Defining parameters
| Level: | \( N \) | \(=\) | \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6552.ve (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 728 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Sturm bound: | \(2688\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6552, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 5440 | 2256 | 3184 |
| Cusp forms | 5312 | 2224 | 3088 |
| Eisenstein series | 128 | 32 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(6552, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6552, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6552, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(728, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2184, [\chi])\)\(^{\oplus 2}\)