Properties

Label 66.3.f.a.7.2
Level $66$
Weight $3$
Character 66.7
Analytic conductor $1.798$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [66,3,Mod(7,66)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("66.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(66, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 66.f (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79836974478\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 7.2
Root \(0.492303 - 0.159959i\) of defining polynomial
Character \(\chi\) \(=\) 66.7
Dual form 66.3.f.a.19.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831254 + 1.14412i) q^{2} +(0.535233 - 1.64728i) q^{3} +(-0.618034 - 1.90211i) q^{4} +(2.05461 - 1.49276i) q^{5} +(1.43977 + 1.98168i) q^{6} +(9.89425 - 3.21484i) q^{7} +(2.68999 + 0.874032i) q^{8} +(-2.42705 - 1.76336i) q^{9} +3.59159i q^{10} +(-4.04952 + 10.2275i) q^{11} -3.46410 q^{12} +(7.72450 - 10.6319i) q^{13} +(-4.54647 + 13.9926i) q^{14} +(-1.35930 - 4.18349i) q^{15} +(-3.23607 + 2.35114i) q^{16} +(6.07332 + 8.35921i) q^{17} +(4.03499 - 1.31105i) q^{18} +(-20.6212 - 6.70022i) q^{19} +(-4.10922 - 2.98552i) q^{20} -18.0193i q^{21} +(-8.33532 - 13.1348i) q^{22} -38.9614 q^{23} +(2.87955 - 3.96336i) q^{24} +(-5.73234 + 17.6423i) q^{25} +(5.74313 + 17.6755i) q^{26} +(-4.20378 + 3.05422i) q^{27} +(-12.2300 - 16.8331i) q^{28} +(10.8281 - 3.51825i) q^{29} +(5.91635 + 1.92234i) q^{30} +(13.6220 + 9.89698i) q^{31} -5.65685i q^{32} +(14.6801 + 12.1448i) q^{33} -14.6124 q^{34} +(15.5299 - 21.3750i) q^{35} +(-1.85410 + 5.70634i) q^{36} +(13.1643 + 40.5157i) q^{37} +(24.8073 - 18.0236i) q^{38} +(-13.3792 - 18.4149i) q^{39} +(6.83161 - 2.21973i) q^{40} +(19.9900 + 6.49515i) q^{41} +(20.6163 + 14.9786i) q^{42} +34.3891i q^{43} +(21.9566 + 1.38171i) q^{44} -7.61892 q^{45} +(32.3868 - 44.5767i) q^{46} +(-10.8979 + 33.5402i) q^{47} +(2.14093 + 6.58911i) q^{48} +(47.9192 - 34.8154i) q^{49} +(-15.4200 - 21.2237i) q^{50} +(17.0206 - 5.53032i) q^{51} +(-24.9970 - 8.12202i) q^{52} +(-20.4201 - 14.8361i) q^{53} -7.34847i q^{54} +(6.94702 + 27.0585i) q^{55} +29.4254 q^{56} +(-22.0743 + 30.3826i) q^{57} +(-4.97556 + 15.3132i) q^{58} +(-21.7474 - 66.9315i) q^{59} +(-7.11738 + 5.17108i) q^{60} +(-12.4580 - 17.1469i) q^{61} +(-22.6467 + 7.35836i) q^{62} +(-29.6828 - 9.64451i) q^{63} +(6.47214 + 4.70228i) q^{64} -33.3752i q^{65} +(-26.0980 + 6.70042i) q^{66} -128.308 q^{67} +(12.1466 - 16.7184i) q^{68} +(-20.8534 + 64.1803i) q^{69} +(11.5464 + 35.5361i) q^{70} +(83.3257 - 60.5397i) q^{71} +(-4.98752 - 6.86474i) q^{72} +(125.892 - 40.9047i) q^{73} +(-57.2978 - 18.6172i) q^{74} +(25.9937 + 18.8855i) q^{75} +43.3648i q^{76} +(-7.18725 + 114.212i) q^{77} +32.1905 q^{78} +(-74.4189 + 102.429i) q^{79} +(-3.13917 + 9.66136i) q^{80} +(2.78115 + 8.55951i) q^{81} +(-24.0480 + 17.4719i) q^{82} +(-71.0546 - 97.7983i) q^{83} +(-34.2747 + 11.1365i) q^{84} +(24.9566 + 8.10890i) q^{85} +(-39.3453 - 28.5860i) q^{86} -19.7199i q^{87} +(-19.8323 + 23.9725i) q^{88} -19.9962 q^{89} +(6.33325 - 8.71698i) q^{90} +(42.2484 - 130.027i) q^{91} +(24.0795 + 74.1090i) q^{92} +(23.5940 - 17.1421i) q^{93} +(-29.3152 - 40.3489i) q^{94} +(-52.3703 + 17.0161i) q^{95} +(-9.31841 - 3.02774i) q^{96} +(-8.82424 - 6.41119i) q^{97} +83.7659i q^{98} +(27.8631 - 17.6819i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 8 q^{5} + 60 q^{7} - 12 q^{9} - 4 q^{11} - 60 q^{13} - 32 q^{14} + 12 q^{15} - 16 q^{16} - 60 q^{17} - 16 q^{20} - 48 q^{22} - 8 q^{23} - 48 q^{25} + 48 q^{26} + 40 q^{28} - 160 q^{29}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831254 + 1.14412i −0.415627 + 0.572061i
\(3\) 0.535233 1.64728i 0.178411 0.549093i
\(4\) −0.618034 1.90211i −0.154508 0.475528i
\(5\) 2.05461 1.49276i 0.410922 0.298552i −0.363053 0.931769i \(-0.618266\pi\)
0.773975 + 0.633216i \(0.218266\pi\)
\(6\) 1.43977 + 1.98168i 0.239962 + 0.330280i
\(7\) 9.89425 3.21484i 1.41346 0.459263i 0.499945 0.866057i \(-0.333353\pi\)
0.913520 + 0.406794i \(0.133353\pi\)
\(8\) 2.68999 + 0.874032i 0.336249 + 0.109254i
\(9\) −2.42705 1.76336i −0.269672 0.195928i
\(10\) 3.59159i 0.359159i
\(11\) −4.04952 + 10.2275i −0.368138 + 0.929771i
\(12\) −3.46410 −0.288675
\(13\) 7.72450 10.6319i 0.594192 0.817835i −0.400969 0.916092i \(-0.631327\pi\)
0.995161 + 0.0982564i \(0.0313265\pi\)
\(14\) −4.54647 + 13.9926i −0.324748 + 0.999471i
\(15\) −1.35930 4.18349i −0.0906199 0.278899i
\(16\) −3.23607 + 2.35114i −0.202254 + 0.146946i
\(17\) 6.07332 + 8.35921i 0.357254 + 0.491718i 0.949381 0.314126i \(-0.101712\pi\)
−0.592127 + 0.805845i \(0.701712\pi\)
\(18\) 4.03499 1.31105i 0.224166 0.0728360i
\(19\) −20.6212 6.70022i −1.08532 0.352643i −0.288886 0.957363i \(-0.593285\pi\)
−0.796438 + 0.604720i \(0.793285\pi\)
\(20\) −4.10922 2.98552i −0.205461 0.149276i
\(21\) 18.0193i 0.858061i
\(22\) −8.33532 13.1348i −0.378878 0.597035i
\(23\) −38.9614 −1.69398 −0.846988 0.531613i \(-0.821586\pi\)
−0.846988 + 0.531613i \(0.821586\pi\)
\(24\) 2.87955 3.96336i 0.119981 0.165140i
\(25\) −5.73234 + 17.6423i −0.229294 + 0.705693i
\(26\) 5.74313 + 17.6755i 0.220890 + 0.679829i
\(27\) −4.20378 + 3.05422i −0.155695 + 0.113119i
\(28\) −12.2300 16.8331i −0.436785 0.601183i
\(29\) 10.8281 3.51825i 0.373382 0.121319i −0.116314 0.993213i \(-0.537108\pi\)
0.489696 + 0.871893i \(0.337108\pi\)
\(30\) 5.91635 + 1.92234i 0.197212 + 0.0640780i
\(31\) 13.6220 + 9.89698i 0.439420 + 0.319257i 0.785404 0.618983i \(-0.212455\pi\)
−0.345984 + 0.938240i \(0.612455\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 14.6801 + 12.1448i 0.444851 + 0.368023i
\(34\) −14.6124 −0.429778
\(35\) 15.5299 21.3750i 0.443710 0.610715i
\(36\) −1.85410 + 5.70634i −0.0515028 + 0.158509i
\(37\) 13.1643 + 40.5157i 0.355793 + 1.09502i 0.955548 + 0.294835i \(0.0952647\pi\)
−0.599755 + 0.800184i \(0.704735\pi\)
\(38\) 24.8073 18.0236i 0.652824 0.474304i
\(39\) −13.3792 18.4149i −0.343057 0.472177i
\(40\) 6.83161 2.21973i 0.170790 0.0554931i
\(41\) 19.9900 + 6.49515i 0.487562 + 0.158418i 0.542474 0.840073i \(-0.317488\pi\)
−0.0549120 + 0.998491i \(0.517488\pi\)
\(42\) 20.6163 + 14.9786i 0.490863 + 0.356633i
\(43\) 34.3891i 0.799745i 0.916571 + 0.399873i \(0.130946\pi\)
−0.916571 + 0.399873i \(0.869054\pi\)
\(44\) 21.9566 + 1.38171i 0.499013 + 0.0314024i
\(45\) −7.61892 −0.169309
\(46\) 32.3868 44.5767i 0.704062 0.969058i
\(47\) −10.8979 + 33.5402i −0.231870 + 0.713621i 0.765652 + 0.643255i \(0.222417\pi\)
−0.997521 + 0.0703657i \(0.977583\pi\)
\(48\) 2.14093 + 6.58911i 0.0446028 + 0.137273i
\(49\) 47.9192 34.8154i 0.977944 0.710518i
\(50\) −15.4200 21.2237i −0.308399 0.424475i
\(51\) 17.0206 5.53032i 0.333737 0.108438i
\(52\) −24.9970 8.12202i −0.480711 0.156193i
\(53\) −20.4201 14.8361i −0.385284 0.279925i 0.378236 0.925709i \(-0.376531\pi\)
−0.763520 + 0.645784i \(0.776531\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 6.94702 + 27.0585i 0.126309 + 0.491972i
\(56\) 29.4254 0.525453
\(57\) −22.0743 + 30.3826i −0.387268 + 0.533028i
\(58\) −4.97556 + 15.3132i −0.0857856 + 0.264021i
\(59\) −21.7474 66.9315i −0.368600 1.13443i −0.947696 0.319174i \(-0.896595\pi\)
0.579097 0.815259i \(-0.303405\pi\)
\(60\) −7.11738 + 5.17108i −0.118623 + 0.0861847i
\(61\) −12.4580 17.1469i −0.204229 0.281097i 0.694600 0.719396i \(-0.255581\pi\)
−0.898829 + 0.438298i \(0.855581\pi\)
\(62\) −22.6467 + 7.35836i −0.365270 + 0.118683i
\(63\) −29.6828 9.64451i −0.471155 0.153088i
\(64\) 6.47214 + 4.70228i 0.101127 + 0.0734732i
\(65\) 33.3752i 0.513464i
\(66\) −26.0980 + 6.70042i −0.395424 + 0.101522i
\(67\) −128.308 −1.91505 −0.957525 0.288349i \(-0.906894\pi\)
−0.957525 + 0.288349i \(0.906894\pi\)
\(68\) 12.1466 16.7184i 0.178627 0.245859i
\(69\) −20.8534 + 64.1803i −0.302224 + 0.930149i
\(70\) 11.5464 + 35.5361i 0.164948 + 0.507659i
\(71\) 83.3257 60.5397i 1.17360 0.852672i 0.182166 0.983268i \(-0.441689\pi\)
0.991436 + 0.130596i \(0.0416891\pi\)
\(72\) −4.98752 6.86474i −0.0692712 0.0953436i
\(73\) 125.892 40.9047i 1.72454 0.560338i 0.731901 0.681411i \(-0.238633\pi\)
0.992644 + 0.121073i \(0.0386335\pi\)
\(74\) −57.2978 18.6172i −0.774295 0.251584i
\(75\) 25.9937 + 18.8855i 0.346582 + 0.251807i
\(76\) 43.3648i 0.570589i
\(77\) −7.18725 + 114.212i −0.0933408 + 1.48327i
\(78\) 32.1905 0.412698
\(79\) −74.4189 + 102.429i −0.942012 + 1.29657i 0.0129735 + 0.999916i \(0.495870\pi\)
−0.954986 + 0.296652i \(0.904130\pi\)
\(80\) −3.13917 + 9.66136i −0.0392396 + 0.120767i
\(81\) 2.78115 + 8.55951i 0.0343352 + 0.105673i
\(82\) −24.0480 + 17.4719i −0.293269 + 0.213072i
\(83\) −71.0546 97.7983i −0.856080 1.17829i −0.982490 0.186315i \(-0.940346\pi\)
0.126410 0.991978i \(-0.459654\pi\)
\(84\) −34.2747 + 11.1365i −0.408032 + 0.132578i
\(85\) 24.9566 + 8.10890i 0.293607 + 0.0953988i
\(86\) −39.3453 28.5860i −0.457503 0.332396i
\(87\) 19.7199i 0.226666i
\(88\) −19.8323 + 23.9725i −0.225367 + 0.272414i
\(89\) −19.9962 −0.224677 −0.112338 0.993670i \(-0.535834\pi\)
−0.112338 + 0.993670i \(0.535834\pi\)
\(90\) 6.33325 8.71698i 0.0703695 0.0968553i
\(91\) 42.2484 130.027i 0.464268 1.42887i
\(92\) 24.0795 + 74.1090i 0.261734 + 0.805533i
\(93\) 23.5940 17.1421i 0.253699 0.184323i
\(94\) −29.3152 40.3489i −0.311864 0.429244i
\(95\) −52.3703 + 17.0161i −0.551266 + 0.179117i
\(96\) −9.31841 3.02774i −0.0970668 0.0315389i
\(97\) −8.82424 6.41119i −0.0909716 0.0660947i 0.541370 0.840785i \(-0.317906\pi\)
−0.632341 + 0.774690i \(0.717906\pi\)
\(98\) 83.7659i 0.854754i
\(99\) 27.8631 17.6819i 0.281445 0.178605i
\(100\) 37.1005 0.371005
\(101\) 18.4534 25.3989i 0.182706 0.251474i −0.707833 0.706380i \(-0.750327\pi\)
0.890540 + 0.454906i \(0.150327\pi\)
\(102\) −7.82106 + 24.0707i −0.0766771 + 0.235988i
\(103\) 24.1492 + 74.3235i 0.234458 + 0.721587i 0.997193 + 0.0748760i \(0.0238561\pi\)
−0.762735 + 0.646711i \(0.776144\pi\)
\(104\) 30.0714 21.8482i 0.289148 0.210079i
\(105\) −26.8985 37.0226i −0.256176 0.352596i
\(106\) 33.9485 11.0305i 0.320269 0.104062i
\(107\) 133.996 + 43.5378i 1.25230 + 0.406896i 0.858743 0.512406i \(-0.171246\pi\)
0.393553 + 0.919302i \(0.371246\pi\)
\(108\) 8.40755 + 6.10844i 0.0778477 + 0.0565597i
\(109\) 174.370i 1.59973i −0.600181 0.799864i \(-0.704905\pi\)
0.600181 0.799864i \(-0.295095\pi\)
\(110\) −36.7329 14.5442i −0.333936 0.132220i
\(111\) 73.7866 0.664744
\(112\) −24.4599 + 33.6662i −0.218392 + 0.300591i
\(113\) 24.2202 74.5422i 0.214338 0.659665i −0.784862 0.619671i \(-0.787266\pi\)
0.999200 0.0399943i \(-0.0127340\pi\)
\(114\) −16.4121 50.5113i −0.143966 0.443082i
\(115\) −80.0506 + 58.1601i −0.696092 + 0.505740i
\(116\) −13.3842 18.4218i −0.115381 0.158809i
\(117\) −37.4955 + 12.1830i −0.320474 + 0.104128i
\(118\) 94.6555 + 30.7554i 0.802165 + 0.260639i
\(119\) 86.9645 + 63.1834i 0.730794 + 0.530953i
\(120\) 12.4416i 0.103680i
\(121\) −88.2028 82.8327i −0.728949 0.684568i
\(122\) 29.9740 0.245688
\(123\) 21.3986 29.4527i 0.173973 0.239453i
\(124\) 10.4063 32.0273i 0.0839218 0.258285i
\(125\) 34.1779 + 105.189i 0.273423 + 0.841509i
\(126\) 35.7084 25.9437i 0.283400 0.205902i
\(127\) 46.2429 + 63.6479i 0.364118 + 0.501165i 0.951290 0.308297i \(-0.0997590\pi\)
−0.587173 + 0.809462i \(0.699759\pi\)
\(128\) −10.7600 + 3.49613i −0.0840623 + 0.0273135i
\(129\) 56.6483 + 18.4062i 0.439134 + 0.142683i
\(130\) 38.1853 + 27.7432i 0.293733 + 0.213409i
\(131\) 73.3839i 0.560182i 0.959973 + 0.280091i \(0.0903647\pi\)
−0.959973 + 0.280091i \(0.909635\pi\)
\(132\) 14.0279 35.4290i 0.106272 0.268402i
\(133\) −225.571 −1.69602
\(134\) 106.657 146.801i 0.795947 1.09553i
\(135\) −4.07790 + 12.5505i −0.0302066 + 0.0929665i
\(136\) 9.03098 + 27.7945i 0.0664043 + 0.204371i
\(137\) −97.7509 + 71.0202i −0.713511 + 0.518396i −0.884304 0.466911i \(-0.845367\pi\)
0.170794 + 0.985307i \(0.445367\pi\)
\(138\) −56.0956 77.2090i −0.406490 0.559486i
\(139\) 188.880 61.3709i 1.35885 0.441518i 0.463192 0.886258i \(-0.346704\pi\)
0.895659 + 0.444741i \(0.146704\pi\)
\(140\) −50.2557 16.3291i −0.358969 0.116636i
\(141\) 49.4171 + 35.9036i 0.350476 + 0.254636i
\(142\) 145.659i 1.02577i
\(143\) 77.4567 + 122.056i 0.541655 + 0.853539i
\(144\) 12.0000 0.0833333
\(145\) 16.9956 23.3924i 0.117211 0.161327i
\(146\) −57.8480 + 178.038i −0.396219 + 1.21944i
\(147\) −31.7026 97.5707i −0.215664 0.663746i
\(148\) 68.9294 50.0801i 0.465739 0.338379i
\(149\) 62.3005 + 85.7493i 0.418124 + 0.575498i 0.965176 0.261600i \(-0.0842501\pi\)
−0.547052 + 0.837098i \(0.684250\pi\)
\(150\) −43.2147 + 14.0413i −0.288098 + 0.0936087i
\(151\) −10.6146 3.44889i −0.0702952 0.0228403i 0.273658 0.961827i \(-0.411766\pi\)
−0.343954 + 0.938987i \(0.611766\pi\)
\(152\) −49.6146 36.0471i −0.326412 0.237152i
\(153\) 30.9977i 0.202599i
\(154\) −124.698 103.162i −0.809727 0.669884i
\(155\) 42.7618 0.275883
\(156\) −26.7584 + 36.8298i −0.171528 + 0.236089i
\(157\) 46.4799 143.050i 0.296050 0.911148i −0.686817 0.726831i \(-0.740992\pi\)
0.982867 0.184318i \(-0.0590075\pi\)
\(158\) −55.3302 170.289i −0.350191 1.07778i
\(159\) −35.3686 + 25.6968i −0.222444 + 0.161615i
\(160\) −8.44434 11.6226i −0.0527771 0.0726415i
\(161\) −385.494 + 125.255i −2.39437 + 0.777979i
\(162\) −12.1050 3.93314i −0.0747221 0.0242787i
\(163\) −151.061 109.752i −0.926756 0.673328i 0.0184403 0.999830i \(-0.494130\pi\)
−0.945196 + 0.326502i \(0.894130\pi\)
\(164\) 42.0375i 0.256326i
\(165\) 48.2911 + 3.03891i 0.292673 + 0.0184177i
\(166\) 170.958 1.02987
\(167\) −137.309 + 188.990i −0.822210 + 1.13167i 0.167113 + 0.985938i \(0.446555\pi\)
−0.989323 + 0.145737i \(0.953445\pi\)
\(168\) 15.7494 48.4717i 0.0937466 0.288522i
\(169\) −1.14467 3.52292i −0.00677318 0.0208457i
\(170\) −30.0229 + 21.8129i −0.176605 + 0.128311i
\(171\) 38.2337 + 52.6242i 0.223589 + 0.307744i
\(172\) 65.4119 21.2536i 0.380302 0.123567i
\(173\) −77.7845 25.2737i −0.449621 0.146091i 0.0754490 0.997150i \(-0.475961\pi\)
−0.525070 + 0.851059i \(0.675961\pi\)
\(174\) 22.5620 + 16.3923i 0.129667 + 0.0942085i
\(175\) 192.986i 1.10278i
\(176\) −10.9417 42.6178i −0.0621690 0.242147i
\(177\) −121.895 −0.688671
\(178\) 16.6220 22.8782i 0.0933818 0.128529i
\(179\) 59.9705 184.570i 0.335031 1.03112i −0.631676 0.775232i \(-0.717633\pi\)
0.966707 0.255886i \(-0.0823672\pi\)
\(180\) 4.70875 + 14.4920i 0.0261597 + 0.0805113i
\(181\) −107.188 + 77.8765i −0.592198 + 0.430257i −0.843101 0.537755i \(-0.819272\pi\)
0.250903 + 0.968012i \(0.419272\pi\)
\(182\) 113.648 + 156.423i 0.624440 + 0.859468i
\(183\) −34.9137 + 11.3442i −0.190785 + 0.0619899i
\(184\) −104.806 34.0535i −0.569598 0.185074i
\(185\) 87.5279 + 63.5927i 0.473124 + 0.343745i
\(186\) 41.2439i 0.221741i
\(187\) −110.088 + 28.2640i −0.588704 + 0.151145i
\(188\) 70.5325 0.375173
\(189\) −31.7744 + 43.7337i −0.168118 + 0.231395i
\(190\) 24.0645 74.0628i 0.126655 0.389804i
\(191\) −98.5311 303.248i −0.515870 1.58768i −0.781694 0.623662i \(-0.785644\pi\)
0.265824 0.964022i \(-0.414356\pi\)
\(192\) 11.2101 8.14459i 0.0583858 0.0424197i
\(193\) 116.098 + 159.795i 0.601542 + 0.827952i 0.995848 0.0910273i \(-0.0290150\pi\)
−0.394306 + 0.918979i \(0.629015\pi\)
\(194\) 14.6704 4.76669i 0.0756205 0.0245706i
\(195\) −54.9782 17.8635i −0.281939 0.0916077i
\(196\) −95.8385 69.6307i −0.488972 0.355259i
\(197\) 200.593i 1.01824i −0.860696 0.509118i \(-0.829972\pi\)
0.860696 0.509118i \(-0.170028\pi\)
\(198\) −2.93104 + 46.5769i −0.0148032 + 0.235237i
\(199\) 211.354 1.06208 0.531040 0.847347i \(-0.321801\pi\)
0.531040 + 0.847347i \(0.321801\pi\)
\(200\) −30.8399 + 42.4475i −0.154200 + 0.212237i
\(201\) −68.6749 + 211.360i −0.341666 + 1.05154i
\(202\) 13.7200 + 42.2258i 0.0679208 + 0.209039i
\(203\) 95.8251 69.6210i 0.472045 0.342961i
\(204\) −21.0386 28.9572i −0.103130 0.141947i
\(205\) 50.7674 16.4953i 0.247646 0.0804651i
\(206\) −105.109 34.1521i −0.510239 0.165787i
\(207\) 94.5614 + 68.7029i 0.456818 + 0.331898i
\(208\) 52.5668i 0.252725i
\(209\) 152.032 183.770i 0.727427 0.879282i
\(210\) 64.7179 0.308180
\(211\) 139.784 192.397i 0.662486 0.911833i −0.337075 0.941478i \(-0.609438\pi\)
0.999561 + 0.0296446i \(0.00943756\pi\)
\(212\) −15.5995 + 48.0105i −0.0735828 + 0.226464i
\(213\) −55.1270 169.664i −0.258812 0.796542i
\(214\) −161.197 + 117.117i −0.753257 + 0.547273i
\(215\) 51.3347 + 70.6561i 0.238766 + 0.328633i
\(216\) −13.9776 + 4.54160i −0.0647112 + 0.0210259i
\(217\) 166.597 + 54.1306i 0.767728 + 0.249450i
\(218\) 199.501 + 144.946i 0.915143 + 0.664890i
\(219\) 229.272i 1.04691i
\(220\) 47.1748 29.9371i 0.214431 0.136078i
\(221\) 135.787 0.614422
\(222\) −61.3354 + 84.4209i −0.276286 + 0.380275i
\(223\) −43.7397 + 134.617i −0.196142 + 0.603664i 0.803819 + 0.594874i \(0.202798\pi\)
−0.999961 + 0.00878996i \(0.997202\pi\)
\(224\) −18.1859 55.9704i −0.0811869 0.249868i
\(225\) 45.0224 32.7107i 0.200099 0.145381i
\(226\) 65.1523 + 89.6744i 0.288284 + 0.396789i
\(227\) 215.306 69.9573i 0.948486 0.308182i 0.206386 0.978471i \(-0.433830\pi\)
0.742100 + 0.670289i \(0.233830\pi\)
\(228\) 71.4338 + 23.2103i 0.313306 + 0.101799i
\(229\) −138.650 100.735i −0.605457 0.439890i 0.242355 0.970188i \(-0.422080\pi\)
−0.847812 + 0.530297i \(0.822080\pi\)
\(230\) 139.934i 0.608407i
\(231\) 184.292 + 72.9694i 0.797800 + 0.315885i
\(232\) 32.2025 0.138804
\(233\) −54.4065 + 74.8842i −0.233504 + 0.321391i −0.909649 0.415378i \(-0.863649\pi\)
0.676145 + 0.736769i \(0.263649\pi\)
\(234\) 17.2294 53.0266i 0.0736299 0.226610i
\(235\) 27.6766 + 85.1800i 0.117773 + 0.362468i
\(236\) −113.871 + 82.7319i −0.482503 + 0.350559i
\(237\) 128.897 + 177.412i 0.543871 + 0.748574i
\(238\) −144.579 + 46.9766i −0.607475 + 0.197381i
\(239\) 229.721 + 74.6409i 0.961176 + 0.312305i 0.747248 0.664545i \(-0.231374\pi\)
0.213927 + 0.976850i \(0.431374\pi\)
\(240\) 14.2348 + 10.3422i 0.0593115 + 0.0430923i
\(241\) 110.134i 0.456988i 0.973545 + 0.228494i \(0.0733801\pi\)
−0.973545 + 0.228494i \(0.926620\pi\)
\(242\) 168.090 32.0598i 0.694586 0.132479i
\(243\) 15.5885 0.0641500
\(244\) −24.9160 + 34.2939i −0.102115 + 0.140549i
\(245\) 46.4843 143.064i 0.189732 0.583935i
\(246\) 15.9098 + 48.9654i 0.0646740 + 0.199046i
\(247\) −230.524 + 167.485i −0.933295 + 0.678079i
\(248\) 27.9929 + 38.5289i 0.112875 + 0.155358i
\(249\) −199.132 + 64.7018i −0.799726 + 0.259847i
\(250\) −148.759 48.3348i −0.595037 0.193339i
\(251\) −346.506 251.751i −1.38050 1.00299i −0.996833 0.0795227i \(-0.974660\pi\)
−0.383669 0.923471i \(-0.625340\pi\)
\(252\) 62.4206i 0.247701i
\(253\) 157.775 398.477i 0.623616 1.57501i
\(254\) −111.261 −0.438034
\(255\) 26.7152 36.7704i 0.104766 0.144197i
\(256\) 4.94427 15.2169i 0.0193136 0.0594410i
\(257\) 11.5694 + 35.6070i 0.0450171 + 0.138549i 0.971039 0.238922i \(-0.0767940\pi\)
−0.926022 + 0.377470i \(0.876794\pi\)
\(258\) −68.1481 + 49.5125i −0.264140 + 0.191909i
\(259\) 260.503 + 358.551i 1.00580 + 1.38437i
\(260\) −63.4833 + 20.6270i −0.244167 + 0.0793346i
\(261\) −32.4842 10.5548i −0.124461 0.0404397i
\(262\) −83.9602 61.0007i −0.320459 0.232827i
\(263\) 219.070i 0.832967i −0.909143 0.416483i \(-0.863262\pi\)
0.909143 0.416483i \(-0.136738\pi\)
\(264\) 28.8744 + 45.5002i 0.109373 + 0.172349i
\(265\) −64.1020 −0.241894
\(266\) 187.507 258.081i 0.704913 0.970230i
\(267\) −10.7027 + 32.9394i −0.0400848 + 0.123368i
\(268\) 79.2990 + 244.057i 0.295892 + 0.910661i
\(269\) −3.46229 + 2.51550i −0.0128710 + 0.00935130i −0.594202 0.804316i \(-0.702532\pi\)
0.581331 + 0.813667i \(0.302532\pi\)
\(270\) −10.9695 15.0982i −0.0406278 0.0559194i
\(271\) 19.2016 6.23898i 0.0708546 0.0230221i −0.273375 0.961907i \(-0.588140\pi\)
0.344230 + 0.938885i \(0.388140\pi\)
\(272\) −39.3074 12.7717i −0.144512 0.0469549i
\(273\) −191.578 139.190i −0.701752 0.509853i
\(274\) 170.875i 0.623631i
\(275\) −157.223 130.070i −0.571721 0.472983i
\(276\) 134.966 0.489009
\(277\) −114.896 + 158.140i −0.414786 + 0.570903i −0.964377 0.264530i \(-0.914783\pi\)
0.549592 + 0.835433i \(0.314783\pi\)
\(278\) −86.7916 + 267.117i −0.312200 + 0.960853i
\(279\) −15.6094 48.0409i −0.0559478 0.172190i
\(280\) 60.4577 43.9251i 0.215920 0.156875i
\(281\) −204.185 281.037i −0.726638 1.00013i −0.999277 0.0380146i \(-0.987897\pi\)
0.272640 0.962116i \(-0.412103\pi\)
\(282\) −82.1563 + 26.6942i −0.291335 + 0.0946603i
\(283\) −294.206 95.5933i −1.03960 0.337785i −0.261019 0.965334i \(-0.584059\pi\)
−0.778578 + 0.627548i \(0.784059\pi\)
\(284\) −166.651 121.079i −0.586801 0.426336i
\(285\) 95.3761i 0.334653i
\(286\) −204.033 12.8396i −0.713403 0.0448938i
\(287\) 218.667 0.761907
\(288\) −9.97505 + 13.7295i −0.0346356 + 0.0476718i
\(289\) 56.3148 173.319i 0.194861 0.599720i
\(290\) 12.6361 + 38.8900i 0.0435729 + 0.134104i
\(291\) −15.2840 + 11.1045i −0.0525225 + 0.0381598i
\(292\) −155.611 214.180i −0.532914 0.733493i
\(293\) −254.792 + 82.7869i −0.869597 + 0.282549i −0.709631 0.704574i \(-0.751138\pi\)
−0.159966 + 0.987123i \(0.551138\pi\)
\(294\) 137.986 + 44.8343i 0.469339 + 0.152498i
\(295\) −144.595 105.055i −0.490153 0.356117i
\(296\) 120.493i 0.407071i
\(297\) −14.2137 55.3622i −0.0478577 0.186405i
\(298\) −149.895 −0.503004
\(299\) −300.957 + 414.232i −1.00655 + 1.38539i
\(300\) 19.8574 61.1148i 0.0661913 0.203716i
\(301\) 110.555 + 340.254i 0.367293 + 1.13041i
\(302\) 12.7694 9.27748i 0.0422826 0.0307201i
\(303\) −31.9621 43.9921i −0.105486 0.145188i
\(304\) 82.4847 26.8009i 0.271331 0.0881608i
\(305\) −51.1926 16.6335i −0.167845 0.0545360i
\(306\) 35.4651 + 25.7669i 0.115899 + 0.0842056i
\(307\) 166.771i 0.543228i 0.962406 + 0.271614i \(0.0875575\pi\)
−0.962406 + 0.271614i \(0.912443\pi\)
\(308\) 221.686 56.9159i 0.719759 0.184792i
\(309\) 135.357 0.438048
\(310\) −35.5459 + 48.9247i −0.114664 + 0.157822i
\(311\) −118.949 + 366.088i −0.382473 + 1.17713i 0.555824 + 0.831300i \(0.312403\pi\)
−0.938297 + 0.345831i \(0.887597\pi\)
\(312\) −19.8948 61.2299i −0.0637654 0.196250i
\(313\) 77.1325 56.0401i 0.246430 0.179042i −0.457713 0.889100i \(-0.651331\pi\)
0.704143 + 0.710058i \(0.251331\pi\)
\(314\) 125.031 + 172.090i 0.398186 + 0.548057i
\(315\) −75.3835 + 24.4936i −0.239313 + 0.0777574i
\(316\) 240.825 + 78.2487i 0.762104 + 0.247623i
\(317\) 450.694 + 327.448i 1.42175 + 1.03296i 0.991480 + 0.130259i \(0.0415809\pi\)
0.430268 + 0.902701i \(0.358419\pi\)
\(318\) 61.8266i 0.194423i
\(319\) −7.86558 + 124.991i −0.0246570 + 0.391822i
\(320\) 20.3171 0.0634910
\(321\) 143.438 197.425i 0.446847 0.615032i
\(322\) 177.137 545.171i 0.550115 1.69308i
\(323\) −69.2304 213.069i −0.214336 0.659657i
\(324\) 14.5623 10.5801i 0.0449454 0.0326547i
\(325\) 143.291 + 197.223i 0.440896 + 0.606841i
\(326\) 251.141 81.6005i 0.770370 0.250308i
\(327\) −287.236 93.3288i −0.878399 0.285409i
\(328\) 48.0961 + 34.9438i 0.146634 + 0.106536i
\(329\) 366.890i 1.11517i
\(330\) −43.6190 + 52.7248i −0.132179 + 0.159772i
\(331\) 141.274 0.426808 0.213404 0.976964i \(-0.431545\pi\)
0.213404 + 0.976964i \(0.431545\pi\)
\(332\) −142.109 + 195.597i −0.428040 + 0.589146i
\(333\) 39.4930 121.547i 0.118598 0.365006i
\(334\) −102.089 314.197i −0.305655 0.940709i
\(335\) −263.624 + 191.534i −0.786937 + 0.571743i
\(336\) 42.3659 + 58.3116i 0.126089 + 0.173546i
\(337\) 359.129 116.688i 1.06566 0.346255i 0.276866 0.960908i \(-0.410704\pi\)
0.788797 + 0.614653i \(0.210704\pi\)
\(338\) 4.98217 + 1.61880i 0.0147401 + 0.00478936i
\(339\) −109.828 79.7949i −0.323977 0.235383i
\(340\) 52.4819i 0.154359i
\(341\) −156.384 + 99.2410i −0.458603 + 0.291029i
\(342\) −91.9905 −0.268978
\(343\) 62.5652 86.1136i 0.182406 0.251060i
\(344\) −30.0571 + 92.5063i −0.0873754 + 0.268914i
\(345\) 52.9602 + 162.995i 0.153508 + 0.472449i
\(346\) 93.5749 67.9862i 0.270448 0.196492i
\(347\) −1.81657 2.50029i −0.00523507 0.00720546i 0.806391 0.591382i \(-0.201418\pi\)
−0.811627 + 0.584177i \(0.801418\pi\)
\(348\) −37.5096 + 12.1876i −0.107786 + 0.0350218i
\(349\) −86.4085 28.0758i −0.247589 0.0804465i 0.182594 0.983188i \(-0.441551\pi\)
−0.430182 + 0.902742i \(0.641551\pi\)
\(350\) −220.800 160.420i −0.630857 0.458344i
\(351\) 68.2863i 0.194548i
\(352\) 57.8554 + 22.9075i 0.164362 + 0.0650782i
\(353\) 310.347 0.879169 0.439585 0.898201i \(-0.355126\pi\)
0.439585 + 0.898201i \(0.355126\pi\)
\(354\) 101.326 139.463i 0.286230 0.393962i
\(355\) 80.8306 248.771i 0.227692 0.700763i
\(356\) 12.3584 + 38.0351i 0.0347145 + 0.106840i
\(357\) 150.627 109.437i 0.421924 0.306546i
\(358\) 161.320 + 222.038i 0.450615 + 0.620219i
\(359\) 80.4945 26.1542i 0.224219 0.0728531i −0.194753 0.980852i \(-0.562391\pi\)
0.418972 + 0.907999i \(0.362391\pi\)
\(360\) −20.4948 6.65918i −0.0569301 0.0184977i
\(361\) 88.2844 + 64.1424i 0.244555 + 0.177680i
\(362\) 187.371i 0.517600i
\(363\) −183.658 + 100.960i −0.505944 + 0.278126i
\(364\) −273.438 −0.751202
\(365\) 197.598 271.970i 0.541363 0.745122i
\(366\) 16.0431 49.3755i 0.0438335 0.134906i
\(367\) −190.835 587.330i −0.519987 1.60035i −0.774021 0.633160i \(-0.781758\pi\)
0.254035 0.967195i \(-0.418242\pi\)
\(368\) 126.082 91.6038i 0.342614 0.248923i
\(369\) −37.0635 51.0136i −0.100443 0.138248i
\(370\) −145.516 + 47.2810i −0.393286 + 0.127786i
\(371\) −249.737 81.1444i −0.673145 0.218718i
\(372\) −47.1881 34.2841i −0.126850 0.0921617i
\(373\) 84.5742i 0.226740i 0.993553 + 0.113370i \(0.0361646\pi\)
−0.993553 + 0.113370i \(0.963835\pi\)
\(374\) 59.1733 149.448i 0.158217 0.399595i
\(375\) 191.568 0.510848
\(376\) −58.6304 + 80.6978i −0.155932 + 0.214622i
\(377\) 46.2358 142.299i 0.122641 0.377452i
\(378\) −23.6241 72.7076i −0.0624977 0.192348i
\(379\) 192.558 139.901i 0.508067 0.369133i −0.304023 0.952665i \(-0.598330\pi\)
0.812090 + 0.583532i \(0.198330\pi\)
\(380\) 64.7333 + 89.0977i 0.170351 + 0.234468i
\(381\) 129.597 42.1085i 0.340149 0.110521i
\(382\) 428.857 + 139.344i 1.12266 + 0.364775i
\(383\) 572.153 + 415.694i 1.49387 + 1.08536i 0.972744 + 0.231884i \(0.0744889\pi\)
0.521129 + 0.853478i \(0.325511\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 155.724 + 245.390i 0.404478 + 0.637376i
\(386\) −279.331 −0.723656
\(387\) 60.6401 83.4640i 0.156693 0.215669i
\(388\) −6.74112 + 20.7470i −0.0173740 + 0.0534718i
\(389\) 104.504 + 321.629i 0.268647 + 0.826810i 0.990831 + 0.135109i \(0.0431384\pi\)
−0.722184 + 0.691701i \(0.756862\pi\)
\(390\) 66.1389 48.0527i 0.169587 0.123212i
\(391\) −236.625 325.687i −0.605180 0.832958i
\(392\) 159.332 51.7702i 0.406460 0.132067i
\(393\) 120.884 + 39.2775i 0.307592 + 0.0999427i
\(394\) 229.503 + 166.743i 0.582494 + 0.423207i
\(395\) 321.541i 0.814029i
\(396\) −50.8533 42.0707i −0.128417 0.106239i
\(397\) −580.074 −1.46114 −0.730572 0.682836i \(-0.760747\pi\)
−0.730572 + 0.682836i \(0.760747\pi\)
\(398\) −175.689 + 241.815i −0.441429 + 0.607575i
\(399\) −120.733 + 371.579i −0.302589 + 0.931274i
\(400\) −22.9294 70.5693i −0.0573234 0.176423i
\(401\) −104.997 + 76.2847i −0.261838 + 0.190236i −0.710957 0.703236i \(-0.751738\pi\)
0.449119 + 0.893472i \(0.351738\pi\)
\(402\) −184.735 254.266i −0.459540 0.632503i
\(403\) 210.447 68.3782i 0.522200 0.169673i
\(404\) −59.7163 19.4030i −0.147813 0.0480272i
\(405\) 18.4915 + 13.4349i 0.0456580 + 0.0331725i
\(406\) 167.508i 0.412582i
\(407\) −467.683 29.4308i −1.14910 0.0723116i
\(408\) 50.6190 0.124066
\(409\) 116.460 160.294i 0.284744 0.391917i −0.642554 0.766241i \(-0.722125\pi\)
0.927298 + 0.374324i \(0.122125\pi\)
\(410\) −23.3279 + 71.7960i −0.0568974 + 0.175112i
\(411\) 64.6705 + 199.035i 0.157349 + 0.484271i
\(412\) 126.447 91.8689i 0.306909 0.222983i
\(413\) −430.348 592.323i −1.04201 1.43420i
\(414\) −157.209 + 51.0803i −0.379732 + 0.123382i
\(415\) −291.979 94.8698i −0.703564 0.228602i
\(416\) −60.1429 43.6963i −0.144574 0.105039i
\(417\) 343.986i 0.824907i
\(418\) 83.8781 + 326.703i 0.200665 + 0.781586i
\(419\) 6.28860 0.0150086 0.00750429 0.999972i \(-0.497611\pi\)
0.00750429 + 0.999972i \(0.497611\pi\)
\(420\) −53.7970 + 74.0452i −0.128088 + 0.176298i
\(421\) −68.1227 + 209.660i −0.161812 + 0.498005i −0.998787 0.0492351i \(-0.984322\pi\)
0.836975 + 0.547240i \(0.184322\pi\)
\(422\) 103.929 + 319.861i 0.246278 + 0.757965i
\(423\) 85.5930 62.1869i 0.202347 0.147014i
\(424\) −41.9627 57.7567i −0.0989686 0.136219i
\(425\) −182.290 + 59.2297i −0.428918 + 0.139364i
\(426\) 239.940 + 77.9614i 0.563240 + 0.183008i
\(427\) −178.387 129.606i −0.417768 0.303527i
\(428\) 281.783i 0.658371i
\(429\) 242.518 62.2642i 0.565309 0.145138i
\(430\) −123.511 −0.287236
\(431\) −38.5539 + 53.0648i −0.0894521 + 0.123120i −0.851398 0.524521i \(-0.824244\pi\)
0.761945 + 0.647641i \(0.224244\pi\)
\(432\) 6.42280 19.7673i 0.0148676 0.0457577i
\(433\) 142.450 + 438.415i 0.328983 + 1.01250i 0.969611 + 0.244653i \(0.0786742\pi\)
−0.640628 + 0.767852i \(0.721326\pi\)
\(434\) −200.416 + 145.611i −0.461789 + 0.335509i
\(435\) −29.4372 40.5168i −0.0676717 0.0931421i
\(436\) −331.672 + 107.767i −0.760716 + 0.247172i
\(437\) 803.430 + 261.050i 1.83851 + 0.597369i
\(438\) 262.316 + 190.583i 0.598894 + 0.435122i
\(439\) 2.92311i 0.00665856i 0.999994 + 0.00332928i \(0.00105974\pi\)
−0.999994 + 0.00332928i \(0.998940\pi\)
\(440\) −4.96252 + 78.8590i −0.0112785 + 0.179225i
\(441\) −177.694 −0.402935
\(442\) −112.874 + 155.357i −0.255370 + 0.351487i
\(443\) 93.6723 288.294i 0.211450 0.650776i −0.787937 0.615756i \(-0.788851\pi\)
0.999387 0.0350198i \(-0.0111494\pi\)
\(444\) −45.6026 140.350i −0.102709 0.316105i
\(445\) −41.0845 + 29.8496i −0.0923247 + 0.0670778i
\(446\) −117.660 161.945i −0.263811 0.363104i
\(447\) 174.598 56.7304i 0.390600 0.126914i
\(448\) 79.1540 + 25.7187i 0.176683 + 0.0574078i
\(449\) 275.746 + 200.341i 0.614133 + 0.446194i 0.850867 0.525380i \(-0.176077\pi\)
−0.236734 + 0.971575i \(0.576077\pi\)
\(450\) 78.7020i 0.174893i
\(451\) −147.379 + 178.145i −0.326783 + 0.395001i
\(452\) −156.757 −0.346807
\(453\) −11.3625 + 15.6392i −0.0250829 + 0.0345236i
\(454\) −98.9346 + 304.489i −0.217918 + 0.670681i
\(455\) −107.296 330.222i −0.235815 0.725763i
\(456\) −85.9350 + 62.4354i −0.188454 + 0.136920i
\(457\) −456.291 628.031i −0.998449 1.37425i −0.926272 0.376855i \(-0.877005\pi\)
−0.0721770 0.997392i \(-0.522995\pi\)
\(458\) 230.506 74.8960i 0.503289 0.163528i
\(459\) −51.0618 16.5910i −0.111246 0.0361459i
\(460\) 160.101 + 116.320i 0.348046 + 0.252870i
\(461\) 459.872i 0.997553i −0.866731 0.498776i \(-0.833783\pi\)
0.866731 0.498776i \(-0.166217\pi\)
\(462\) −236.679 + 150.196i −0.512293 + 0.325101i
\(463\) −39.3897 −0.0850749 −0.0425375 0.999095i \(-0.513544\pi\)
−0.0425375 + 0.999095i \(0.513544\pi\)
\(464\) −26.7685 + 36.8436i −0.0576907 + 0.0794044i
\(465\) 22.8875 70.4406i 0.0492205 0.151485i
\(466\) −40.4511 124.496i −0.0868048 0.267158i
\(467\) 296.268 215.251i 0.634406 0.460923i −0.223518 0.974700i \(-0.571754\pi\)
0.857924 + 0.513777i \(0.171754\pi\)
\(468\) 46.3470 + 63.7911i 0.0990320 + 0.136306i
\(469\) −1269.52 + 412.491i −2.70686 + 0.879511i
\(470\) −120.463 39.1407i −0.256304 0.0832781i
\(471\) −210.766 153.131i −0.447486 0.325118i
\(472\) 199.053i 0.421723i
\(473\) −351.713 139.259i −0.743580 0.294417i
\(474\) −310.128 −0.654278
\(475\) 236.415 325.397i 0.497716 0.685047i
\(476\) 66.4350 204.466i 0.139569 0.429550i
\(477\) 23.3993 + 72.0157i 0.0490552 + 0.150976i
\(478\) −276.355 + 200.783i −0.578148 + 0.420049i
\(479\) −164.073 225.828i −0.342533 0.471456i 0.602646 0.798009i \(-0.294113\pi\)
−0.945179 + 0.326552i \(0.894113\pi\)
\(480\) −23.6654 + 7.68935i −0.0493029 + 0.0160195i
\(481\) 532.445 + 173.002i 1.10695 + 0.359671i
\(482\) −126.007 91.5494i −0.261425 0.189936i
\(483\) 702.057i 1.45353i
\(484\) −103.045 + 218.965i −0.212903 + 0.452407i
\(485\) −27.7008 −0.0571150
\(486\) −12.9580 + 17.8351i −0.0266625 + 0.0366978i
\(487\) −141.465 + 435.383i −0.290482 + 0.894011i 0.694220 + 0.719763i \(0.255749\pi\)
−0.984702 + 0.174248i \(0.944251\pi\)
\(488\) −18.5249 57.0139i −0.0379609 0.116832i
\(489\) −261.646 + 190.097i −0.535063 + 0.388746i
\(490\) 125.043 + 172.106i 0.255189 + 0.351237i
\(491\) 156.302 50.7856i 0.318334 0.103433i −0.145492 0.989359i \(-0.546476\pi\)
0.463826 + 0.885927i \(0.346476\pi\)
\(492\) −69.2475 22.4999i −0.140747 0.0457314i
\(493\) 95.1722 + 69.1467i 0.193047 + 0.140257i
\(494\) 402.971i 0.815730i
\(495\) 30.8529 77.9223i 0.0623291 0.157419i
\(496\) −67.3510 −0.135788
\(497\) 629.821 866.874i 1.26724 1.74421i
\(498\) 91.5022 281.615i 0.183739 0.565492i
\(499\) 40.2278 + 123.808i 0.0806168 + 0.248113i 0.983239 0.182320i \(-0.0583608\pi\)
−0.902622 + 0.430433i \(0.858361\pi\)
\(500\) 178.958 130.020i 0.357915 0.260041i
\(501\) 237.826 + 327.340i 0.474703 + 0.653373i
\(502\) 576.069 187.176i 1.14755 0.372861i
\(503\) −301.238 97.8781i −0.598883 0.194589i −0.00614061 0.999981i \(-0.501955\pi\)
−0.592742 + 0.805392i \(0.701955\pi\)
\(504\) −71.4168 51.8874i −0.141700 0.102951i
\(505\) 79.7312i 0.157884i
\(506\) 324.756 + 511.750i 0.641810 + 1.01136i
\(507\) −6.41590 −0.0126546
\(508\) 92.4859 127.296i 0.182059 0.250582i
\(509\) −141.338 + 434.993i −0.277677 + 0.854602i 0.710822 + 0.703372i \(0.248323\pi\)
−0.988499 + 0.151230i \(0.951677\pi\)
\(510\) 19.8627 + 61.1310i 0.0389464 + 0.119865i
\(511\) 1114.10 809.443i 2.18024 1.58404i
\(512\) 13.3001 + 18.3060i 0.0259767 + 0.0357538i
\(513\) 107.151 34.8154i 0.208871 0.0678662i
\(514\) −50.3559 16.3616i −0.0979686 0.0318319i
\(515\) 160.564 + 116.657i 0.311776 + 0.226518i
\(516\) 119.127i 0.230867i
\(517\) −298.901 247.279i −0.578144 0.478297i
\(518\) −626.771 −1.20998
\(519\) −83.2657 + 114.605i −0.160435 + 0.220820i
\(520\) 29.1710 89.7790i 0.0560980 0.172652i
\(521\) 130.177 + 400.643i 0.249859 + 0.768988i 0.994799 + 0.101856i \(0.0324783\pi\)
−0.744940 + 0.667132i \(0.767522\pi\)
\(522\) 39.0786 28.3923i 0.0748632 0.0543913i
\(523\) −149.432 205.675i −0.285720 0.393260i 0.641898 0.766790i \(-0.278147\pi\)
−0.927618 + 0.373530i \(0.878147\pi\)
\(524\) 139.584 45.3537i 0.266383 0.0865529i
\(525\) 317.902 + 103.293i 0.605527 + 0.196748i
\(526\) 250.643 + 182.103i 0.476508 + 0.346203i
\(527\) 173.977i 0.330127i
\(528\) −76.0598 4.78637i −0.144053 0.00906510i
\(529\) 988.993 1.86955
\(530\) 53.2850 73.3406i 0.100538 0.138378i
\(531\) −65.2421 + 200.795i −0.122867 + 0.378144i
\(532\) 139.411 + 429.062i 0.262050 + 0.806507i
\(533\) 223.468 162.359i 0.419265 0.304614i
\(534\) −28.7901 39.6261i −0.0539140 0.0742062i
\(535\) 340.301 110.570i 0.636076 0.206674i
\(536\) −345.149 112.146i −0.643934 0.209227i
\(537\) −271.940 197.576i −0.506406 0.367926i
\(538\) 6.05230i 0.0112496i
\(539\) 162.024 + 631.079i 0.300601 + 1.17083i
\(540\) 26.3927 0.0488754
\(541\) 117.474 161.689i 0.217142 0.298870i −0.686525 0.727106i \(-0.740865\pi\)
0.903667 + 0.428236i \(0.140865\pi\)
\(542\) −8.82325 + 27.1552i −0.0162791 + 0.0501018i
\(543\) 70.9138 + 218.250i 0.130596 + 0.401934i
\(544\) 47.2868 34.3559i 0.0869243 0.0631542i
\(545\) −260.293 358.263i −0.477603 0.657364i
\(546\) 318.501 103.487i 0.583334 0.189537i
\(547\) −616.280 200.242i −1.12665 0.366072i −0.314351 0.949307i \(-0.601787\pi\)
−0.812304 + 0.583235i \(0.801787\pi\)
\(548\) 195.502 + 142.040i 0.356755 + 0.259198i
\(549\) 63.5844i 0.115819i
\(550\) 279.509 71.7614i 0.508198 0.130475i
\(551\) −246.861 −0.448023
\(552\) −112.191 + 154.418i −0.203245 + 0.279743i
\(553\) −407.028 + 1252.70i −0.736036 + 2.26528i
\(554\) −85.4244 262.909i −0.154196 0.474566i
\(555\) 151.603 110.146i 0.273158 0.198461i
\(556\) −233.469 321.342i −0.419908 0.577954i
\(557\) 721.950 234.576i 1.29614 0.421141i 0.421903 0.906641i \(-0.361362\pi\)
0.874237 + 0.485500i \(0.161362\pi\)
\(558\) 67.9402 + 22.0751i 0.121757 + 0.0395611i
\(559\) 365.619 + 265.638i 0.654060 + 0.475202i
\(560\) 105.684i 0.188721i
\(561\) −12.3639 + 196.473i −0.0220390 + 0.350219i
\(562\) 491.270 0.874146
\(563\) −279.523 + 384.731i −0.496489 + 0.683359i −0.981568 0.191111i \(-0.938791\pi\)
0.485079 + 0.874470i \(0.338791\pi\)
\(564\) 37.7513 116.187i 0.0669350 0.206005i
\(565\) −61.5106 189.310i −0.108868 0.335062i
\(566\) 353.930 257.145i 0.625318 0.454320i
\(567\) 55.0349 + 75.7490i 0.0970633 + 0.133596i
\(568\) 277.059 90.0220i 0.487781 0.158490i
\(569\) −181.060 58.8299i −0.318207 0.103392i 0.145559 0.989350i \(-0.453502\pi\)
−0.463766 + 0.885958i \(0.653502\pi\)
\(570\) −109.122 79.2817i −0.191442 0.139091i
\(571\) 221.036i 0.387104i 0.981090 + 0.193552i \(0.0620008\pi\)
−0.981090 + 0.193552i \(0.937999\pi\)
\(572\) 184.294 222.766i 0.322191 0.389451i
\(573\) −552.270 −0.963822
\(574\) −181.768 + 250.182i −0.316669 + 0.435857i
\(575\) 223.340 687.370i 0.388418 1.19543i
\(576\) −7.41641 22.8254i −0.0128757 0.0396274i
\(577\) −672.664 + 488.719i −1.16580 + 0.847000i −0.990500 0.137516i \(-0.956088\pi\)
−0.175296 + 0.984516i \(0.556088\pi\)
\(578\) 151.486 + 208.503i 0.262087 + 0.360732i
\(579\) 325.366 105.718i 0.561944 0.182587i
\(580\) −54.9988 17.8702i −0.0948255 0.0308107i
\(581\) −1017.44 739.212i −1.75118 1.27231i
\(582\) 26.7175i 0.0459063i
\(583\) 234.427 148.767i 0.402104 0.255175i
\(584\) 374.400 0.641096
\(585\) −58.8523 + 81.0032i −0.100602 + 0.138467i
\(586\) 117.078 360.330i 0.199792 0.614898i
\(587\) 234.125 + 720.562i 0.398850 + 1.22753i 0.925923 + 0.377713i \(0.123289\pi\)
−0.527073 + 0.849820i \(0.676711\pi\)
\(588\) −165.997 + 120.604i −0.282308 + 0.205109i
\(589\) −214.590 295.358i −0.364329 0.501456i
\(590\) 240.391 78.1077i 0.407442 0.132386i
\(591\) −330.432 107.364i −0.559106 0.181665i
\(592\) −137.859 100.160i −0.232870 0.169190i
\(593\) 770.248i 1.29890i 0.760404 + 0.649450i \(0.225001\pi\)
−0.760404 + 0.649450i \(0.774999\pi\)
\(594\) 75.1563 + 29.7577i 0.126526 + 0.0500972i
\(595\) 272.996 0.458817
\(596\) 124.601 171.499i 0.209062 0.287749i
\(597\) 113.124 348.159i 0.189487 0.583180i
\(598\) −223.761 688.664i −0.374182 1.15161i
\(599\) 123.174 89.4914i 0.205633 0.149401i −0.480203 0.877158i \(-0.659437\pi\)
0.685836 + 0.727756i \(0.259437\pi\)
\(600\) 53.4163 + 73.5212i 0.0890272 + 0.122535i
\(601\) −75.3361 + 24.4782i −0.125351 + 0.0407291i −0.371021 0.928625i \(-0.620992\pi\)
0.245670 + 0.969354i \(0.420992\pi\)
\(602\) −481.192 156.349i −0.799322 0.259715i
\(603\) 311.411 + 226.253i 0.516436 + 0.375213i
\(604\) 22.3217i 0.0369564i
\(605\) −304.872 38.5232i −0.503921 0.0636747i
\(606\) 76.9010 0.126899
\(607\) −113.294 + 155.936i −0.186646 + 0.256896i −0.892078 0.451882i \(-0.850753\pi\)
0.705432 + 0.708777i \(0.250753\pi\)
\(608\) −37.9022 + 116.651i −0.0623391 + 0.191860i
\(609\) −63.3964 195.114i −0.104099 0.320384i
\(610\) 61.5848 44.7440i 0.100959 0.0733508i
\(611\) 272.414 + 374.946i 0.445849 + 0.613659i
\(612\) −58.9610 + 19.1576i −0.0963416 + 0.0313033i
\(613\) −343.466 111.599i −0.560304 0.182054i 0.0151539 0.999885i \(-0.495176\pi\)
−0.575458 + 0.817831i \(0.695176\pi\)
\(614\) −190.807 138.629i −0.310760 0.225780i
\(615\) 92.4570i 0.150337i
\(616\) −119.158 + 300.947i −0.193439 + 0.488551i
\(617\) −928.141 −1.50428 −0.752140 0.659003i \(-0.770978\pi\)
−0.752140 + 0.659003i \(0.770978\pi\)
\(618\) −112.516 + 154.865i −0.182065 + 0.250590i
\(619\) −248.587 + 765.072i −0.401594 + 1.23598i 0.522111 + 0.852877i \(0.325145\pi\)
−0.923706 + 0.383103i \(0.874855\pi\)
\(620\) −26.4282 81.3378i −0.0426262 0.131190i
\(621\) 163.785 118.997i 0.263744 0.191621i
\(622\) −319.973 440.404i −0.514425 0.708046i
\(623\) −197.848 + 64.2847i −0.317573 + 0.103186i
\(624\) 86.5921 + 28.1355i 0.138769 + 0.0450889i
\(625\) −147.943 107.487i −0.236708 0.171979i
\(626\) 134.833i 0.215388i
\(627\) −221.348 348.799i −0.353026 0.556298i
\(628\) −300.824 −0.479019
\(629\) −258.728 + 356.108i −0.411332 + 0.566150i
\(630\) 34.6392 106.608i 0.0549828 0.169220i
\(631\) 4.37296 + 13.4586i 0.00693020 + 0.0213290i 0.954462 0.298333i \(-0.0964306\pi\)
−0.947532 + 0.319662i \(0.896431\pi\)
\(632\) −289.713 + 210.489i −0.458406 + 0.333052i
\(633\) −242.114 333.241i −0.382486 0.526447i
\(634\) −749.282 + 243.457i −1.18183 + 0.384001i
\(635\) 190.022 + 61.7421i 0.299248 + 0.0972316i
\(636\) 70.7372 + 51.3936i 0.111222 + 0.0808075i
\(637\) 778.402i 1.22198i
\(638\) −136.467 112.899i −0.213898 0.176957i
\(639\) −308.989 −0.483551
\(640\) −16.8887 + 23.2453i −0.0263886 + 0.0363207i
\(641\) 162.989 501.628i 0.254273 0.782571i −0.739699 0.672937i \(-0.765032\pi\)
0.993972 0.109633i \(-0.0349677\pi\)
\(642\) 106.645 + 328.221i 0.166114 + 0.511248i
\(643\) 348.552 253.238i 0.542072 0.393839i −0.282782 0.959184i \(-0.591257\pi\)
0.824854 + 0.565346i \(0.191257\pi\)
\(644\) 476.497 + 655.842i 0.739902 + 1.01839i
\(645\) 143.866 46.7450i 0.223049 0.0724729i
\(646\) 301.325 + 97.9066i 0.466448 + 0.151558i
\(647\) 40.3167 + 29.2918i 0.0623133 + 0.0452732i 0.618506 0.785780i \(-0.287738\pi\)
−0.556193 + 0.831053i \(0.687738\pi\)
\(648\) 25.4558i 0.0392837i
\(649\) 772.608 + 48.6195i 1.19046 + 0.0749144i
\(650\) −344.759 −0.530399
\(651\) 178.336 245.459i 0.273942 0.377049i
\(652\) −115.401 + 355.166i −0.176995 + 0.544734i
\(653\) 225.607 + 694.347i 0.345493 + 1.06332i 0.961319 + 0.275436i \(0.0888222\pi\)
−0.615826 + 0.787882i \(0.711178\pi\)
\(654\) 345.546 251.054i 0.528358 0.383874i
\(655\) 109.545 + 150.775i 0.167244 + 0.230191i
\(656\) −79.9601 + 25.9806i −0.121890 + 0.0396046i
\(657\) −377.675 122.714i −0.574848 0.186779i
\(658\) −419.767 304.979i −0.637944 0.463494i
\(659\) 536.209i 0.813671i 0.913501 + 0.406836i \(0.133368\pi\)
−0.913501 + 0.406836i \(0.866632\pi\)
\(660\) −24.0652 93.7333i −0.0364624 0.142020i
\(661\) −636.800 −0.963389 −0.481694 0.876339i \(-0.659978\pi\)
−0.481694 + 0.876339i \(0.659978\pi\)
\(662\) −117.434 + 161.634i −0.177393 + 0.244161i
\(663\) 72.6779 223.679i 0.109620 0.337375i
\(664\) −105.658 325.181i −0.159123 0.489730i
\(665\) −463.461 + 336.724i −0.696934 + 0.506352i
\(666\) 106.236 + 146.221i 0.159514 + 0.219552i
\(667\) −421.877 + 137.076i −0.632500 + 0.205512i
\(668\) 444.341 + 144.375i 0.665182 + 0.216131i
\(669\) 198.341 + 144.103i 0.296473 + 0.215401i
\(670\) 460.831i 0.687808i
\(671\) 225.819 57.9770i 0.336541 0.0864039i
\(672\) −101.932 −0.151685
\(673\) 294.827 405.795i 0.438079 0.602965i −0.531705 0.846930i \(-0.678448\pi\)
0.969784 + 0.243965i \(0.0784483\pi\)
\(674\) −165.022 + 507.885i −0.244839 + 0.753538i
\(675\) −29.7861 91.6722i −0.0441276 0.135811i
\(676\) −5.99356 + 4.35457i −0.00886621 + 0.00644168i
\(677\) 130.318 + 179.367i 0.192493 + 0.264944i 0.894344 0.447380i \(-0.147643\pi\)
−0.701851 + 0.712324i \(0.747643\pi\)
\(678\) 182.590 59.3272i 0.269307 0.0875032i
\(679\) −107.920 35.0654i −0.158940 0.0516427i
\(680\) 60.0457 + 43.6258i 0.0883026 + 0.0641556i
\(681\) 392.113i 0.575790i
\(682\) 16.4507 261.417i 0.0241213 0.383309i
\(683\) 247.703 0.362669 0.181335 0.983421i \(-0.441958\pi\)
0.181335 + 0.983421i \(0.441958\pi\)
\(684\) 76.4675 105.248i 0.111795 0.153872i
\(685\) −94.8239 + 291.838i −0.138429 + 0.426041i
\(686\) 46.5170 + 143.164i 0.0678090 + 0.208695i
\(687\) −240.148 + 174.478i −0.349561 + 0.253971i
\(688\) −80.8535 111.285i −0.117520 0.161752i
\(689\) −315.470 + 102.502i −0.457866 + 0.148770i
\(690\) −230.509 74.8971i −0.334072 0.108546i
\(691\) 343.704 + 249.715i 0.497401 + 0.361383i 0.808023 0.589151i \(-0.200538\pi\)
−0.310623 + 0.950533i \(0.600538\pi\)
\(692\) 163.575i 0.236380i
\(693\) 218.840 264.524i 0.315786 0.381709i
\(694\) 4.37067 0.00629780
\(695\) 296.463 408.047i 0.426566 0.587118i
\(696\) 17.2359 53.0465i 0.0247642 0.0762163i
\(697\) 67.1115 + 206.548i 0.0962862 + 0.296339i
\(698\) 103.950 75.5238i 0.148925 0.108200i
\(699\) 94.2349 + 129.703i 0.134814 + 0.185555i
\(700\) 367.081 119.272i 0.524402 0.170389i
\(701\) 326.685 + 106.146i 0.466027 + 0.151421i 0.532612 0.846359i \(-0.321210\pi\)
−0.0665852 + 0.997781i \(0.521210\pi\)
\(702\) −78.1279 56.7632i −0.111293 0.0808593i
\(703\) 923.685i 1.31392i
\(704\) −74.3015 + 47.1517i −0.105542 + 0.0669768i
\(705\) 155.129 0.220040
\(706\) −257.977 + 355.075i −0.365407 + 0.502939i
\(707\) 100.929 310.627i 0.142757 0.439360i
\(708\) 75.3351 + 231.858i 0.106406 + 0.327483i
\(709\) −185.730 + 134.940i −0.261960 + 0.190325i −0.711011 0.703181i \(-0.751762\pi\)
0.449051 + 0.893506i \(0.351762\pi\)
\(710\) 217.434 + 299.272i 0.306245 + 0.421510i
\(711\) 361.237 117.373i 0.508069 0.165082i
\(712\) −53.7898 17.4774i −0.0755474 0.0245468i
\(713\) −530.733 385.600i −0.744367 0.540814i
\(714\) 263.306i 0.368775i
\(715\) 341.344 + 135.153i 0.477404 + 0.189026i
\(716\) −388.137 −0.542091
\(717\) 245.909 338.464i 0.342969 0.472056i
\(718\) −36.9877 + 113.836i −0.0515149 + 0.158547i
\(719\) −119.186 366.816i −0.165766 0.510175i 0.833326 0.552782i \(-0.186434\pi\)
−0.999092 + 0.0426067i \(0.986434\pi\)
\(720\) 24.6553 17.9131i 0.0342435 0.0248794i
\(721\) 477.876 + 657.740i 0.662796 + 0.912261i
\(722\) −146.774 + 47.6896i −0.203287 + 0.0660521i
\(723\) 181.421 + 58.9474i 0.250929 + 0.0815317i
\(724\) 214.376 + 155.753i 0.296099 + 0.215128i
\(725\) 211.200i 0.291311i
\(726\) 37.1557 294.050i 0.0511787 0.405028i
\(727\) 1278.70 1.75887 0.879434 0.476022i \(-0.157922\pi\)
0.879434 + 0.476022i \(0.157922\pi\)
\(728\) 227.296 312.846i 0.312220 0.429734i
\(729\) 8.34346 25.6785i 0.0114451 0.0352243i
\(730\) 146.913 + 452.152i 0.201251 + 0.619386i
\(731\) −287.465 + 208.856i −0.393249 + 0.285712i
\(732\) 43.1557 + 59.3988i 0.0589559 + 0.0811459i
\(733\) −205.424 + 66.7463i −0.280251 + 0.0910591i −0.445770 0.895148i \(-0.647070\pi\)
0.165519 + 0.986207i \(0.447070\pi\)
\(734\) 830.610 + 269.882i 1.13162 + 0.367686i
\(735\) −210.786 153.145i −0.286784 0.208361i
\(736\) 220.399i 0.299455i
\(737\) 519.587 1312.27i 0.705003 1.78056i
\(738\) 89.1750 0.120833
\(739\) −104.632 + 144.014i −0.141586 + 0.194876i −0.873921 0.486068i \(-0.838431\pi\)
0.732335 + 0.680945i \(0.238431\pi\)
\(740\) 66.8654 205.790i 0.0903586 0.278095i
\(741\) 152.511 + 469.381i 0.205818 + 0.633442i
\(742\) 300.434 218.278i 0.404898 0.294175i
\(743\) 291.220 + 400.829i 0.391951 + 0.539474i 0.958701 0.284415i \(-0.0917995\pi\)
−0.566750 + 0.823890i \(0.691799\pi\)
\(744\) 78.4505 25.4901i 0.105444 0.0342609i
\(745\) 256.007 + 83.1816i 0.343633 + 0.111653i
\(746\) −96.7632 70.3026i −0.129709 0.0942394i
\(747\) 362.656i 0.485483i
\(748\) 121.799 + 191.931i 0.162833 + 0.256592i
\(749\) 1465.75 1.95695
\(750\) −159.242 + 219.177i −0.212322 + 0.292236i
\(751\) 238.869 735.163i 0.318068 0.978912i −0.656406 0.754408i \(-0.727924\pi\)
0.974473 0.224504i \(-0.0720760\pi\)
\(752\) −43.5915 134.161i −0.0579674 0.178405i
\(753\) −600.166 + 436.046i −0.797033 + 0.579078i
\(754\) 124.374 + 171.186i 0.164952 + 0.227038i
\(755\) −26.9572 + 8.75892i −0.0357049 + 0.0116012i
\(756\) 102.824 + 33.4096i 0.136011 + 0.0441926i
\(757\) 577.842 + 419.827i 0.763332 + 0.554593i 0.899931 0.436033i \(-0.143617\pi\)
−0.136598 + 0.990627i \(0.543617\pi\)
\(758\) 336.603i 0.444067i
\(759\) −571.957 473.178i −0.753566 0.623422i
\(760\) −155.748 −0.204932
\(761\) −69.9198 + 96.2364i −0.0918789 + 0.126460i −0.852482 0.522757i \(-0.824903\pi\)
0.760603 + 0.649217i \(0.224903\pi\)
\(762\) −59.5504 + 183.277i −0.0781501 + 0.240521i
\(763\) −560.572 1725.26i −0.734695 2.26116i
\(764\) −515.916 + 374.835i −0.675282 + 0.490621i
\(765\) −46.2721 63.6881i −0.0604864 0.0832524i
\(766\) −951.209 + 309.067i −1.24179 + 0.403481i
\(767\) −879.594 285.797i −1.14680 0.372617i
\(768\) −22.4201 16.2892i −0.0291929 0.0212099i
\(769\) 1110.58i 1.44419i −0.691792 0.722097i \(-0.743179\pi\)
0.691792 0.722097i \(-0.256821\pi\)
\(770\) −410.202 25.8136i −0.532730 0.0335242i
\(771\) 64.8469 0.0841075
\(772\) 232.195 319.589i 0.300771 0.413976i
\(773\) −146.414 + 450.617i −0.189411 + 0.582946i −0.999996 0.00267413i \(-0.999149\pi\)
0.810586 + 0.585620i \(0.199149\pi\)
\(774\) 45.0857 + 138.760i 0.0582503 + 0.179276i
\(775\) −252.692 + 183.591i −0.326054 + 0.236892i
\(776\) −18.1336 24.9587i −0.0233680 0.0321633i
\(777\) 730.063 237.212i 0.939593 0.305292i
\(778\) −454.852 147.790i −0.584643 0.189962i
\(779\) −368.699 267.875i −0.473297 0.343871i
\(780\) 115.615i 0.148224i
\(781\) 281.740 + 1097.37i 0.360742 + 1.40508i
\(782\) 569.321 0.728032
\(783\) −34.7733 + 47.8613i −0.0444103 + 0.0611255i
\(784\) −73.2141 + 225.330i −0.0933853 + 0.287410i
\(785\) −118.042 363.296i −0.150372 0.462798i
\(786\) −145.423 + 105.656i −0.185017 + 0.134423i
\(787\) 479.922 + 660.556i 0.609812 + 0.839334i 0.996562 0.0828505i \(-0.0264024\pi\)
−0.386750 + 0.922185i \(0.626402\pi\)
\(788\) −381.550 + 123.973i −0.484200 + 0.157326i
\(789\) −360.870 117.254i −0.457376 0.148610i
\(790\) −367.883 267.282i −0.465674 0.338332i
\(791\) 815.403i 1.03085i
\(792\) 90.4060 23.2109i 0.114149 0.0293067i
\(793\) −278.536 −0.351243
\(794\) 482.189 663.676i 0.607291 0.835864i
\(795\) −34.3095 + 105.594i −0.0431566 + 0.132822i
\(796\) −130.624 402.019i −0.164100 0.505049i
\(797\) 669.042 486.088i 0.839451 0.609897i −0.0827665 0.996569i \(-0.526376\pi\)
0.922217 + 0.386672i \(0.126376\pi\)
\(798\) −324.772 447.010i −0.406982 0.560162i
\(799\) −346.556 + 112.603i −0.433737 + 0.140930i
\(800\) 99.8000 + 32.4270i 0.124750 + 0.0405338i
\(801\) 48.5319 + 35.2605i 0.0605891 + 0.0440206i
\(802\) 183.541i 0.228854i
\(803\) −91.4485 + 1453.20i −0.113884 + 1.80971i
\(804\) 444.473 0.552828
\(805\) −605.065 + 832.801i −0.751634 + 1.03454i
\(806\) −96.7014 + 297.616i −0.119977 + 0.369251i
\(807\) 2.29060 + 7.04973i 0.00283841 + 0.00873572i
\(808\) 71.8388 52.1940i 0.0889094 0.0645965i
\(809\) −280.739 386.404i −0.347020 0.477632i 0.599455 0.800408i \(-0.295384\pi\)
−0.946475 + 0.322776i \(0.895384\pi\)
\(810\) −30.7423 + 9.98877i −0.0379534 + 0.0123318i
\(811\) 1096.93 + 356.415i 1.35257 + 0.439477i 0.893556 0.448953i \(-0.148203\pi\)
0.459014 + 0.888429i \(0.348203\pi\)
\(812\) −191.650 139.242i −0.236022 0.171480i
\(813\) 34.9697i 0.0430132i
\(814\) 422.436 510.622i 0.518963 0.627300i
\(815\) −474.206 −0.581848
\(816\) −42.0772 + 57.9143i −0.0515652 + 0.0709734i
\(817\) 230.414 709.142i 0.282025 0.867983i
\(818\) 86.5878 + 266.490i 0.105853 + 0.325782i
\(819\) −331.823 + 241.084i −0.405157 + 0.294364i
\(820\) −62.7520 86.3707i −0.0765268 0.105330i
\(821\) −1006.94 + 327.176i −1.22648 + 0.398509i −0.849440 0.527686i \(-0.823060\pi\)
−0.377045 + 0.926195i \(0.623060\pi\)
\(822\) −281.479 91.4579i −0.342431 0.111263i
\(823\) 340.139 + 247.126i 0.413292 + 0.300274i 0.774933 0.632043i \(-0.217784\pi\)
−0.361641 + 0.932317i \(0.617784\pi\)
\(824\) 221.037i 0.268249i
\(825\) −298.413 + 189.373i −0.361713 + 0.229543i
\(826\) 1035.42 1.25353
\(827\) −362.950 + 499.558i −0.438875 + 0.604060i −0.969962 0.243258i \(-0.921784\pi\)
0.531086 + 0.847318i \(0.321784\pi\)
\(828\) 72.2385 222.327i 0.0872445 0.268511i
\(829\) −258.162 794.542i −0.311414 0.958435i −0.977205 0.212296i \(-0.931906\pi\)
0.665791 0.746138i \(-0.268094\pi\)
\(830\) 351.251 255.199i 0.423195 0.307469i
\(831\) 199.005 + 273.907i 0.239477 + 0.329611i
\(832\) 99.9880 32.4881i 0.120178 0.0390482i
\(833\) 582.058 + 189.122i 0.698749 + 0.227037i
\(834\) 393.562 + 285.940i 0.471897 + 0.342854i
\(835\) 593.270i 0.710503i
\(836\) −443.512 175.606i −0.530517 0.210055i
\(837\) −87.4915 −0.104530
\(838\) −5.22742 + 7.19493i −0.00623797 + 0.00858583i
\(839\) 334.351 1029.03i 0.398511 1.22649i −0.527682 0.849442i \(-0.676939\pi\)
0.926193 0.377049i \(-0.123061\pi\)
\(840\) −39.9979 123.101i −0.0476165 0.146548i
\(841\) −575.514 + 418.136i −0.684321 + 0.497189i
\(842\) −183.250 252.222i −0.217636 0.299551i
\(843\) −572.232 + 185.930i −0.678805 + 0.220557i
\(844\) −452.352 146.978i −0.535962 0.174145i
\(845\) −7.61074 5.52952i −0.00900679 0.00654381i
\(846\) 149.622i 0.176858i
\(847\) −1139.00 536.010i −1.34474 0.632834i
\(848\) 100.962 0.119059
\(849\) −314.937 + 433.474i −0.370951 + 0.510570i
\(850\) 83.7634 257.797i 0.0985452 0.303291i
\(851\) −512.902 1578.55i −0.602705 1.85493i
\(852\) −288.649 + 209.716i −0.338790 + 0.246145i
\(853\) 240.453 + 330.955i 0.281891 + 0.387989i 0.926359 0.376642i \(-0.122921\pi\)
−0.644468 + 0.764631i \(0.722921\pi\)
\(854\) 296.570 96.3614i 0.347272 0.112835i
\(855\) 157.111 + 51.0484i 0.183755 + 0.0597058i
\(856\) 322.394 + 234.233i 0.376629 + 0.273637i
\(857\) 1699.98i 1.98364i 0.127639 + 0.991821i \(0.459260\pi\)
−0.127639 + 0.991821i \(0.540740\pi\)
\(858\) −130.356 + 329.227i −0.151930 + 0.383715i
\(859\) 554.842 0.645916 0.322958 0.946413i \(-0.395323\pi\)
0.322958 + 0.946413i \(0.395323\pi\)
\(860\) 102.669 141.312i 0.119383 0.164317i
\(861\) 117.038 360.206i 0.135933 0.418358i
\(862\) −28.6646 88.2207i −0.0332536 0.102344i
\(863\) −118.151 + 85.8417i −0.136907 + 0.0994690i −0.654131 0.756381i \(-0.726966\pi\)
0.517224 + 0.855850i \(0.326966\pi\)
\(864\) 17.2773 + 23.7801i 0.0199969 + 0.0275233i
\(865\) −197.545 + 64.1861i −0.228375 + 0.0742036i
\(866\) −620.012 201.454i −0.715949 0.232626i
\(867\) −255.363 185.532i −0.294536 0.213993i
\(868\) 350.341i 0.403618i
\(869\) −746.229 1175.91i −0.858722 1.35317i
\(870\) 70.8260 0.0814091
\(871\) −991.118 + 1364.16i −1.13791 + 1.56620i
\(872\) 152.405 469.055i 0.174777 0.537907i
\(873\) 10.1117 + 31.1206i 0.0115827 + 0.0356478i
\(874\) −966.528 + 702.224i −1.10587 + 0.803460i
\(875\) 676.329 + 930.887i 0.772947 + 1.06387i
\(876\) −436.102 + 141.698i −0.497833 + 0.161756i
\(877\) 119.880 + 38.9512i 0.136693 + 0.0444142i 0.376564 0.926390i \(-0.377105\pi\)
−0.239872 + 0.970805i \(0.577105\pi\)
\(878\) −3.34439 2.42984i −0.00380910 0.00276748i
\(879\) 464.023i 0.527899i
\(880\) −86.0993 71.2296i −0.0978401 0.0809427i
\(881\) −146.295 −0.166055 −0.0830276 0.996547i \(-0.526459\pi\)
−0.0830276 + 0.996547i \(0.526459\pi\)
\(882\) 147.709 203.304i 0.167471 0.230504i
\(883\) −470.836 + 1449.08i −0.533223 + 1.64109i 0.214235 + 0.976782i \(0.431274\pi\)
−0.747458 + 0.664309i \(0.768726\pi\)
\(884\) −83.9212 258.283i −0.0949334 0.292175i
\(885\) −250.446 + 181.960i −0.282990 + 0.205604i
\(886\) 251.978 + 346.818i 0.284400 + 0.391442i
\(887\) 1530.10 497.161i 1.72503 0.560497i 0.732314 0.680967i \(-0.238440\pi\)
0.992717 + 0.120470i \(0.0384401\pi\)
\(888\) 198.486 + 64.4919i 0.223520 + 0.0726260i
\(889\) 662.157 + 481.085i 0.744834 + 0.541153i
\(890\) 71.8183i 0.0806948i
\(891\) −98.8046 6.21768i −0.110892 0.00697831i
\(892\) 283.089 0.317365
\(893\) 449.454 618.620i 0.503307 0.692743i
\(894\) −80.2289 + 246.919i −0.0897415 + 0.276196i
\(895\) −152.303 468.741i −0.170171 0.523733i
\(896\) −95.2225 + 69.1832i −0.106275 + 0.0772134i
\(897\) 521.274 + 717.471i 0.581130 + 0.799857i
\(898\) −458.430 + 148.953i −0.510501 + 0.165872i
\(899\) 182.320 + 59.2395i 0.202804 + 0.0658949i
\(900\) −90.0447 65.4213i −0.100050 0.0726904i
\(901\) 260.800i 0.289456i
\(902\) −81.3109 316.704i −0.0901451 0.351113i
\(903\) 619.666 0.686230
\(904\) 130.305 179.349i 0.144142 0.198395i
\(905\) −103.978 + 320.012i −0.114893 + 0.353604i
\(906\) −8.44801 26.0003i −0.00932451 0.0286979i
\(907\) −951.857 + 691.564i −1.04946 + 0.762474i −0.972109 0.234530i \(-0.924645\pi\)
−0.0773471 + 0.997004i \(0.524645\pi\)
\(908\) −266.133 366.301i −0.293098 0.403415i
\(909\) −89.5744 + 29.1045i −0.0985417 + 0.0320182i
\(910\) 467.005 + 151.739i 0.513192 + 0.166746i
\(911\) −840.113 610.378i −0.922187 0.670008i 0.0218802 0.999761i \(-0.493035\pi\)
−0.944067 + 0.329752i \(0.893035\pi\)
\(912\) 150.220i 0.164715i
\(913\) 1287.97 330.674i 1.41070 0.362184i
\(914\) 1097.84 1.20114
\(915\) −54.8000 + 75.4257i −0.0598907 + 0.0824325i
\(916\) −105.919 + 325.985i −0.115632 + 0.355879i
\(917\) 235.917 + 726.079i 0.257271 + 0.791798i
\(918\) 61.4274 44.6296i 0.0669144 0.0486161i
\(919\) −757.545 1042.67i −0.824315 1.13457i −0.988955 0.148218i \(-0.952646\pi\)
0.164640 0.986354i \(-0.447354\pi\)
\(920\) −266.169 + 86.4837i −0.289315 + 0.0940040i
\(921\) 274.718 + 89.2614i 0.298283 + 0.0969180i
\(922\) 526.150 + 382.270i 0.570662 + 0.414610i
\(923\) 1353.55i 1.46646i
\(924\) 24.8973 395.641i 0.0269452 0.428183i
\(925\) −790.253 −0.854328
\(926\) 32.7428 45.0666i 0.0353594 0.0486681i
\(927\) 72.4475 222.970i 0.0781526 0.240529i
\(928\) −19.9023 61.2528i −0.0214464 0.0660052i
\(929\) 73.5639 53.4473i 0.0791862 0.0575321i −0.547488 0.836814i \(-0.684416\pi\)
0.626674 + 0.779282i \(0.284416\pi\)
\(930\) 61.5673 + 84.7401i 0.0662014 + 0.0911184i
\(931\) −1221.42 + 396.864i −1.31195 + 0.426277i
\(932\) 176.063 + 57.2064i 0.188909 + 0.0613803i
\(933\) 539.383 + 391.885i 0.578117 + 0.420026i
\(934\) 517.895i 0.554491i
\(935\) −183.996 + 222.406i −0.196787 + 0.237868i
\(936\) −111.511 −0.119136
\(937\) −13.4725 + 18.5432i −0.0143783 + 0.0197900i −0.816146 0.577846i \(-0.803893\pi\)
0.801767 + 0.597636i \(0.203893\pi\)
\(938\) 583.350 1795.37i 0.621908 1.91404i
\(939\) −51.0297 157.053i −0.0543447 0.167256i
\(940\) 144.917 105.288i 0.154167 0.112009i
\(941\) 877.872 + 1208.29i 0.932914 + 1.28405i 0.958712 + 0.284379i \(0.0917873\pi\)
−0.0257980 + 0.999667i \(0.508213\pi\)
\(942\) 350.400 113.852i 0.371975 0.120862i
\(943\) −778.840 253.060i −0.825917 0.268357i
\(944\) 227.741 + 165.464i 0.241252 + 0.175280i
\(945\) 137.287i 0.145278i
\(946\) 451.693 286.644i 0.477476 0.303006i
\(947\) −667.556 −0.704917 −0.352458 0.935827i \(-0.614654\pi\)
−0.352458 + 0.935827i \(0.614654\pi\)
\(948\) 257.795 354.824i 0.271935 0.374287i
\(949\) 537.557 1654.43i 0.566446 1.74334i
\(950\) 175.774 + 540.976i 0.185025 + 0.569448i
\(951\) 780.625 567.157i 0.820846 0.596380i
\(952\) 178.710 + 245.973i 0.187720 + 0.258375i
\(953\) −536.830 + 174.427i −0.563305 + 0.183029i −0.576808 0.816880i \(-0.695702\pi\)
0.0135027 + 0.999909i \(0.495702\pi\)
\(954\) −101.846 33.0916i −0.106756 0.0346872i
\(955\) −655.120 475.972i −0.685989 0.498400i
\(956\) 483.086i 0.505320i
\(957\) 201.685 + 79.8562i 0.210747 + 0.0834443i
\(958\) 394.761 0.412068
\(959\) −738.854 + 1016.95i −0.770442 + 1.06042i
\(960\) 10.8744 33.4679i 0.0113275 0.0348624i
\(961\) −209.356 644.332i −0.217852 0.670480i
\(962\) −640.532 + 465.374i −0.665834 + 0.483757i
\(963\) −248.442 341.951i −0.257987 0.355089i
\(964\) 209.487 68.0666i 0.217311 0.0706085i
\(965\) 477.071 + 155.010i 0.494374 + 0.160632i
\(966\) −803.239 583.587i −0.831511 0.604128i
\(967\) 1283.73i 1.32754i 0.747936 + 0.663771i \(0.231045\pi\)
−0.747936 + 0.663771i \(0.768955\pi\)
\(968\) −164.867 299.912i −0.170317 0.309826i
\(969\) −388.039 −0.400453
\(970\) 23.0264 31.6931i 0.0237385 0.0326733i
\(971\) 378.309 1164.31i 0.389607 1.19909i −0.543475 0.839425i \(-0.682892\pi\)
0.933083 0.359662i \(-0.117108\pi\)
\(972\) −9.63420 29.6510i −0.00991172 0.0305052i
\(973\) 1671.53 1214.44i 1.71792 1.24814i
\(974\) −380.539 523.767i −0.390697 0.537748i
\(975\) 401.576 130.480i 0.411873 0.133826i
\(976\) 80.6298 + 26.1982i 0.0826125 + 0.0268424i
\(977\) −122.385 88.9181i −0.125266 0.0910113i 0.523388 0.852095i \(-0.324668\pi\)
−0.648654 + 0.761083i \(0.724668\pi\)
\(978\) 457.374i 0.467662i
\(979\) 80.9751 204.511i 0.0827121 0.208898i
\(980\) −300.853 −0.306993
\(981\) −307.477 + 423.206i −0.313432 + 0.431402i
\(982\) −71.8217 + 221.044i −0.0731381 + 0.225096i
\(983\) 410.105 + 1262.17i 0.417197 + 1.28400i 0.910271 + 0.414013i \(0.135873\pi\)
−0.493074 + 0.869987i \(0.664127\pi\)
\(984\) 83.3049 60.5245i 0.0846594 0.0615087i
\(985\) −299.437 412.140i −0.303997 0.418416i
\(986\) −158.225 + 51.4103i −0.160471 + 0.0521402i
\(987\) 604.370 + 196.372i 0.612330 + 0.198958i
\(988\) 461.048 + 334.971i 0.466648 + 0.339039i
\(989\) 1339.85i 1.35475i
\(990\) 63.5061 + 100.073i 0.0641476 + 0.101084i
\(991\) −255.463 −0.257783 −0.128892 0.991659i \(-0.541142\pi\)
−0.128892 + 0.991659i \(0.541142\pi\)
\(992\) 55.9858 77.0578i 0.0564373 0.0776792i
\(993\) 75.6143 232.717i 0.0761473 0.234357i
\(994\) 468.269 + 1441.18i 0.471096 + 1.44988i
\(995\) 434.250 315.501i 0.436432 0.317087i
\(996\) 246.140 + 338.783i 0.247129 + 0.340144i
\(997\) 397.110 129.029i 0.398305 0.129417i −0.103014 0.994680i \(-0.532849\pi\)
0.501318 + 0.865263i \(0.332849\pi\)
\(998\) −175.091 56.8907i −0.175442 0.0570047i
\(999\) −179.084 130.112i −0.179263 0.130242i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 66.3.f.a.7.2 16
3.2 odd 2 198.3.j.b.73.3 16
4.3 odd 2 528.3.bf.c.337.2 16
11.5 even 5 726.3.d.e.241.6 16
11.6 odd 10 726.3.d.e.241.14 16
11.8 odd 10 inner 66.3.f.a.19.2 yes 16
33.5 odd 10 2178.3.d.m.1693.14 16
33.8 even 10 198.3.j.b.19.3 16
33.17 even 10 2178.3.d.m.1693.6 16
44.19 even 10 528.3.bf.c.481.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.7.2 16 1.1 even 1 trivial
66.3.f.a.19.2 yes 16 11.8 odd 10 inner
198.3.j.b.19.3 16 33.8 even 10
198.3.j.b.73.3 16 3.2 odd 2
528.3.bf.c.337.2 16 4.3 odd 2
528.3.bf.c.481.2 16 44.19 even 10
726.3.d.e.241.6 16 11.5 even 5
726.3.d.e.241.14 16 11.6 odd 10
2178.3.d.m.1693.6 16 33.17 even 10
2178.3.d.m.1693.14 16 33.5 odd 10