.997624 0.0688869i \(-0.978055\pi\)
0.766604 0.642120i \(-0.221945\pi\)
\(194\) −62.8498 + 86.5053i −0.323968 + 0.445904i
\(195\) −17.7860 15.2762i −0.0912104 0.0783396i
\(196\) 30.1521 92.7988i 0.153837 0.473463i
\(197\) 298.625i 1.51586i 0.652334 + 0.757932i \(0.273790\pi\)
−0.652334 + 0.757932i \(0.726210\pi\)
\(198\) 83.7572 + 112.191i 0.423016 + 0.566619i
\(199\) 241.473 1.21343 0.606717 0.794918i \(-0.292486\pi\)
0.606717 + 0.794918i \(0.292486\pi\)
\(200\) −60.0658 19.5166i −0.300329 0.0975829i
\(201\) −88.1666 + 102.652i −0.438640 + 0.510706i
\(202\) −54.8525 39.8527i −0.271547 0.197291i
\(203\) 15.9631 5.18673i 0.0786360 0.0255504i
\(204\) 39.5963 24.1139i 0.194100 0.118205i
\(205\) −86.9927 63.2039i −0.424355 0.308312i
\(206\) −63.0265 86.7486i −0.305954 0.421109i
\(207\) −199.885 + 30.5232i −0.965630 + 0.147455i
\(208\) −19.1292 −0.0919672
\(209\) 37.3602 267.915i 0.178757 1.28189i
\(210\) −3.11205 + 0.738014i −0.0148193 + 0.00351435i
\(211\) 64.9129 199.781i 0.307644 0.946831i −0.671033 0.741427i \(-0.734149\pi\)
0.978677 0.205404i \(-0.0658508\pi\)
\(212\) 115.828 + 159.423i 0.546358 + 0.751997i
\(213\) −130.834 + 313.400i −0.614245 + 1.47136i
\(214\) 32.2661 + 99.3048i 0.150776 + 0.464041i
\(215\) −99.6848 + 32.3896i −0.463650 + 0.150649i
\(216\) −5.35807 76.1793i −0.0248059 0.352682i
\(217\) 6.90347 5.01567i 0.0318132 0.0231137i
\(218\) 184.394 + 59.9131i 0.845842 + 0.274831i
\(219\) 33.0249 7.83177i 0.150799 0.0357615i
\(220\) 31.7261 16.9127i 0.144210 0.0768761i
\(221\) 36.9520i 0.167204i
\(222\) 100.633 + 8.20088i 0.453301 + 0.0369409i
\(223\) 146.335 106.318i 0.656210 0.476764i −0.209171 0.977879i \(-0.567077\pi\)
0.865381 + 0.501115i \(0.167077\pi\)
\(224\) −1.53383 + 2.11113i −0.00684745 + 0.00942471i
\(225\) 141.313 + 142.889i 0.628057 + 0.635063i
\(226\) −22.0110 67.7429i −0.0973939 0.299747i
\(227\) −109.360 + 150.521i −0.481761 + 0.663087i −0.978842 0.204617i \(-0.934405\pi\)
0.497081 + 0.867704i \(0.334405\pi\)
\(228\) −96.1365 + 111.931i −0.421651 + 0.490927i
\(229\) 126.660 389.821i 0.553102 1.70227i −0.147801 0.989017i \(-0.547220\pi\)
0.700903 0.713256i \(-0.252780\pi\)
\(230\) 51.9238i 0.225756i
\(231\) −7.74851 + 13.1033i −0.0335433 + 0.0567243i
\(232\) 102.914 0.443593
\(233\) −244.627 79.4843i −1.04990 0.341134i −0.267273 0.963621i \(-0.586122\pi\)
−0.782630 + 0.622487i \(0.786122\pi\)
\(234\) 54.0803 + 27.9342i 0.231112 + 0.119377i
\(235\) 90.3399 + 65.6358i 0.384425 + 0.279301i
\(236\) 48.6572 15.8097i 0.206175 0.0669902i
\(237\) −79.9342 131.256i −0.337275 0.553825i
\(238\) 4.07810 + 2.96291i 0.0171349 + 0.0124492i
\(239\) −168.983 232.586i −0.707043 0.973161i −0.999856 0.0169915i \(-0.994591\pi\)
0.292813 0.956170i \(-0.405409\pi\)
\(240\) −19.5457 1.59284i −0.0814405 0.00663683i
\(241\) 224.506 0.931559 0.465780 0.884901i \(-0.345774\pi\)
0.465780 + 0.884901i \(0.345774\pi\)
\(242\) 46.8142 164.592i 0.193447 0.680131i
\(243\) −96.0963 + 223.192i −0.395458 + 0.918484i
\(244\) 7.94697 24.4583i 0.0325695 0.100239i
\(245\) 46.8632 + 64.5017i 0.191278 + 0.263272i
\(246\) 257.613 + 107.545i 1.04721 + 0.437175i
\(247\) −36.3417 111.848i −0.147132 0.452827i
\(248\) 49.7597 16.1679i 0.200644 0.0651932i
\(249\) −117.965 + 282.572i −0.473753 + 1.13483i
\(250\) 88.4934 64.2942i 0.353974 0.257177i
\(251\) 101.440 + 32.9598i 0.404143 + 0.131314i 0.504033 0.863684i \(-0.331849\pi\)
−0.0998897 + 0.994999i \(0.531849\pi\)
\(252\) 7.41918 3.72857i 0.0294412 0.0147959i
\(253\) 177.959 + 171.485i 0.703395 + 0.677805i
\(254\) 326.006i 1.28349i
\(255\) −3.07690 + 37.7567i −0.0120663 + 0.148065i
\(256\) −12.9443 + 9.40456i −0.0505636 + 0.0367366i
\(257\) 147.024 202.361i 0.572078 0.787397i −0.420721 0.907190i \(-0.638223\pi\)
0.992799 + 0.119793i \(0.0382230\pi\)
\(258\) 232.409 141.535i 0.900810 0.548586i
\(259\) 3.39240 + 10.4407i 0.0130981 + 0.0403117i
\(260\) 9.18740 12.6454i 0.0353362 0.0486360i
\(261\) −290.948 150.284i −1.11474 0.575801i
\(262\) −72.7678 + 223.956i −0.277740 + 0.854795i
\(263\) 32.3578i 0.123033i −0.998106 0.0615166i \(-0.980406\pi\)
0.998106 0.0615166i \(-0.0195937\pi\)
\(264\) −70.0112 + 61.7287i −0.265194 + 0.233821i
\(265\) −161.017 −0.607611
\(266\) −15.2578 4.95755i −0.0573600 0.0186374i
\(267\) 19.5575 + 16.7977i 0.0732490 + 0.0629127i
\(268\) −72.9827 53.0250i −0.272323 0.197855i
\(269\) 328.564 106.757i 1.22143 0.396866i 0.373825 0.927499i \(-0.378046\pi\)
0.847601 + 0.530634i \(0.178046\pi\)
\(270\) 52.9318 + 33.0456i 0.196044 + 0.122391i
\(271\) −319.440 232.086i −1.17874 0.856408i −0.186715 0.982414i \(-0.559784\pi\)
−0.992029 + 0.126006i \(0.959784\pi\)
\(272\) 18.1669 + 25.0046i 0.0667901 + 0.0919286i
\(273\) −0.537556 + 6.59635i −0.00196907 + 0.0241624i
\(274\) −39.7045 −0.144907
\(275\) 33.9233 243.269i 0.123358 0.884615i
\(276\) −31.1052 131.164i −0.112700 0.475231i
\(277\) −111.559 + 343.342i −0.402738 + 1.23950i 0.520030 + 0.854148i \(0.325921\pi\)
−0.922769 + 0.385354i \(0.874079\pi\)
\(278\) −137.803 189.670i −0.495696 0.682266i
\(279\) −164.286 26.9553i −0.588839 0.0966142i
\(280\) −0.658898 2.02788i −0.00235321 0.00724243i
\(281\) −22.4482 + 7.29387i −0.0798869 + 0.0259568i −0.348688 0.937239i \(-0.613373\pi\)
0.268801 + 0.963196i \(0.413373\pi\)
\(282\) −267.525 111.683i −0.948672 0.396039i
\(283\) −172.511 + 125.337i −0.609581 + 0.442887i −0.849267 0.527964i \(-0.822956\pi\)
0.239686 + 0.970851i \(0.422956\pi\)
\(284\) −215.328 69.9642i −0.758196 0.246353i
\(285\) −27.8197 117.310i −0.0976130 0.411613i
\(286\) −12.9971 73.2509i −0.0454444 0.256122i
\(287\) 30.3529i 0.105759i
\(288\) 50.3283 7.68529i 0.174751 0.0266850i
\(289\) −185.504 + 134.777i −0.641883 + 0.466356i
\(290\) −49.4275 + 68.0312i −0.170440 + 0.234590i
\(291\) 117.979 + 193.728i 0.405426 + 0.665733i
\(292\) 6.99220 + 21.5198i 0.0239459 + 0.0736979i
\(293\) −96.8220 + 133.264i −0.330450 + 0.454826i −0.941622 0.336672i \(-0.890699\pi\)
0.611171 + 0.791498i \(0.290699\pi\)
\(294\) −157.020 134.863i −0.534083 0.458718i
\(295\) −12.9182 + 39.7580i −0.0437904 + 0.134773i
\(296\) 67.3110i 0.227402i
\(297\) 288.071 72.2767i 0.969937 0.243356i
\(298\) 100.349 0.336741
\(299\) 102.185 + 33.2019i 0.341756 + 0.111043i
\(300\) −87.2928 + 101.635i −0.290976 + 0.338782i
\(301\) 23.9362 + 17.3907i 0.0795224 + 0.0577764i
\(302\) −85.1944 + 27.6813i −0.282101 + 0.0916600i
\(303\) −122.842 + 74.8098i −0.405419 + 0.246897i
\(304\) −79.5800 57.8183i −0.261776 0.190192i
\(305\) 12.3514 + 17.0002i 0.0404963 + 0.0557384i
\(306\) −14.8458 97.2197i −0.0485156 0.317711i
\(307\) −140.552 −0.457823 −0.228912 0.973447i \(-0.573517\pi\)
−0.228912 + 0.973447i \(0.573517\pi\)
\(308\) −9.12626 4.43907i −0.0296307 0.0144126i
\(309\) −221.325 + 52.4865i −0.716261 + 0.169859i
\(310\) −13.2109 + 40.6589i −0.0426157 + 0.131158i
\(311\) −6.42187 8.83895i −0.0206491 0.0284210i 0.798568 0.601905i \(-0.205591\pi\)
−0.819217 + 0.573484i \(0.805591\pi\)
\(312\) −15.6329 + 37.4470i −0.0501054 + 0.120022i
\(313\) −77.7859 239.400i −0.248517 0.764858i −0.995038 0.0994956i \(-0.968277\pi\)
0.746521 0.665362i \(-0.231723\pi\)
\(314\) −303.963 + 98.7635i −0.968034 + 0.314533i
\(315\) −1.09852 + 6.69522i −0.00348737 + 0.0212547i
\(316\) 82.8868 60.2208i 0.262300 0.190572i
\(317\) 296.083 + 96.2033i 0.934017 + 0.303480i 0.736204 0.676759i \(-0.236616\pi\)
0.197813 + 0.980240i \(0.436616\pi\)
\(318\) 406.742 96.4578i 1.27906 0.303327i
\(319\) 69.9234 + 394.085i 0.219196 + 1.23537i
\(320\) 13.0737i 0.0408552i
\(321\) 220.766 + 17.9909i 0.687746 + 0.0560465i
\(322\) 11.8577 8.61511i 0.0368251 0.0267550i
\(323\) −111.688 + 153.726i −0.345784 + 0.475931i
\(324\) −153.506 51.7669i −0.473785 0.159774i
\(325\) −32.9986 101.559i −0.101534 0.312490i
\(326\) −51.2348 + 70.5187i −0.157162 + 0.216315i
\(327\) 267.976 312.004i 0.819500 0.954140i
\(328\) −57.5102 + 176.998i −0.175336 + 0.539629i
\(329\) 31.5208i 0.0958080i
\(330\) −7.18068 75.9282i −0.0217596 0.230085i
\(331\) 144.935 0.437869 0.218934 0.975740i \(-0.429742\pi\)
0.218934 + 0.975740i \(0.429742\pi\)
\(332\) −194.147 63.0821i −0.584779 0.190006i
\(333\) 98.2938 190.296i 0.295177 0.571458i
\(334\) −195.478 142.023i −0.585264 0.425219i
\(335\) 70.1045 22.7783i 0.209267 0.0679950i
\(336\) 2.87924 + 4.72788i 0.00856917 + 0.0140711i
\(337\) 396.762 + 288.264i 1.17734 + 0.855384i 0.991869 0.127266i \(-0.0406203\pi\)
0.185467 + 0.982651i \(0.440620\pi\)
\(338\) 121.471 + 167.190i 0.359381 + 0.494646i
\(339\) −150.601 12.2729i −0.444249 0.0362032i
\(340\) −25.2546 −0.0742781
\(341\) 95.7201 + 179.559i 0.280704 + 0.526565i
\(342\) 140.550 + 279.669i 0.410964 + 0.817745i
\(343\) 13.9395 42.9014i 0.0406400 0.125077i
\(344\) 106.630 + 146.763i 0.309970 + 0.426638i
\(345\) 101.645 + 42.4335i 0.294624 + 0.122996i
\(346\) −9.99142 30.7504i −0.0288769 0.0888741i
\(347\) −0.782030 + 0.254097i −0.00225369 + 0.000732268i −0.310144 0.950690i \(-0.600377\pi\)
0.307890 + 0.951422i \(0.400377\pi\)
\(348\) 84.1037 201.462i 0.241677 0.578914i
\(349\) −106.821 + 77.6098i −0.306077 + 0.222378i −0.730211 0.683222i \(-0.760578\pi\)
0.424135 + 0.905599i \(0.360578\pi\)
\(350\) −13.8542 4.50150i −0.0395834 0.0128614i
\(351\) 98.8795 83.0382i 0.281708 0.236576i
\(352\) −44.8075 43.1774i −0.127294 0.122663i
\(353\) 173.251i 0.490795i −0.969422 0.245398i \(-0.921081\pi\)
0.969422 0.245398i \(-0.0789185\pi\)
\(354\) 8.81516 108.171i 0.0249016 0.305567i
\(355\) 149.668 108.740i 0.421600 0.306310i
\(356\) −10.1024 + 13.9048i −0.0283776 + 0.0390585i
\(357\) 9.13289 5.56186i 0.0255823 0.0155794i
\(358\) 130.932 + 402.968i 0.365733 + 1.12561i
\(359\) 99.2057 136.545i 0.276339 0.380348i −0.648178 0.761489i \(-0.724469\pi\)
0.924517 + 0.381141i \(0.124469\pi\)
\(360\) −19.0914 + 36.9607i −0.0530317 + 0.102669i
\(361\) 75.3216 231.816i 0.208647 0.642150i
\(362\) 110.772i 0.306000i
\(363\) −283.944 226.152i −0.782216 0.623007i
\(364\) −4.41214 −0.0121213
\(365\) −17.5839 5.71336i −0.0481751 0.0156530i
\(366\) −41.3847 35.5448i −0.113073 0.0971170i
\(367\) 16.8883 + 12.2701i 0.0460171 + 0.0334334i 0.610556 0.791973i \(-0.290946\pi\)
−0.564539 + 0.825406i \(0.690946\pi\)
\(368\) 85.4693 27.7707i 0.232254 0.0754638i
\(369\) 421.057 416.411i 1.14108 1.12849i
\(370\) −44.4960 32.3283i −0.120260 0.0873737i
\(371\) 26.7157 + 36.7710i 0.0720099 + 0.0991131i
\(372\) 9.01490 110.622i 0.0242336 0.297370i
\(373\) −239.122 −0.641077 −0.320538 0.947236i \(-0.603864\pi\)
−0.320538 + 0.947236i \(0.603864\pi\)
\(374\) −83.4062 + 86.5552i −0.223011 + 0.231431i
\(375\) −53.5423 225.776i −0.142779 0.602070i
\(376\) 59.7230 183.808i 0.158838 0.488852i
\(377\) 102.278 + 140.774i 0.271295 + 0.373405i
\(378\) −1.23584 17.5708i −0.00326941 0.0464835i
\(379\) 104.871 + 322.759i 0.276704 + 0.851607i 0.988764 + 0.149488i \(0.0477626\pi\)
−0.712060 + 0.702119i \(0.752237\pi\)
\(380\) 76.4417 24.8374i 0.201162 0.0653616i
\(381\) 638.185 + 266.421i 1.67503 + 0.699267i
\(382\) 299.209 217.388i 0.783270 0.569079i
\(383\) −56.2644 18.2814i −0.146904 0.0477321i 0.234642 0.972082i \(-0.424608\pi\)
−0.381546 + 0.924350i \(0.624608\pi\)
\(384\) 7.83183 + 33.0252i 0.0203954 + 0.0860031i
\(385\) 7.31763 3.90092i 0.0190068 0.0101323i
\(386\) 204.051i 0.528631i
\(387\) −87.1365 570.627i −0.225159 1.47449i
\(388\) −122.337 + 88.8830i −0.315302 + 0.229080i
\(389\) −25.3576 + 34.9018i −0.0651867 + 0.0897219i −0.840366 0.542020i \(-0.817660\pi\)
0.775179 + 0.631742i \(0.217660\pi\)
\(390\) −17.2462 28.3193i −0.0442210 0.0726135i
\(391\) −53.6449 165.102i −0.137199 0.422256i
\(392\) 81.1091 111.637i 0.206911 0.284789i
\(393\) 378.946 + 325.472i 0.964239 + 0.828174i
\(394\) −130.504 + 401.650i −0.331228 + 1.01942i
\(395\) 83.7154i 0.211938i
\(396\) 63.6241 + 187.499i 0.160667 + 0.473483i
\(397\) −88.1293 −0.221988 −0.110994 0.993821i \(-0.535403\pi\)
−0.110994 + 0.993821i \(0.535403\pi\)
\(398\) 324.781 + 105.528i 0.816033 + 0.265145i
\(399\) −22.1739 + 25.8169i −0.0555736 + 0.0647041i
\(400\) −72.2593 52.4995i −0.180648 0.131249i
\(401\) −456.939 + 148.468i −1.13950 + 0.370246i −0.817178 0.576385i \(-0.804463\pi\)
−0.322320 + 0.946631i \(0.604463\pi\)
\(402\) −163.444 + 99.5363i −0.406578 + 0.247603i
\(403\) 71.5683 + 51.9974i 0.177589 + 0.129026i
\(404\) −56.3602 77.5732i −0.139505 0.192013i
\(405\) 107.947 76.6129i 0.266536 0.189168i
\(406\) 23.7370 0.0584655
\(407\) −257.753 + 45.7337i −0.633299 + 0.112368i
\(408\) 63.7951 15.1288i 0.156361 0.0370805i
\(409\) −212.996 + 655.536i −0.520774 + 1.60278i 0.251751 + 0.967792i \(0.418994\pi\)
−0.772525 + 0.634985i \(0.781006\pi\)
\(410\) −89.3838 123.026i −0.218009 0.300064i
\(411\) −32.4476 + 77.7249i −0.0789478 + 0.189112i
\(412\) −46.8600 144.220i −0.113738 0.350049i
\(413\) 11.2228 3.64650i 0.0271738 0.00882930i
\(414\) −282.184 46.2996i −0.681605 0.111835i
\(415\) 134.946 98.0438i 0.325170 0.236250i
\(416\) −25.7287 8.35976i −0.0618478 0.0200956i
\(417\) −483.912 + 114.758i −1.16046 + 0.275200i
\(418\) 167.332 344.018i 0.400317 0.823009i
\(419\) 339.406i 0.810038i −0.914308 0.405019i \(-0.867265\pi\)
0.914308 0.405019i \(-0.132735\pi\)
\(420\) −4.50822 0.367388i −0.0107339 0.000874734i
\(421\) 157.022 114.083i 0.372975 0.270982i −0.385469 0.922721i \(-0.625960\pi\)
0.758443 + 0.651739i \(0.225960\pi\)
\(422\) 174.615 240.337i 0.413780 0.569520i
\(423\) −437.258 + 432.433i −1.03371 + 1.02230i
\(424\) 86.1175 + 265.042i 0.203107 + 0.625100i
\(425\) −101.414 + 139.584i −0.238621 + 0.328433i
\(426\) −312.932 + 364.346i −0.734583 + 0.855272i
\(427\) 1.83297 5.64130i 0.00429267 0.0132115i
\(428\) 147.665i 0.345013i
\(429\) −154.017 34.4197i −0.359013 0.0802324i
\(430\) −148.231 −0.344722
\(431\) 161.518 + 52.4804i 0.374752 + 0.121764i 0.490336 0.871533i \(-0.336874\pi\)
−0.115584 + 0.993298i \(0.536874\pi\)
\(432\) 26.0850 104.803i 0.0603820 0.242598i
\(433\) −76.0377 55.2446i −0.175607 0.127586i 0.496510 0.868031i \(-0.334615\pi\)
−0.672117 + 0.740445i \(0.734615\pi\)
\(434\) 11.4771 3.72913i 0.0264449 0.00859246i
\(435\) 92.7833 + 152.356i 0.213295 + 0.350243i
\(436\) 221.826 + 161.166i 0.508775 + 0.369647i
\(437\) 324.750 + 446.980i 0.743135 + 1.02284i
\(438\) 47.8410 + 3.89871i 0.109226 + 0.00890117i
\(439\) −616.308 −1.40389 −0.701946 0.712230i \(-0.747685\pi\)
−0.701946 + 0.712230i \(0.747685\pi\)
\(440\) 50.0627 8.88275i 0.113779 0.0201881i
\(441\) −392.327 + 197.167i −0.889631 + 0.447091i
\(442\) −16.1486 + 49.7004i −0.0365354 + 0.112444i
\(443\) −380.364 523.527i −0.858610 1.18178i −0.981899 0.189405i \(-0.939344\pi\)
0.123289 0.992371i \(-0.460656\pi\)
\(444\) 131.767 + 55.0084i 0.296773 + 0.123893i
\(445\) −4.33978 13.3565i −0.00975231 0.0300145i
\(446\) 243.283 79.0474i 0.545477 0.177236i
\(447\) 82.0078 196.442i 0.183463 0.439467i
\(448\) −2.98560 + 2.16916i −0.00666428 + 0.00484188i
\(449\) −284.053 92.2943i −0.632634 0.205555i −0.0248924 0.999690i \(-0.507924\pi\)
−0.607742 + 0.794135i \(0.707924\pi\)
\(450\) 127.620 + 253.942i 0.283601 + 0.564315i
\(451\) −716.850 99.9631i −1.58947 0.221648i
\(452\) 100.733i 0.222861i
\(453\) −15.4345 + 189.397i −0.0340718 + 0.418095i
\(454\) −212.868 + 154.658i −0.468873 + 0.340656i
\(455\) 2.11907 2.91665i 0.00465730 0.00641023i
\(456\) −178.219 + 108.534i −0.390831 + 0.238013i
\(457\) −91.5567 281.782i −0.200343 0.616592i −0.999873 0.0159653i \(-0.994918\pi\)
0.799530 0.600627i \(-0.205082\pi\)
\(458\) 340.716 468.955i 0.743921 1.02392i
\(459\) −202.448 50.3887i −0.441064 0.109779i
\(460\) −22.6915 + 69.8374i −0.0493294 + 0.151820i
\(461\) 365.986i 0.793896i −0.917841 0.396948i \(-0.870069\pi\)
0.917841 0.396948i \(-0.129931\pi\)
\(462\) −16.1481 + 14.2377i −0.0349526 + 0.0308176i
\(463\) 479.394 1.03541 0.517704 0.855560i \(-0.326787\pi\)
0.517704 + 0.855560i \(0.326787\pi\)
\(464\) 138.418 + 44.9749i 0.298316 + 0.0969286i
\(465\) 68.7970 + 59.0890i 0.147951 + 0.127073i
\(466\) −294.287 213.812i −0.631518 0.458824i
\(467\) −628.642 + 204.258i −1.34613 + 0.437383i −0.891388 0.453241i \(-0.850268\pi\)
−0.454740 + 0.890624i \(0.650268\pi\)
\(468\) 60.5301 + 61.2054i 0.129338 + 0.130781i
\(469\) −16.8334 12.2302i −0.0358922 0.0260772i
\(470\) 92.8230 + 127.760i 0.197496 + 0.271830i
\(471\) −55.0685 + 675.745i −0.116918 + 1.43470i
\(472\) 72.3529 0.153290
\(473\) −489.549 + 508.032i −1.03499 + 1.07406i
\(474\) −50.1500 211.472i −0.105802 0.446144i
\(475\) 169.686 522.239i 0.357233 1.09945i
\(476\) 4.19019 + 5.76731i 0.00880293 + 0.0121162i
\(477\) 143.576 875.061i 0.300998 1.83451i
\(478\) −125.638 386.675i −0.262842 0.808944i
\(479\) 167.532 54.4345i 0.349754 0.113642i −0.128871 0.991661i \(-0.541135\pi\)
0.478625 + 0.878019i \(0.341135\pi\)
\(480\) −25.5928 10.6842i −0.0533184 0.0222587i
\(481\) −92.0736 + 66.8954i −0.191421 + 0.139076i
\(482\) 301.960 + 98.1126i 0.626472 + 0.203553i
\(483\) −7.17440 30.2529i −0.0148538 0.0626355i
\(484\) 134.894 200.917i 0.278707 0.415117i
\(485\) 123.560i 0.254763i
\(486\) −226.788 + 258.196i −0.466641 + 0.531268i
\(487\) 571.858 415.479i 1.17425 0.853139i 0.182734 0.983162i \(-0.441505\pi\)
0.991511 + 0.130023i \(0.0415051\pi\)
\(488\) 21.3773 29.4233i 0.0438059 0.0602937i
\(489\) 96.1759 + 157.926i 0.196679 + 0.322958i
\(490\) 34.8426 + 107.235i 0.0711074 + 0.218846i
\(491\) 360.550 496.255i 0.734318 1.01070i −0.264608 0.964356i \(-0.585242\pi\)
0.998925 0.0463457i \(-0.0147576\pi\)
\(492\) 299.490 + 257.229i 0.608720 + 0.522823i
\(493\) 86.8785 267.384i 0.176224 0.542362i
\(494\) 166.317i 0.336675i
\(495\) −154.504 47.9937i −0.312130 0.0969571i
\(496\) 73.9923 0.149178
\(497\) −49.6653 16.1372i −0.0999302 0.0324693i
\(498\) −282.151 + 328.506i −0.566567 + 0.659652i
\(499\) 389.281 + 282.829i 0.780122 + 0.566792i 0.905016 0.425378i \(-0.139859\pi\)
−0.124893 + 0.992170i \(0.539859\pi\)
\(500\) 147.121 47.8025i 0.294242 0.0956050i
\(501\) −437.772 + 266.600i −0.873797 + 0.532136i
\(502\) 122.032 + 88.6618i 0.243093 + 0.176617i
\(503\) 431.343 + 593.693i 0.857542 + 1.18030i 0.982150 + 0.188099i \(0.0602325\pi\)
−0.124608 + 0.992206i \(0.539767\pi\)
\(504\) 11.6082 1.77261i 0.0230322 0.00351709i
\(505\) 78.3487 0.155146
\(506\) 164.413 + 308.417i 0.324926 + 0.609520i
\(507\) 426.558 101.157i 0.841338 0.199521i
\(508\) −142.470 + 438.477i −0.280453 + 0.863144i
\(509\) −144.149 198.404i −0.283201 0.389793i 0.643590 0.765370i \(-0.277444\pi\)
−0.926791 + 0.375578i \(0.877444\pi\)
\(510\) −20.6387 + 49.4379i −0.0404680 + 0.0969372i
\(511\) 1.61275 + 4.96354i 0.00315607 + 0.00971338i
\(512\) −21.5200 + 6.99226i −0.0420312 + 0.0136568i
\(513\) 662.336 46.5854i 1.29110 0.0908097i
\(514\) 286.182 207.923i 0.556774 0.404520i
\(515\) 117.843 + 38.2895i 0.228821 + 0.0743485i
\(516\) 374.443 88.7981i 0.725664 0.172089i
\(517\) 744.432 + 103.809i 1.43991 + 0.200792i
\(518\) 15.5253i 0.0299716i
\(519\) −68.3618 5.57101i −0.131718 0.0107341i
\(520\) 17.8833 12.9929i 0.0343909 0.0249864i
\(521\) −425.264 + 585.326i −0.816246 + 1.12347i 0.174083 + 0.984731i \(0.444304\pi\)
−0.990329 + 0.138736i \(0.955696\pi\)
\(522\) −325.647 329.280i −0.623846 0.630805i
\(523\) −74.3821 228.924i −0.142222 0.437714i 0.854421 0.519581i \(-0.173912\pi\)
−0.996643 + 0.0818667i \(0.973912\pi\)
\(524\) −195.745 + 269.420i −0.373559 + 0.514160i
\(525\) −20.1341 + 23.4420i −0.0383506 + 0.0446514i
\(526\) 14.1409 43.5211i 0.0268838 0.0827397i
\(527\) 142.932i 0.271218i
\(528\) −121.141 + 52.4288i −0.229434 + 0.0992970i
\(529\) 24.2362 0.0458152
\(530\) −216.567 70.3670i −0.408618 0.132768i
\(531\) −204.549 105.656i −0.385215 0.198976i
\(532\) −18.3551 13.3358i −0.0345021 0.0250673i
\(533\) −299.268 + 97.2380i −0.561478 + 0.182435i
\(534\) 18.9639 + 31.1398i 0.0355129 + 0.0583142i
\(535\) −97.6145 70.9211i −0.182457 0.132563i
\(536\) −74.9887 103.213i −0.139904 0.192562i
\(537\) 895.846 + 73.0052i 1.66824 + 0.135950i
\(538\) 488.572 0.908126
\(539\) 482.598 + 234.739i 0.895358 + 0.435508i
\(540\) 56.7517 + 67.5783i 0.105096 + 0.125145i
\(541\) 186.349 573.524i 0.344453 1.06012i −0.617422 0.786632i \(-0.711823\pi\)
0.961876 0.273487i \(-0.0881769\pi\)
\(542\) −328.220 451.756i −0.605572 0.833498i
\(543\) −216.846 90.5260i −0.399348 0.166714i
\(544\) 13.5070 + 41.5703i 0.0248291 + 0.0764160i
\(545\) −213.078 + 69.2332i −0.390969 + 0.127033i
\(546\) −3.60572 + 8.63715i −0.00660389 + 0.0158190i
\(547\) −41.6750 + 30.2786i −0.0761882 + 0.0553540i −0.625227 0.780443i \(-0.714994\pi\)
0.549039 + 0.835797i \(0.314994\pi\)
\(548\) −53.4024 17.3515i −0.0974496 0.0316633i
\(549\) −103.403 + 51.9658i −0.188347 + 0.0946554i
\(550\) 151.939 312.371i 0.276253 0.567948i
\(551\) 894.775i 1.62391i
\(552\) 15.4844 190.008i 0.0280514 0.344218i
\(553\) 19.1178 13.8899i 0.0345711 0.0251174i
\(554\) −300.092 + 413.041i −0.541682 + 0.745561i
\(555\) −99.6487 + 60.6853i −0.179547 + 0.109343i
\(556\) −102.456 315.328i −0.184274 0.567137i
\(557\) 194.652 267.916i 0.349466 0.480998i −0.597710 0.801712i \(-0.703923\pi\)
0.947176 + 0.320714i \(0.103923\pi\)
\(558\) −209.184 108.051i −0.374882 0.193639i
\(559\) −94.7837 + 291.714i −0.169559 + 0.521850i
\(560\) 3.01544i 0.00538472i
\(561\) 101.277 + 234.010i 0.180530 + 0.417130i
\(562\) −33.3803 −0.0593956
\(563\) 832.953 + 270.643i 1.47949 + 0.480715i 0.933960 0.357376i \(-0.116329\pi\)
0.545529 + 0.838092i \(0.316329\pi\)
\(564\) −311.014 267.126i −0.551443 0.473628i
\(565\) 66.5898 + 48.3803i 0.117858 + 0.0856289i
\(566\) −286.802 + 93.1875i −0.506717 + 0.164642i
\(567\) −35.4062 11.9400i −0.0624448 0.0210583i
\(568\) −259.040 188.203i −0.456056 0.331344i
\(569\) −460.533 633.869i −0.809373 1.11401i −0.991420 0.130716i \(-0.958272\pi\)
0.182047 0.983290i \(-0.441728\pi\)
\(570\) 13.8488 169.939i 0.0242962 0.298139i
\(571\) 619.455 1.08486 0.542430 0.840101i \(-0.317504\pi\)
0.542430 + 0.840101i \(0.317504\pi\)
\(572\) 14.5308 104.202i 0.0254035 0.182172i
\(573\) −181.034 763.383i −0.315941 1.33226i
\(574\) −13.2647 + 40.8246i −0.0231093 + 0.0711230i
\(575\) 294.876 + 405.862i 0.512827 + 0.705846i
\(576\) 71.0500 + 11.6576i 0.123351 + 0.0202388i
\(577\) −120.190 369.907i −0.208302 0.641087i −0.999562 0.0296068i \(-0.990574\pi\)
0.791260 0.611480i \(-0.209426\pi\)
\(578\) −308.402 + 100.206i −0.533568 + 0.173367i
\(579\) −399.448 166.756i −0.689893 0.288007i
\(580\) −96.2106 + 69.9011i −0.165880 + 0.120519i
\(581\) −44.7799 14.5499i −0.0770739 0.0250428i
\(582\) 74.0191 + 312.123i 0.127181 + 0.536293i
\(583\) −956.410 + 509.848i −1.64050 + 0.874525i
\(584\) 31.9998i 0.0547941i
\(585\) −69.5314 + 10.6177i −0.118857 + 0.0181499i
\(586\) −188.464 + 136.927i −0.321611 + 0.233664i
\(587\) −50.4661 + 69.4606i −0.0859729 + 0.118332i −0.849837 0.527045i \(-0.823300\pi\)
0.763864 + 0.645377i \(0.223300\pi\)
\(588\) −152.255 250.011i −0.258936 0.425188i
\(589\) 140.571 + 432.633i 0.238660 + 0.734521i
\(590\) −34.7498 + 47.8290i −0.0588979 + 0.0810660i
\(591\) 679.613 + 583.712i 1.14994 + 0.987668i
\(592\) −29.4160 + 90.5331i −0.0496892 + 0.152928i
\(593\) 1110.08i 1.87198i −0.352026 0.935990i \(-0.614507\pi\)
0.352026 0.935990i \(-0.385493\pi\)
\(594\) 419.041 + 28.6799i 0.705456 + 0.0482826i
\(595\) −5.82496 −0.00978985
\(596\) 134.969 + 43.8541i 0.226458 + 0.0735807i
\(597\) 471.999 549.546i 0.790618 0.920513i
\(598\) 122.929 + 89.3129i 0.205566 + 0.149353i
\(599\) 780.529 253.609i 1.30305 0.423388i 0.426410 0.904530i \(-0.359778\pi\)
0.876643 + 0.481142i \(0.159778\pi\)
\(600\) −161.824 + 98.5498i −0.269707 + 0.164250i
\(601\) −240.573 174.787i −0.400288 0.290826i 0.369370 0.929282i \(-0.379573\pi\)
−0.769658 + 0.638456i \(0.779573\pi\)
\(602\) 24.5942 + 33.8510i 0.0408541 + 0.0562308i
\(603\) 61.2798 + 401.300i 0.101625 + 0.665506i
\(604\) −126.683 −0.209741
\(605\) 68.0290 + 185.669i 0.112445 + 0.306890i
\(606\) −197.915 + 46.9351i −0.326593 + 0.0774506i
\(607\) −136.690 + 420.690i −0.225190 + 0.693063i 0.773082 + 0.634306i \(0.218714\pi\)
−0.998272 + 0.0587577i \(0.981286\pi\)
\(608\) −81.7674 112.543i −0.134486 0.185104i
\(609\) 19.3985 46.4672i 0.0318531 0.0763009i
\(610\) 9.18320 + 28.2630i 0.0150544 + 0.0463328i
\(611\) 310.783 100.979i 0.508646 0.165269i
\(612\) 22.5191 137.248i 0.0367959 0.224261i
\(613\) −800.318 + 581.465i −1.30558 + 0.948556i −0.999993 0.00360913i \(-0.998851\pi\)
−0.305582 + 0.952166i \(0.598851\pi\)
\(614\) −189.042 61.4234i −0.307885 0.100038i
\(615\) −313.881 + 74.4361i −0.510376 + 0.121034i
\(616\) −10.3348 9.95886i −0.0167774 0.0161670i
\(617\) 257.998i 0.418149i 0.977900 + 0.209075i \(0.0670452\pi\)
−0.977900 + 0.209075i \(0.932955\pi\)
\(618\) −320.618 26.1282i −0.518800 0.0422786i
\(619\) −84.8895 + 61.6758i −0.137140 + 0.0996378i −0.654240 0.756287i \(-0.727011\pi\)
0.517100 + 0.855925i \(0.327011\pi\)
\(620\) −35.5372 + 48.9127i −0.0573180 + 0.0788915i
\(621\) −321.244 + 514.563i −0.517301 + 0.828604i
\(622\) −4.77464 14.6948i −0.00767626 0.0236251i
\(623\) −2.33013 + 3.20715i −0.00374017 + 0.00514791i
\(624\) −37.3911 + 43.5343i −0.0599217 + 0.0697665i
\(625\) 133.444 410.699i 0.213511 0.657118i
\(626\) 355.987i 0.568669i
\(627\) −536.696 608.708i −0.855974 0.970826i
\(628\) −451.990 −0.719730
\(629\) 174.884 + 56.8232i 0.278035 + 0.0903389i
\(630\) −4.40343 + 8.52498i −0.00698957 + 0.0135317i
\(631\) 252.088 + 183.153i 0.399506 + 0.290258i 0.769340 0.638840i \(-0.220585\pi\)
−0.369834 + 0.929098i \(0.620585\pi\)
\(632\) 137.800 44.7739i 0.218038 0.0708448i
\(633\) −327.781 538.234i −0.517821 0.850291i
\(634\) 356.189 + 258.786i 0.561812 + 0.408180i
\(635\) −221.430 304.773i −0.348709 0.479957i
\(636\) 589.221 + 48.0174i 0.926448 + 0.0754990i
\(637\) 233.315 0.366271
\(638\) −78.1745 + 560.600i −0.122531 + 0.878684i
\(639\) 457.501 + 910.345i 0.715964 + 1.42464i
\(640\) 5.71340 17.5841i 0.00892719 0.0274751i
\(641\) −579.689 797.874i −0.904351 1.24473i −0.969059 0.246828i \(-0.920612\pi\)
0.0647080 0.997904i \(-0.479388\pi\)
\(642\) 289.068 + 120.676i 0.450261 + 0.187969i
\(643\) 246.310 + 758.065i 0.383064 + 1.17895i 0.937875 + 0.346974i \(0.112791\pi\)
−0.554811 + 0.831977i \(0.687209\pi\)
\(644\) 19.7135 6.40530i 0.0306110 0.00994612i
\(645\) −121.138 + 290.174i −0.187811 + 0.449882i
\(646\) −217.401 + 157.951i −0.336534 + 0.244506i
\(647\) 113.996 + 37.0395i 0.176191 + 0.0572480i 0.395784 0.918344i \(-0.370473\pi\)
−0.219593 + 0.975592i \(0.570473\pi\)
\(648\) −183.843 136.711i −0.283708 0.210974i
\(649\) 49.1593 + 277.059i 0.0757462 + 0.426902i
\(650\) 151.018i 0.232335i
\(651\) 2.07929 25.5149i 0.00319399 0.0391934i
\(652\) −99.7285 + 72.4570i −0.152958 + 0.111130i
\(653\) −66.1431 + 91.0382i −0.101291 + 0.139415i −0.856654 0.515892i \(-0.827461\pi\)
0.755363 + 0.655307i \(0.227461\pi\)
\(654\) 496.778 302.534i 0.759599 0.462590i
\(655\) −84.0876 258.795i −0.128378 0.395107i
\(656\) −154.702 + 212.929i −0.235826 + 0.324587i
\(657\) 46.7290 90.4668i 0.0711249 0.137697i
\(658\) 13.7751 42.3954i 0.0209348 0.0644307i
\(659\) 567.382i 0.860974i −0.902597 0.430487i \(-0.858342\pi\)
0.902597 0.430487i \(-0.141658\pi\)
\(660\) 23.5238 105.261i 0.0356422 0.159487i
\(661\) −1269.59 −1.92072 −0.960358 0.278769i \(-0.910074\pi\)
−0.960358 + 0.278769i \(0.910074\pi\)
\(662\) 194.937 + 63.3387i 0.294466 + 0.0956778i
\(663\) 84.0957 + 72.2288i 0.126841 + 0.108942i
\(664\) −233.559 169.690i −0.351745 0.255558i
\(665\) 17.6313 5.72875i 0.0265132 0.00861466i
\(666\) 215.367 212.991i 0.323374 0.319806i
\(667\) −661.347 480.497i −0.991525 0.720385i
\(668\) −200.851 276.448i −0.300675 0.413844i
\(669\) 44.0752 540.846i 0.0658822 0.808440i
\(670\) 104.245 0.155589
\(671\) 127.195 + 61.8683i 0.189560 + 0.0922031i
\(672\) 1.80641 + 7.61725i 0.00268811 + 0.0113352i
\(673\) −11.4795 + 35.3303i −0.0170572 + 0.0524967i −0.959223 0.282651i \(-0.908786\pi\)
0.942166 + 0.335148i \(0.108786\pi\)
\(674\) 407.668 + 561.106i 0.604848 + 0.832502i
\(675\) 601.407 42.2999i 0.890973 0.0626665i
\(676\) 90.3131 + 277.955i 0.133599 + 0.411176i
\(677\) 42.8172 13.9122i 0.0632455 0.0205497i −0.277223 0.960806i \(-0.589414\pi\)
0.340469 + 0.940256i \(0.389414\pi\)
\(678\) −197.194 82.3219i −0.290846 0.121419i
\(679\) −28.2170 + 20.5009i −0.0415567 + 0.0301927i
\(680\) −33.9673 11.0366i −0.0499519 0.0162304i
\(681\) 128.794 + 543.099i 0.189125 + 0.797502i
\(682\) 50.2732 + 283.337i 0.0737144 + 0.415450i
\(683\) 326.171i 0.477556i −0.971074 0.238778i \(-0.923253\pi\)
0.971074 0.238778i \(-0.0767469\pi\)
\(684\) 66.8193 + 437.576i 0.0976890 + 0.639731i
\(685\) 37.1184 26.9681i 0.0541875 0.0393695i
\(686\) 37.4972 51.6105i 0.0546607 0.0752339i
\(687\) −639.577 1050.22i −0.930971 1.52871i
\(688\) 79.2789 + 243.995i 0.115231 + 0.354644i
\(689\) −276.961 + 381.205i −0.401976 + 0.553272i
\(690\) 118.169 + 101.494i 0.171259 + 0.147092i
\(691\) −38.8345 + 119.520i −0.0562005 + 0.172967i −0.975216 0.221253i \(-0.928985\pi\)
0.919016 + 0.394220i \(0.128985\pi\)
\(692\) 45.7256i 0.0660775i
\(693\) 14.6749 + 43.2467i 0.0211759 + 0.0624050i
\(694\) −1.16287 −0.00167561
\(695\) 257.656 + 83.7175i 0.370728 + 0.120457i
\(696\) 201.161 234.211i 0.289025 0.336510i
\(697\) 411.318 + 298.840i 0.590126 + 0.428751i
\(698\) −177.590 + 57.7026i −0.254427 + 0.0826684i
\(699\) −659.055 + 401.359i −0.942854 + 0.574191i
\(700\) −16.6666 12.1090i −0.0238094 0.0172986i
\(701\) −440.354 606.095i −0.628180 0.864615i 0.369737 0.929137i \(-0.379448\pi\)
−0.997916 + 0.0645216i \(0.979448\pi\)
\(702\) 169.282 68.4742i 0.241142 0.0975416i
\(703\) −585.231 −0.832477
\(704\) −41.3968 77.6551i −0.0588022 0.110305i
\(705\) 325.958 77.3001i 0.462352 0.109646i
\(706\) 75.7134 233.022i 0.107243 0.330059i
\(707\) −12.9995 17.8922i −0.0183868 0.0253073i
\(708\) 59.1287 141.637i 0.0835151 0.200052i
\(709\) −37.1106 114.215i −0.0523422 0.161093i 0.921468 0.388453i \(-0.126990\pi\)
−0.973811 + 0.227360i \(0.926990\pi\)
\(710\) 248.824 80.8479i 0.350457 0.113870i
\(711\) −454.959 74.6476i −0.639886 0.104990i
\(712\) −19.6644 + 14.2870i −0.0276185 + 0.0200660i
\(713\) −395.255 128.426i −0.554355 0.180121i
\(714\) 14.7143 3.48946i 0.0206083 0.00488721i
\(715\) 61.9042 + 59.6520i 0.0865793 + 0.0834294i
\(716\) 599.211i 0.836886i
\(717\) −859.625 70.0534i −1.19892 0.0977035i
\(718\) 193.104 140.298i 0.268947 0.195401i
\(719\) −650.159 + 894.867i −0.904254 + 1.24460i 0.0648368 + 0.997896i \(0.479347\pi\)
−0.969091 + 0.246703i \(0.920653\pi\)
\(720\) −41.8303 + 41.3688i −0.0580976 + 0.0574566i
\(721\) −10.8082 33.2644i −0.0149906 0.0461364i
\(722\) 202.615 278.875i 0.280630 0.386254i
\(723\) 438.833 510.931i 0.606962 0.706682i
\(724\) 48.4092 148.988i 0.0668636 0.205785i
\(725\) 812.464i 1.12064i
\(726\) −283.073 428.262i −0.389907 0.589892i
\(727\) 1220.54 1.67888 0.839438 0.543456i \(-0.182884\pi\)
0.839438 + 0.543456i \(0.182884\pi\)
\(728\) −5.93432 1.92818i −0.00815154 0.00264860i
\(729\) 320.105 + 654.961i 0.439101 + 0.898438i
\(730\) −21.1535 15.3689i −0.0289774 0.0210533i
\(731\) 471.328 153.144i 0.644772 0.209499i
\(732\) −40.1286 65.8934i −0.0548205 0.0900183i
\(733\) 934.648 + 679.062i 1.27510 + 0.926414i 0.999393 0.0348274i \(-0.0110882\pi\)
0.275707 + 0.961242i \(0.411088\pi\)
\(734\) 17.3525 + 23.8836i 0.0236410 + 0.0325390i
\(735\) 238.395 + 19.4275i 0.324347 + 0.0264320i
\(736\) 127.092 0.172680
\(737\) 344.281 357.279i 0.467139 0.484775i
\(738\) 748.299 376.063i 1.01395 0.509571i
\(739\) 225.723 694.703i 0.305443 0.940058i −0.674068 0.738669i \(-0.735455\pi\)
0.979511 0.201389i \(-0.0645455\pi\)
\(740\) −45.7191 62.9269i −0.0617825 0.0850364i
\(741\) −325.581 135.919i −0.439380 0.183427i
\(742\) 19.8630 + 61.1320i 0.0267695 + 0.0823882i
\(743\) 730.662 237.407i 0.983395 0.319524i 0.227184 0.973852i \(-0.427048\pi\)
0.756211 + 0.654328i \(0.227048\pi\)
\(744\) 60.4685 144.846i 0.0812749 0.194686i
\(745\) −93.8130 + 68.1591i −0.125924 + 0.0914888i
\(746\) −321.618 104.500i −0.431123 0.140080i
\(747\) 412.499 + 820.798i 0.552207 + 1.09879i
\(748\) −150.007 + 79.9666i −0.200544 + 0.106907i
\(749\) 34.0590i 0.0454727i
\(750\) 26.6537 327.067i 0.0355383 0.436090i
\(751\) −379.605 + 275.799i −0.505466 + 0.367243i −0.811101 0.584906i \(-0.801131\pi\)
0.305635 + 0.952149i \(0.401131\pi\)
\(752\) 160.655 221.122i 0.213636 0.294045i
\(753\) 273.291 166.432i 0.362937 0.221026i
\(754\) 76.0434 + 234.037i 0.100853 + 0.310394i
\(755\) 60.8437 83.7442i 0.0805877 0.110920i
\(756\) 6.01650 24.1727i 0.00795834 0.0319745i
\(757\) 48.9820 150.751i 0.0647054 0.199143i −0.913477 0.406890i \(-0.866613\pi\)
0.978183 + 0.207747i \(0.0666132\pi\)
\(758\) 479.940i 0.633167i
\(759\) 738.116 69.8051i 0.972485 0.0919698i
\(760\) 113.668 0.149563
\(761\) 48.8309 + 15.8661i 0.0641667 + 0.0208490i 0.340924 0.940091i \(-0.389260\pi\)
−0.276758 + 0.960940i \(0.589260\pi\)
\(762\) 741.926 + 637.232i 0.973657 + 0.836263i
\(763\) 51.1641 + 37.1729i 0.0670565 + 0.0487194i
\(764\) 497.438 161.627i 0.651096 0.211554i
\(765\) 79.9125 + 80.8040i 0.104461 + 0.105626i
\(766\) −67.6861 49.1769i −0.0883631 0.0641996i
\(767\) 71.9061 + 98.9703i 0.0937498 + 0.129036i
\(768\) −3.89874 + 47.8414i −0.00507648 + 0.0622935i
\(769\) 841.280 1.09399 0.546996 0.837135i \(-0.315771\pi\)
0.546996 + 0.837135i \(0.315771\pi\)
\(770\) 11.5470 2.04881i 0.0149961 0.00266079i
\(771\) −173.152 730.146i −0.224581 0.947012i
\(772\) 89.1737 274.449i 0.115510 0.355503i
\(773\) 727.969 + 1001.96i 0.941745 + 1.29620i 0.955098 + 0.296291i \(0.0957497\pi\)
−0.0133524 + 0.999911i \(0.504250\pi\)
\(774\) 132.175 805.571i 0.170768 1.04079i
\(775\) 127.640 + 392.834i 0.164696 + 0.506883i
\(776\) −203.386 + 66.0842i −0.262096 + 0.0851600i
\(777\) 30.3921 + 12.6877i 0.0391146 + 0.0163291i
\(778\) −49.3586 + 35.8611i −0.0634429 + 0.0460940i
\(779\) −1538.90 500.019i −1.97548 0.641873i
\(780\) −10.8201 45.6262i −0.0138720 0.0584951i
\(781\) 544.681 1119.81i 0.697415 1.43381i
\(782\) 245.505i 0.313946i
\(783\) −910.722 + 368.386i −1.16312 + 0.470480i
\(784\) 157.879 114.706i 0.201376 0.146308i
\(785\) 217.083 298.789i 0.276539 0.380623i
\(786\) 367.444 + 603.365i 0.467487 + 0.767640i
\(787\) −133.708 411.511i −0.169896 0.522886i 0.829468 0.558555i \(-0.188644\pi\)
−0.999364 + 0.0356687i \(0.988644\pi\)
\(788\) −351.055 + 483.186i −0.445501 + 0.613180i
\(789\) −73.6399 63.2485i −0.0933333 0.0801629i
\(790\) −36.5850 + 112.597i −0.0463101 + 0.142528i
\(791\) 23.2341i 0.0293731i
\(792\) 3.63400 + 279.991i 0.00458838 + 0.353524i
\(793\) 61.4930 0.0775448
\(794\) −118.534 38.5139i −0.149287 0.0485062i
\(795\) −314.734 + 366.443i −0.395892 + 0.460935i
\(796\) 390.712 + 283.869i 0.490844 + 0.356619i
\(797\) 969.083 314.874i 1.21591 0.395074i 0.370322 0.928904i \(-0.379247\pi\)
0.845592 + 0.533829i \(0.179247\pi\)
\(798\) −41.1062 + 25.0334i −0.0515116 + 0.0313701i
\(799\) −427.144 310.338i −0.534598 0.388408i
\(800\) −74.2455 102.190i −0.0928068 0.127738i
\(801\) 76.4566 11.6752i 0.0954514 0.0145757i
\(802\) −679.465 −0.847213
\(803\) −122.536 + 21.7419i −0.152598 + 0.0270758i
\(804\) −263.331 + 62.4483i −0.327526 + 0.0776720i
\(805\) −5.23380 + 16.1080i −0.00650162 + 0.0200099i
\(806\) 73.5355 + 101.213i 0.0912351 + 0.125574i
\(807\) 399.274 956.421i 0.494763 1.18516i
\(808\) −41.9036 128.966i −0.0518609 0.159611i
\(809\) 273.488 88.8617i 0.338057 0.109841i −0.135069 0.990836i \(-0.543126\pi\)
0.473126 + 0.880995i \(0.343126\pi\)
\(810\) 178.669 55.8695i 0.220579 0.0689747i
\(811\) 167.430 121.645i 0.206449 0.149994i −0.479756 0.877402i \(-0.659275\pi\)
0.686206 + 0.727408i \(0.259275\pi\)
\(812\) 31.9262 + 10.3735i 0.0393180 + 0.0127752i
\(813\) −1152.58 + 273.331i −1.41769 + 0.336201i
\(814\) −366.663 51.1303i −0.450446 0.0628137i
\(815\) 100.725i 0.123590i
\(816\) 92.4158 + 7.53124i 0.113255 + 0.00922946i
\(817\) −1276.02 + 927.086i −1.56184 + 1.13474i
\(818\) −572.959 + 788.611i −0.700439 + 0.964072i
\(819\) 13.9613 + 14.1170i 0.0170467 + 0.0172369i
\(820\) −66.4565 204.532i −0.0810445 0.249429i
\(821\) −468.687 + 645.092i −0.570873 + 0.785740i −0.992658 0.120956i \(-0.961404\pi\)
0.421784 + 0.906696i \(0.361404\pi\)
\(822\) −77.6089 + 90.3597i −0.0944147 + 0.109927i
\(823\) 133.512 410.907i 0.162226 0.499280i −0.836595 0.547821i \(-0.815457\pi\)
0.998821 + 0.0485415i \(0.0154573\pi\)
\(824\) 214.454i 0.260260i
\(825\) −487.324 552.712i −0.590696 0.669954i
\(826\) 16.6882 0.0202036
\(827\) −1253.82 407.390i −1.51610 0.492612i −0.571437 0.820646i \(-0.693614\pi\)
−0.944666 + 0.328034i \(0.893614\pi\)
\(828\) −359.304 185.592i −0.433942 0.224145i
\(829\) −1048.35 761.669i −1.26459 0.918781i −0.265620 0.964078i \(-0.585576\pi\)
−0.998974 + 0.0452973i \(0.985576\pi\)
\(830\) 224.348 72.8952i 0.270299 0.0878255i
\(831\) 563.320 + 925.004i 0.677882 + 1.11312i
\(832\) −30.9517 22.4877i −0.0372015 0.0270285i
\(833\) −221.578 304.976i −0.266000 0.366118i
\(834\) −701.011 57.1275i −0.840541 0.0684982i
\(835\) 279.211 0.334385
\(836\) 375.403 389.576i 0.449047 0.466000i
\(837\) −382.469 + 321.195i −0.456952 + 0.383745i
\(838\) 148.326 456.500i 0.177000 0.544750i
\(839\) 236.251 + 325.172i 0.281587 + 0.387571i 0.926259 0.376888i \(-0.123006\pi\)
−0.644672 + 0.764459i \(0.723006\pi\)
\(840\) −5.90298 2.46430i −0.00702736 0.00293369i
\(841\) −149.224 459.266i −0.177437 0.546095i
\(842\) 261.051 84.8206i 0.310037 0.100737i
\(843\) −27.2793 + 65.3448i −0.0323598 + 0.0775146i
\(844\) 339.888 246.943i 0.402711 0.292587i
\(845\) −227.118 73.7952i −0.268779 0.0873316i
\(846\) −777.091 + 390.533i −0.918547 + 0.461623i
\(847\) 31.1133 46.3414i 0.0367336 0.0547124i
\(848\) 394.116i 0.464760i
\(849\) −51.9594 + 637.594i −0.0612008 + 0.750994i
\(850\) −197.402 + 143.421i −0.232237 + 0.168730i
\(851\) 314.271 432.557i 0.369296 0.508292i
\(852\) −580.118 + 353.287i −0.680890 + 0.414657i
\(853\) 303.712 + 934.729i 0.356052 + 1.09581i 0.955397 + 0.295324i \(0.0954275\pi\)
−0.599346 + 0.800490i \(0.704572\pi\)
\(854\) 4.93067 6.78649i 0.00577362 0.00794671i
\(855\) −321.352 165.989i −0.375851 0.194139i
\(856\) −64.5322 + 198.610i −0.0753881 + 0.232021i
\(857\) 1185.84i 1.38372i 0.722033 + 0.691858i \(0.243208\pi\)
−0.722033 + 0.691858i \(0.756792\pi\)
\(858\) −192.110 113.602i −0.223904 0.132403i
\(859\) −896.376 −1.04351 −0.521756 0.853095i \(-0.674723\pi\)
−0.521756 + 0.853095i \(0.674723\pi\)
\(860\) −199.370 64.7791i −0.231825 0.0753246i
\(861\) 69.0774 + 59.3298i 0.0802292 + 0.0689080i
\(862\) 194.307 + 141.172i 0.225414 + 0.163773i
\(863\) 446.888 145.203i 0.517830 0.168253i −0.0384301 0.999261i \(-0.512236\pi\)
0.556260 + 0.831008i \(0.312236\pi\)
\(864\) 80.8846 129.560i 0.0936165 0.149953i
\(865\) 30.2270 + 21.9612i 0.0349445 + 0.0253887i
\(866\) −78.1276 107.533i −0.0902167 0.124173i
\(867\) −55.8728 + 685.615i −0.0644438 + 0.790790i
\(868\) 17.0663 0.0196617
\(869\) 265.078 + 497.253i 0.305038 + 0.572213i
\(870\) 58.2115 + 245.466i 0.0669098 + 0.282144i
\(871\) 66.6578 205.152i 0.0765302 0.235536i
\(872\) 227.923 + 313.709i 0.261380 + 0.359758i
\(873\) 671.497 + 110.176i 0.769184 + 0.126204i
\(874\) 241.450 + 743.108i 0.276259 + 0.850238i
\(875\) 33.9334 11.0256i 0.0387811 0.0126007i
\(876\) 62.6423 + 26.1511i 0.0715094 + 0.0298528i
\(877\) 43.1803 31.3723i 0.0492364 0.0357723i −0.562895 0.826529i \(-0.690312\pi\)
0.612131 + 0.790756i \(0.290312\pi\)
\(878\) −828.933 269.337i −0.944115 0.306762i
\(879\) 114.029 + 480.834i 0.129725 + 0.547024i
\(880\) 71.2161 + 9.93093i 0.0809274 + 0.0112852i
\(881\) 1123.85i 1.27566i −0.770178 0.637829i \(-0.779833\pi\)
0.770178 0.637829i \(-0.220167\pi\)
\(882\) −613.844 + 93.7360i −0.695968 + 0.106277i
\(883\) 457.899 332.683i 0.518572 0.376765i −0.297494 0.954724i \(-0.596151\pi\)
0.816066 + 0.577959i \(0.196151\pi\)
\(884\) −43.4397 + 59.7897i −0.0491400 + 0.0676354i
\(885\) 65.2308 + 107.113i 0.0737072 + 0.121031i
\(886\) −282.799 870.367i −0.319187 0.982355i
\(887\) −553.224 + 761.447i −0.623702 + 0.858452i −0.997616 0.0690113i \(-0.978016\pi\)
0.373914 + 0.927463i \(0.378016\pi\)
\(888\) 153.187 + 131.570i 0.172508 + 0.148165i
\(889\) −32.8607 + 101.135i −0.0369636 + 0.113762i
\(890\) 19.8610i 0.0223157i
\(891\) 398.595 796.871i 0.447357 0.894356i
\(892\) 361.760 0.405560
\(893\) 1598.11 + 519.258i 1.78960 + 0.581476i
\(894\) 196.148 228.375i 0.219405 0.255453i
\(895\) −396.109 287.790i −0.442580 0.321553i
\(896\) −4.96358 + 1.61276i −0.00553970 + 0.00179996i
\(897\) 275.298 167.654i 0.306910 0.186906i
\(898\) −341.716 248.271i −0.380530 0.276471i
\(899\) −395.615 544.518i −0.440062 0.605693i
\(900\) 60.6725 + 397.323i 0.0674138 + 0.441470i
\(901\) 761.318 0.844970
\(902\) −920.475 447.725i −1.02048 0.496369i
\(903\) 86.3652 20.4813i 0.0956425 0.0226814i
\(904\) 44.0220 135.486i 0.0486969 0.149874i
\(905\) 75.2388 + 103.557i 0.0831368 + 0.114428i
\(906\) −103.529 + 247.994i −0.114270 + 0.273724i
\(907\) 60.2325 + 185.377i 0.0664085 + 0.204384i 0.978754 0.205036i \(-0.0657311\pi\)
−0.912346 + 0.409420i \(0.865731\pi\)
\(908\) −353.895 + 114.988i −0.389753 + 0.126638i
\(909\) −69.8622 + 425.792i −0.0768561 + 0.468419i
\(910\) 4.12477 2.99682i 0.00453272 0.00329321i
\(911\) −724.808 235.504i −0.795618 0.258512i −0.117123 0.993117i \(-0.537367\pi\)
−0.678494 + 0.734606i \(0.737367\pi\)
\(912\) −287.135 + 68.0934i −0.314841 + 0.0746638i
\(913\) 491.103 1009.66i 0.537900 1.10587i
\(914\) 419.008i 0.458434i
\(915\) 62.8320 + 5.12037i 0.0686688 + 0.00559603i
\(916\) 663.202 481.845i 0.724020 0.526031i
\(917\) −45.1486 + 62.1417i −0.0492351 + 0.0677663i
\(918\) −250.272 156.246i −0.272627 0.170202i
\(919\) 178.084 + 548.085i 0.193780 + 0.596393i 0.999989 + 0.00476175i \(0.00151572\pi\)
−0.806209 + 0.591631i \(0.798484\pi\)
\(920\) −61.0401 + 84.0145i −0.0663480 + 0.0913201i
\(921\) −274.731 + 319.868i −0.298297 + 0.347305i
\(922\) 159.942 492.250i 0.173473 0.533894i
\(923\) 541.377i 0.586541i
\(924\) −27.9412 + 12.0927i −0.0302394 + 0.0130873i
\(925\) −531.395 −0.574481
\(926\) 644.783 + 209.503i 0.696310 + 0.226245i
\(927\) −313.166 + 606.285i −0.337827 + 0.654030i
\(928\) 166.518 + 120.982i 0.179437 + 0.130369i
\(929\) 1371.38 445.590i 1.47619 0.479645i 0.543221 0.839590i \(-0.317205\pi\)
0.932973 + 0.359945i \(0.117205\pi\)
\(930\) 66.7089 + 109.540i 0.0717300 + 0.117785i
\(931\) 970.622 + 705.198i 1.04256 + 0.757463i
\(932\) −302.376 416.185i −0.324438 0.446550i
\(933\) −32.6683 2.66224i −0.0350143 0.00285342i
\(934\) −934.785 −1.00084
\(935\) 19.1837 137.569i 0.0205173 0.147133i
\(936\) 54.6651 + 108.774i 0.0584029 + 0.116211i
\(937\) −179.492 + 552.419i −0.191560 + 0.589561i 0.808440 + 0.588579i \(0.200312\pi\)
−1.00000 0.000981694i \(0.999688\pi\)
\(938\) −17.2961 23.8061i −0.0184394 0.0253796i
\(939\) −696.874 290.922i −0.742145 0.309821i
\(940\) 69.0135 + 212.402i 0.0734186 + 0.225959i
\(941\) −157.464 + 51.1630i −0.167336 + 0.0543709i −0.391487 0.920184i \(-0.628039\pi\)
0.224151 + 0.974555i \(0.428039\pi\)
\(942\) −369.378 + 884.809i −0.392121 + 0.939288i
\(943\) 1195.97 868.921i 1.26826 0.921443i
\(944\) 97.3144 + 31.6194i 0.103087 + 0.0334951i
\(945\) 13.0898 + 15.5869i 0.0138516 + 0.0164941i
\(946\) −880.460 + 469.360i −0.930719 + 0.496153i
\(947\) 647.752i 0.684005i 0.939699 + 0.342002i \(0.111105\pi\)
−0.939699 + 0.342002i \(0.888895\pi\)
\(948\) 24.9650 306.346i 0.0263344 0.323149i
\(949\) −43.7719 + 31.8022i −0.0461243 + 0.0335112i
\(950\) 456.453 628.254i 0.480477 0.661320i
\(951\) 797.683 485.783i 0.838784 0.510813i
\(952\) 3.11539 + 9.58819i 0.00327247 + 0.0100716i
\(953\) 365.281 502.767i 0.383296 0.527562i −0.573158 0.819445i \(-0.694282\pi\)
0.956454 + 0.291883i \(0.0942818\pi\)
\(954\) 575.525 1114.21i 0.603276 1.16793i
\(955\) −132.066 + 406.459i −0.138289 + 0.425611i
\(956\) 574.983i 0.601447i
\(957\) 1033.54 + 611.171i 1.07998 + 0.638632i
\(958\) 249.119 0.260041
\(959\) −12.3173 4.00212i −0.0128439 0.00417322i
\(960\) −29.7531 25.5546i −0.0309928 0.0266194i
\(961\) 500.637 + 363.734i 0.520954 + 0.378495i
\(962\) −153.073 + 49.7365i −0.159120 + 0.0517011i
\(963\) 472.468 467.255i 0.490621 0.485208i
\(964\) 363.258 + 263.922i 0.376824 + 0.273778i
\(965\) 138.596 + 190.761i 0.143623 + 0.197680i
\(966\) 3.57147 43.8254i 0.00369717 0.0453680i
\(967\) −995.335 −1.02930 −0.514651 0.857400i \(-0.672079\pi\)
−0.514651 + 0.857400i \(0.672079\pi\)
\(968\) 269.236 211.282i 0.278137 0.218266i
\(969\) 131.537 + 554.662i 0.135745 + 0.572407i
\(970\) 53.9977 166.188i 0.0556677 0.171328i
\(971\) 176.156 + 242.459i 0.181418 + 0.249700i 0.890034 0.455894i \(-0.150680\pi\)
−0.708617 + 0.705594i \(0.750680\pi\)
\(972\) −417.865 + 248.164i −0.429902 + 0.255312i
\(973\) −23.6315 72.7304i −0.0242873 0.0747486i
\(974\) 950.718 308.907i 0.976096 0.317153i
\(975\) −295.630 123.416i −0.303210 0.126580i
\(976\) 41.6109 30.2321i 0.0426341 0.0309755i
\(977\) 812.827 + 264.104i 0.831963 + 0.270321i 0.693872 0.720099i \(-0.255903\pi\)
0.138091 + 0.990420i \(0.455903\pi\)
\(978\) 60.3400 + 254.441i 0.0616973 + 0.260164i
\(979\) −68.0697 65.5932i −0.0695298 0.0670002i
\(980\) 159.457i 0.162711i
\(981\) −186.256 1219.72i −0.189863 1.24335i
\(982\) 701.810 509.895i 0.714674 0.519241i
\(983\) −173.454 + 238.739i −0.176454 + 0.242868i −0.888078 0.459692i \(-0.847960\pi\)
0.711624 + 0.702560i \(0.247960\pi\)
\(984\) 290.400 + 476.854i 0.295122 + 0.484608i
\(985\) −150.805 464.131i −0.153102 0.471199i
\(986\) 233.703 321.664i 0.237021 0.326231i
\(987\) −71.7353 61.6126i −0.0726801 0.0624241i
\(988\) 72.6834 223.696i 0.0735662 0.226413i
\(989\) 1440.98i 1.45701i
\(990\) −186.834 132.072i −0.188721 0.133406i
\(991\) 18.9414 0.0191134 0.00955672 0.999954i \(-0.496958\pi\)
0.00955672 + 0.999954i \(0.496958\pi\)
\(992\) 99.5195 + 32.3358i 0.100322 + 0.0325966i
\(993\) 283.298 329.843i 0.285295 0.332168i
\(994\) −59.7475 43.4091i −0.0601081 0.0436711i
\(995\) −375.304 + 121.944i −0.377190 + 0.122556i
\(996\) −523.054 + 318.536i −0.525155 + 0.319815i
\(997\) −409.812 297.746i −0.411045 0.298642i 0.362980 0.931797i \(-0.381759\pi\)
−0.774025 + 0.633155i \(0.781759\pi\)
\(998\) 399.981 + 550.527i 0.400783 + 0.551630i
\(999\) −240.944 595.661i −0.241185 0.596258i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 66.3.g.a.53.7 yes 32
3.2 odd 2 inner 66.3.g.a.53.4 yes 32
11.4 even 5 726.3.c.h.485.9 16
11.5 even 5 inner 66.3.g.a.5.4 32
11.7 odd 10 726.3.c.i.485.1 16
33.5 odd 10 inner 66.3.g.a.5.7 yes 32
33.26 odd 10 726.3.c.h.485.1 16
33.29 even 10 726.3.c.i.485.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.g.a.5.4 32 11.5 even 5 inner
66.3.g.a.5.7 yes 32 33.5 odd 10 inner
66.3.g.a.53.4 yes 32 3.2 odd 2 inner
66.3.g.a.53.7 yes 32 1.1 even 1 trivial
726.3.c.h.485.1 16 33.26 odd 10
726.3.c.h.485.9 16 11.4 even 5
726.3.c.i.485.1 16 11.7 odd 10
726.3.c.i.485.9 16 33.29 even 10