# Properties

 Label 6552.2 Level 6552 Weight 2 Dimension 487678 Nonzero newspaces 252 Sturm bound 4644864

## Defining parameters

 Level: $$N$$ = $$6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$252$$ Sturm bound: $$4644864$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(6552))$$.

Total New Old
Modular forms 1175040 491638 683402
Cusp forms 1147393 487678 659715
Eisenstein series 27647 3960 23687

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(6552))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
6552.2.a $$\chi_{6552}(1, \cdot)$$ 6552.2.a.a 1 1
6552.2.a.b 1
6552.2.a.c 1
6552.2.a.d 1
6552.2.a.e 1
6552.2.a.f 1
6552.2.a.g 1
6552.2.a.h 1
6552.2.a.i 1
6552.2.a.j 1
6552.2.a.k 1
6552.2.a.l 1
6552.2.a.m 1
6552.2.a.n 1
6552.2.a.o 1
6552.2.a.p 1
6552.2.a.q 1
6552.2.a.r 1
6552.2.a.s 1
6552.2.a.t 1
6552.2.a.u 1
6552.2.a.v 1
6552.2.a.w 1
6552.2.a.x 1
6552.2.a.y 1
6552.2.a.z 1
6552.2.a.ba 1
6552.2.a.bb 2
6552.2.a.bc 2
6552.2.a.bd 2
6552.2.a.be 2
6552.2.a.bf 2
6552.2.a.bg 2
6552.2.a.bh 2
6552.2.a.bi 2
6552.2.a.bj 2
6552.2.a.bk 2
6552.2.a.bl 2
6552.2.a.bm 2
6552.2.a.bn 3
6552.2.a.bo 3
6552.2.a.bp 3
6552.2.a.bq 4
6552.2.a.br 4
6552.2.a.bs 4
6552.2.a.bt 4
6552.2.a.bu 4
6552.2.a.bv 5
6552.2.a.bw 5
6552.2.b $$\chi_{6552}(1819, \cdot)$$ n/a 556 1
6552.2.e $$\chi_{6552}(2575, \cdot)$$ None 0 1
6552.2.g $$\chi_{6552}(3277, \cdot)$$ n/a 360 1
6552.2.h $$\chi_{6552}(2521, \cdot)$$ n/a 104 1
6552.2.j $$\chi_{6552}(3095, \cdot)$$ None 0 1
6552.2.m $$\chi_{6552}(2339, \cdot)$$ n/a 336 1
6552.2.o $$\chi_{6552}(4913, \cdot)$$ n/a 112 1
6552.2.p $$\chi_{6552}(5669, \cdot)$$ n/a 384 1
6552.2.s $$\chi_{6552}(5615, \cdot)$$ None 0 1
6552.2.t $$\chi_{6552}(6371, \cdot)$$ n/a 288 1
6552.2.v $$\chi_{6552}(2393, \cdot)$$ 6552.2.v.a 48 1
6552.2.v.b 48
6552.2.y $$\chi_{6552}(1637, \cdot)$$ n/a 448 1
6552.2.ba $$\chi_{6552}(5851, \cdot)$$ n/a 480 1
6552.2.bb $$\chi_{6552}(5095, \cdot)$$ None 0 1
6552.2.bd $$\chi_{6552}(5797, \cdot)$$ n/a 420 1
6552.2.bg $$\chi_{6552}(625, \cdot)$$ n/a 576 2
6552.2.bh $$\chi_{6552}(1873, \cdot)$$ n/a 240 2
6552.2.bi $$\chi_{6552}(1849, \cdot)$$ n/a 504 2
6552.2.bj $$\chi_{6552}(1537, \cdot)$$ n/a 672 2
6552.2.bk $$\chi_{6552}(289, \cdot)$$ n/a 280 2
6552.2.bl $$\chi_{6552}(2185, \cdot)$$ n/a 432 2
6552.2.bm $$\chi_{6552}(841, \cdot)$$ n/a 504 2
6552.2.bn $$\chi_{6552}(5833, \cdot)$$ n/a 280 2
6552.2.bo $$\chi_{6552}(529, \cdot)$$ n/a 672 2
6552.2.bp $$\chi_{6552}(3025, \cdot)$$ n/a 212 2
6552.2.bq $$\chi_{6552}(1465, \cdot)$$ n/a 672 2
6552.2.br $$\chi_{6552}(2473, \cdot)$$ n/a 672 2
6552.2.bs $$\chi_{6552}(4993, \cdot)$$ n/a 576 2
6552.2.bt $$\chi_{6552}(5039, \cdot)$$ None 0 2
6552.2.bv $$\chi_{6552}(1763, \cdot)$$ n/a 896 2
6552.2.bx $$\chi_{6552}(5923, \cdot)$$ n/a 840 2
6552.2.bz $$\chi_{6552}(2647, \cdot)$$ None 0 2
6552.2.cc $$\chi_{6552}(5221, \cdot)$$ n/a 1112 2
6552.2.ce $$\chi_{6552}(1945, \cdot)$$ n/a 280 2
6552.2.cg $$\chi_{6552}(2465, \cdot)$$ n/a 168 2
6552.2.ci $$\chi_{6552}(5741, \cdot)$$ n/a 672 2
6552.2.ck $$\chi_{6552}(961, \cdot)$$ n/a 672 2
6552.2.cl $$\chi_{6552}(1717, \cdot)$$ n/a 2304 2
6552.2.cn $$\chi_{6552}(1951, \cdot)$$ None 0 2
6552.2.cq $$\chi_{6552}(1195, \cdot)$$ n/a 2672 2
6552.2.cs $$\chi_{6552}(1199, \cdot)$$ None 0 2
6552.2.ct $$\chi_{6552}(3371, \cdot)$$ n/a 2672 2
6552.2.cv $$\chi_{6552}(2141, \cdot)$$ n/a 896 2
6552.2.cy $$\chi_{6552}(881, \cdot)$$ n/a 224 2
6552.2.da $$\chi_{6552}(3461, \cdot)$$ n/a 2672 2
6552.2.db $$\chi_{6552}(1193, \cdot)$$ n/a 672 2
6552.2.dd $$\chi_{6552}(2363, \cdot)$$ n/a 2672 2
6552.2.dg $$\chi_{6552}(191, \cdot)$$ None 0 2
6552.2.di $$\chi_{6552}(4859, \cdot)$$ n/a 672 2
6552.2.dj $$\chi_{6552}(575, \cdot)$$ None 0 2
6552.2.dl $$\chi_{6552}(2201, \cdot)$$ n/a 672 2
6552.2.do $$\chi_{6552}(2453, \cdot)$$ n/a 2672 2
6552.2.dq $$\chi_{6552}(1291, \cdot)$$ n/a 2672 2
6552.2.dr $$\chi_{6552}(1543, \cdot)$$ None 0 2
6552.2.du $$\chi_{6552}(4489, \cdot)$$ n/a 672 2
6552.2.dv $$\chi_{6552}(445, \cdot)$$ n/a 2672 2
6552.2.dx $$\chi_{6552}(5041, \cdot)$$ n/a 208 2
6552.2.ea $$\chi_{6552}(757, \cdot)$$ n/a 840 2
6552.2.ec $$\chi_{6552}(55, \cdot)$$ None 0 2
6552.2.ed $$\chi_{6552}(4339, \cdot)$$ n/a 1112 2
6552.2.ef $$\chi_{6552}(2551, \cdot)$$ None 0 2
6552.2.ei $$\chi_{6552}(283, \cdot)$$ n/a 2672 2
6552.2.ej $$\chi_{6552}(5749, \cdot)$$ n/a 2672 2
6552.2.em $$\chi_{6552}(3481, \cdot)$$ n/a 672 2
6552.2.eo $$\chi_{6552}(677, \cdot)$$ n/a 2304 2
6552.2.ep $$\chi_{6552}(5225, \cdot)$$ n/a 672 2
6552.2.er $$\chi_{6552}(2963, \cdot)$$ n/a 2672 2
6552.2.eu $$\chi_{6552}(599, \cdot)$$ None 0 2
6552.2.ev $$\chi_{6552}(2291, \cdot)$$ n/a 2672 2
6552.2.ey $$\chi_{6552}(23, \cdot)$$ None 0 2
6552.2.ez $$\chi_{6552}(2285, \cdot)$$ n/a 896 2
6552.2.fc $$\chi_{6552}(2609, \cdot)$$ n/a 224 2
6552.2.fe $$\chi_{6552}(1049, \cdot)$$ n/a 672 2
6552.2.ff $$\chi_{6552}(797, \cdot)$$ n/a 2672 2
6552.2.fh $$\chi_{6552}(4775, \cdot)$$ None 0 2
6552.2.fk $$\chi_{6552}(1667, \cdot)$$ n/a 2016 2
6552.2.fm $$\chi_{6552}(5651, \cdot)$$ n/a 896 2
6552.2.fn $$\chi_{6552}(3455, \cdot)$$ None 0 2
6552.2.fq $$\chi_{6552}(1109, \cdot)$$ n/a 2672 2
6552.2.fr $$\chi_{6552}(1361, \cdot)$$ n/a 672 2
6552.2.fu $$\chi_{6552}(727, \cdot)$$ None 0 2
6552.2.fv $$\chi_{6552}(1483, \cdot)$$ n/a 2304 2
6552.2.fy $$\chi_{6552}(199, \cdot)$$ None 0 2
6552.2.fz $$\chi_{6552}(451, \cdot)$$ n/a 1112 2
6552.2.gc $$\chi_{6552}(1117, \cdot)$$ n/a 1112 2
6552.2.ge $$\chi_{6552}(3301, \cdot)$$ n/a 2672 2
6552.2.gj $$\chi_{6552}(4957, \cdot)$$ n/a 2016 2
6552.2.gk $$\chi_{6552}(3397, \cdot)$$ n/a 2672 2
6552.2.go $$\chi_{6552}(3643, \cdot)$$ n/a 2672 2
6552.2.gp $$\chi_{6552}(1375, \cdot)$$ None 0 2
6552.2.gs $$\chi_{6552}(4255, \cdot)$$ None 0 2
6552.2.gt $$\chi_{6552}(1147, \cdot)$$ n/a 2672 2
6552.2.gv $$\chi_{6552}(3043, \cdot)$$ n/a 960 2
6552.2.gx $$\chi_{6552}(103, \cdot)$$ None 0 2
6552.2.ha $$\chi_{6552}(859, \cdot)$$ n/a 2304 2
6552.2.hc $$\chi_{6552}(2287, \cdot)$$ None 0 2
6552.2.hf $$\chi_{6552}(4573, \cdot)$$ n/a 1112 2
6552.2.hi $$\chi_{6552}(1429, \cdot)$$ n/a 2016 2
6552.2.hk $$\chi_{6552}(107, \cdot)$$ n/a 896 2
6552.2.hl $$\chi_{6552}(4391, \cdot)$$ None 0 2
6552.2.ho $$\chi_{6552}(2003, \cdot)$$ n/a 1728 2
6552.2.hp $$\chi_{6552}(1247, \cdot)$$ None 0 2
6552.2.hr $$\chi_{6552}(2369, \cdot)$$ n/a 672 2
6552.2.hu $$\chi_{6552}(101, \cdot)$$ n/a 2672 2
6552.2.hv $$\chi_{6552}(2981, \cdot)$$ n/a 2672 2
6552.2.hy $$\chi_{6552}(2057, \cdot)$$ n/a 672 2
6552.2.ia $$\chi_{6552}(521, \cdot)$$ n/a 192 2
6552.2.ic $$\chi_{6552}(1013, \cdot)$$ n/a 2672 2
6552.2.id $$\chi_{6552}(1769, \cdot)$$ n/a 576 2
6552.2.if $$\chi_{6552}(5381, \cdot)$$ n/a 896 2
6552.2.ih $$\chi_{6552}(935, \cdot)$$ None 0 2
6552.2.ij $$\chi_{6552}(4811, \cdot)$$ n/a 2304 2
6552.2.im $$\chi_{6552}(4055, \cdot)$$ None 0 2
6552.2.io $$\chi_{6552}(1691, \cdot)$$ n/a 768 2
6552.2.iq $$\chi_{6552}(659, \cdot)$$ n/a 2016 2
6552.2.ir $$\chi_{6552}(407, \cdot)$$ None 0 2
6552.2.iu $$\chi_{6552}(1031, \cdot)$$ None 0 2
6552.2.iv $$\chi_{6552}(1283, \cdot)$$ n/a 2672 2
6552.2.ix $$\chi_{6552}(3821, \cdot)$$ n/a 2672 2
6552.2.ja $$\chi_{6552}(209, \cdot)$$ n/a 576 2
6552.2.jb $$\chi_{6552}(1349, \cdot)$$ n/a 896 2
6552.2.je $$\chi_{6552}(3545, \cdot)$$ n/a 224 2
6552.2.jf $$\chi_{6552}(2383, \cdot)$$ None 0 2
6552.2.ji $$\chi_{6552}(2635, \cdot)$$ n/a 2672 2
6552.2.jk $$\chi_{6552}(589, \cdot)$$ n/a 2016 2
6552.2.jo $$\chi_{6552}(3637, \cdot)$$ n/a 1112 2
6552.2.jq $$\chi_{6552}(5743, \cdot)$$ None 0 2
6552.2.jr $$\chi_{6552}(1459, \cdot)$$ n/a 1112 2
6552.2.jt $$\chi_{6552}(139, \cdot)$$ n/a 2672 2
6552.2.jw $$\chi_{6552}(3247, \cdot)$$ None 0 2
6552.2.jy $$\chi_{6552}(277, \cdot)$$ n/a 2672 2
6552.2.kb $$\chi_{6552}(1615, \cdot)$$ None 0 2
6552.2.kc $$\chi_{6552}(5659, \cdot)$$ n/a 2672 2
6552.2.kf $$\chi_{6552}(361, \cdot)$$ n/a 280 2
6552.2.kg $$\chi_{6552}(2557, \cdot)$$ n/a 1112 2
6552.2.ki $$\chi_{6552}(2941, \cdot)$$ n/a 2016 2
6552.2.kl $$\chi_{6552}(673, \cdot)$$ n/a 504 2
6552.2.kn $$\chi_{6552}(3163, \cdot)$$ n/a 2672 2
6552.2.ko $$\chi_{6552}(2239, \cdot)$$ None 0 2
6552.2.kq $$\chi_{6552}(2791, \cdot)$$ None 0 2
6552.2.kt $$\chi_{6552}(2467, \cdot)$$ n/a 1112 2
6552.2.ku $$\chi_{6552}(3553, \cdot)$$ n/a 672 2
6552.2.kx $$\chi_{6552}(1381, \cdot)$$ n/a 2672 2
6552.2.ky $$\chi_{6552}(155, \cdot)$$ n/a 2016 2
6552.2.lb $$\chi_{6552}(911, \cdot)$$ None 0 2
6552.2.lc $$\chi_{6552}(1115, \cdot)$$ n/a 896 2
6552.2.lf $$\chi_{6552}(1439, \cdot)$$ None 0 2
6552.2.lh $$\chi_{6552}(5333, \cdot)$$ n/a 2672 2
6552.2.li $$\chi_{6552}(3065, \cdot)$$ n/a 672 2
6552.2.lk $$\chi_{6552}(2105, \cdot)$$ n/a 224 2
6552.2.lm $$\chi_{6552}(1613, \cdot)$$ n/a 2304 2
6552.2.lp $$\chi_{6552}(857, \cdot)$$ n/a 672 2
6552.2.lr $$\chi_{6552}(2861, \cdot)$$ n/a 768 2
6552.2.lt $$\chi_{6552}(1265, \cdot)$$ n/a 672 2
6552.2.lu $$\chi_{6552}(1517, \cdot)$$ n/a 2672 2
6552.2.lw $$\chi_{6552}(263, \cdot)$$ None 0 2
6552.2.lz $$\chi_{6552}(4307, \cdot)$$ n/a 2672 2
6552.2.mb $$\chi_{6552}(4967, \cdot)$$ None 0 2
6552.2.md $$\chi_{6552}(779, \cdot)$$ n/a 2672 2
6552.2.me $$\chi_{6552}(1535, \cdot)$$ None 0 2
6552.2.mg $$\chi_{6552}(4211, \cdot)$$ n/a 896 2
6552.2.mi $$\chi_{6552}(491, \cdot)$$ n/a 2016 2
6552.2.ml $$\chi_{6552}(2759, \cdot)$$ None 0 2
6552.2.mn $$\chi_{6552}(269, \cdot)$$ n/a 896 2
6552.2.mo $$\chi_{6552}(17, \cdot)$$ n/a 224 2
6552.2.mr $$\chi_{6552}(1301, \cdot)$$ n/a 2304 2
6552.2.ms $$\chi_{6552}(545, \cdot)$$ n/a 672 2
6552.2.mu $$\chi_{6552}(3727, \cdot)$$ None 0 2
6552.2.mx $$\chi_{6552}(1531, \cdot)$$ n/a 1112 2
6552.2.my $$\chi_{6552}(391, \cdot)$$ None 0 2
6552.2.nb $$\chi_{6552}(4003, \cdot)$$ n/a 2672 2
6552.2.nd $$\chi_{6552}(373, \cdot)$$ n/a 2672 2
6552.2.ne $$\chi_{6552}(121, \cdot)$$ n/a 672 2
6552.2.ng $$\chi_{6552}(5149, \cdot)$$ n/a 960 2
6552.2.ni $$\chi_{6552}(25, \cdot)$$ n/a 672 2
6552.2.nl $$\chi_{6552}(781, \cdot)$$ n/a 2304 2
6552.2.nn $$\chi_{6552}(4393, \cdot)$$ n/a 280 2
6552.2.np $$\chi_{6552}(1681, \cdot)$$ n/a 504 2
6552.2.nq $$\chi_{6552}(1933, \cdot)$$ n/a 2016 2
6552.2.ns $$\chi_{6552}(1231, \cdot)$$ None 0 2
6552.2.nv $$\chi_{6552}(979, \cdot)$$ n/a 2672 2
6552.2.nx $$\chi_{6552}(5563, \cdot)$$ n/a 1112 2
6552.2.nz $$\chi_{6552}(2887, \cdot)$$ None 0 2
6552.2.oa $$\chi_{6552}(2131, \cdot)$$ n/a 2672 2
6552.2.oc $$\chi_{6552}(703, \cdot)$$ None 0 2
6552.2.oe $$\chi_{6552}(355, \cdot)$$ n/a 2672 2
6552.2.oh $$\chi_{6552}(367, \cdot)$$ None 0 2
6552.2.oj $$\chi_{6552}(337, \cdot)$$ n/a 504 2
6552.2.ok $$\chi_{6552}(1093, \cdot)$$ n/a 1728 2
6552.2.on $$\chi_{6552}(1297, \cdot)$$ n/a 280 2
6552.2.oo $$\chi_{6552}(1621, \cdot)$$ n/a 1112 2
6552.2.or $$\chi_{6552}(3299, \cdot)$$ n/a 2672 2
6552.2.os $$\chi_{6552}(5567, \cdot)$$ None 0 2
6552.2.ou $$\chi_{6552}(4073, \cdot)$$ n/a 672 2
6552.2.ox $$\chi_{6552}(965, \cdot)$$ n/a 2672 2
6552.2.oz $$\chi_{6552}(1277, \cdot)$$ n/a 896 2
6552.2.pa $$\chi_{6552}(5561, \cdot)$$ n/a 224 2
6552.2.pc $$\chi_{6552}(179, \cdot)$$ n/a 896 2
6552.2.pf $$\chi_{6552}(2375, \cdot)$$ None 0 2
6552.2.ph $$\chi_{6552}(1751, \cdot)$$ None 0 2
6552.2.pi $$\chi_{6552}(1499, \cdot)$$ n/a 2016 2
6552.2.pk $$\chi_{6552}(2525, \cdot)$$ n/a 2672 2
6552.2.pn $$\chi_{6552}(257, \cdot)$$ n/a 672 2
6552.2.po $$\chi_{6552}(1949, \cdot)$$ n/a 2672 2
6552.2.pr $$\chi_{6552}(2705, \cdot)$$ n/a 576 2
6552.2.pt $$\chi_{6552}(443, \cdot)$$ n/a 2304 2
6552.2.pu $$\chi_{6552}(3119, \cdot)$$ None 0 2
6552.2.pw $$\chi_{6552}(2707, \cdot)$$ n/a 2672 2
6552.2.pz $$\chi_{6552}(439, \cdot)$$ None 0 2
6552.2.qb $$\chi_{6552}(1765, \cdot)$$ n/a 840 2
6552.2.qf $$\chi_{6552}(1213, \cdot)$$ n/a 2672 2
6552.2.qh $$\chi_{6552}(1447, \cdot)$$ None 0 2
6552.2.qi $$\chi_{6552}(1699, \cdot)$$ n/a 2672 2
6552.2.qk $$\chi_{6552}(1063, \cdot)$$ None 0 2
6552.2.qn $$\chi_{6552}(2323, \cdot)$$ n/a 1112 2
6552.2.qp $$\chi_{6552}(205, \cdot)$$ n/a 2672 2
6552.2.qr $$\chi_{6552}(95, \cdot)$$ None 0 2
6552.2.qu $$\chi_{6552}(347, \cdot)$$ n/a 2672 2
6552.2.qv $$\chi_{6552}(173, \cdot)$$ n/a 2672 2
6552.2.qy $$\chi_{6552}(185, \cdot)$$ n/a 672 2
6552.2.ra $$\chi_{6552}(4157, \cdot)$$ n/a 896 2
6552.2.rb $$\chi_{6552}(5417, \cdot)$$ n/a 224 2
6552.2.rd $$\chi_{6552}(2843, \cdot)$$ n/a 672 2
6552.2.rg $$\chi_{6552}(1583, \cdot)$$ None 0 2
6552.2.ri $$\chi_{6552}(1355, \cdot)$$ n/a 2672 2
6552.2.rj $$\chi_{6552}(3215, \cdot)$$ None 0 2
6552.2.rm $$\chi_{6552}(1433, \cdot)$$ n/a 672 2
6552.2.rn $$\chi_{6552}(5477, \cdot)$$ n/a 2672 2
6552.2.rr $$\chi_{6552}(4237, \cdot)$$ n/a 2672 2
6552.2.rt $$\chi_{6552}(1039, \cdot)$$ None 0 2
6552.2.ru $$\chi_{6552}(1795, \cdot)$$ n/a 2304 2
6552.2.rx $$\chi_{6552}(2411, \cdot)$$ n/a 1792 4
6552.2.rz $$\chi_{6552}(1151, \cdot)$$ None 0 4
6552.2.sb $$\chi_{6552}(1579, \cdot)$$ n/a 5344 4
6552.2.sd $$\chi_{6552}(319, \cdot)$$ None 0 4
6552.2.sf $$\chi_{6552}(463, \cdot)$$ None 0 4
6552.2.sg $$\chi_{6552}(2671, \cdot)$$ None 0 4
6552.2.si $$\chi_{6552}(1003, \cdot)$$ n/a 5344 4
6552.2.sl $$\chi_{6552}(1555, \cdot)$$ n/a 4032 4
6552.2.sn $$\chi_{6552}(1055, \cdot)$$ None 0 4
6552.2.sp $$\chi_{6552}(59, \cdot)$$ n/a 5344 4
6552.2.sq $$\chi_{6552}(227, \cdot)$$ n/a 5344 4
6552.2.st $$\chi_{6552}(83, \cdot)$$ n/a 5344 4
6552.2.sv $$\chi_{6552}(671, \cdot)$$ None 0 4
6552.2.sw $$\chi_{6552}(3503, \cdot)$$ None 0 4
6552.2.sz $$\chi_{6552}(487, \cdot)$$ None 0 4
6552.2.tb $$\chi_{6552}(1675, \cdot)$$ n/a 2224 4
6552.2.tc $$\chi_{6552}(1321, \cdot)$$ n/a 1344 4
6552.2.te $$\chi_{6552}(1165, \cdot)$$ n/a 5344 4
6552.2.th $$\chi_{6552}(2749, \cdot)$$ n/a 5344 4
6552.2.ti $$\chi_{6552}(97, \cdot)$$ n/a 1344 4
6552.2.tk $$\chi_{6552}(2533, \cdot)$$ n/a 5344 4
6552.2.tn $$\chi_{6552}(1489, \cdot)$$ n/a 1344 4
6552.2.tp $$\chi_{6552}(197, \cdot)$$ n/a 1344 4
6552.2.tq $$\chi_{6552}(2333, \cdot)$$ n/a 5344 4
6552.2.ts $$\chi_{6552}(977, \cdot)$$ n/a 1344 4
6552.2.tv $$\chi_{6552}(449, \cdot)$$ n/a 336 4
6552.2.tw $$\chi_{6552}(4337, \cdot)$$ n/a 448 4
6552.2.ty $$\chi_{6552}(617, \cdot)$$ n/a 1008 4
6552.2.ua $$\chi_{6552}(557, \cdot)$$ n/a 1792 4
6552.2.ud $$\chi_{6552}(4181, \cdot)$$ n/a 5344 4
6552.2.ue $$\chi_{6552}(1241, \cdot)$$ n/a 448 4
6552.2.uh $$\chi_{6552}(905, \cdot)$$ n/a 1344 4
6552.2.ui $$\chi_{6552}(3053, \cdot)$$ n/a 4032 4
6552.2.uk $$\chi_{6552}(1061, \cdot)$$ n/a 1792 4
6552.2.um $$\chi_{6552}(3841, \cdot)$$ n/a 1344 4
6552.2.up $$\chi_{6552}(1441, \cdot)$$ n/a 560 4
6552.2.ur $$\chi_{6552}(1189, \cdot)$$ n/a 2224 4
6552.2.us $$\chi_{6552}(565, \cdot)$$ n/a 5344 4
6552.2.uu $$\chi_{6552}(349, \cdot)$$ n/a 5344 4
6552.2.uw $$\chi_{6552}(2413, \cdot)$$ n/a 2224 4
6552.2.uz $$\chi_{6552}(2257, \cdot)$$ n/a 1344 4
6552.2.va $$\chi_{6552}(1081, \cdot)$$ n/a 560 4
6552.2.vd $$\chi_{6552}(229, \cdot)$$ n/a 5344 4
6552.2.ve $$\chi_{6552}(397, \cdot)$$ n/a 2224 4
6552.2.vg $$\chi_{6552}(73, \cdot)$$ n/a 560 4
6552.2.vi $$\chi_{6552}(2281, \cdot)$$ n/a 1344 4
6552.2.vk $$\chi_{6552}(317, \cdot)$$ n/a 5344 4
6552.2.vm $$\chi_{6552}(473, \cdot)$$ n/a 1344 4
6552.2.vp $$\chi_{6552}(1649, \cdot)$$ n/a 1344 4
6552.2.vq $$\chi_{6552}(869, \cdot)$$ n/a 4032 4
6552.2.vs $$\chi_{6552}(2801, \cdot)$$ n/a 1008 4
6552.2.vv $$\chi_{6552}(149, \cdot)$$ n/a 5344 4
6552.2.vx $$\chi_{6552}(2075, \cdot)$$ n/a 5344 4
6552.2.vz $$\chi_{6552}(47, \cdot)$$ None 0 4
6552.2.wa $$\chi_{6552}(383, \cdot)$$ None 0 4
6552.2.wd $$\chi_{6552}(2099, \cdot)$$ n/a 5344 4
6552.2.wf $$\chi_{6552}(167, \cdot)$$ None 0 4
6552.2.wg $$\chi_{6552}(3659, \cdot)$$ n/a 5344 4
6552.2.wi $$\chi_{6552}(631, \cdot)$$ None 0 4
6552.2.wl $$\chi_{6552}(1831, \cdot)$$ None 0 4
6552.2.wn $$\chi_{6552}(67, \cdot)$$ n/a 5344 4
6552.2.wo $$\chi_{6552}(379, \cdot)$$ n/a 1680 4
6552.2.wr $$\chi_{6552}(1243, \cdot)$$ n/a 2224 4
6552.2.wt $$\chi_{6552}(1051, \cdot)$$ n/a 4032 4
6552.2.wu $$\chi_{6552}(151, \cdot)$$ None 0 4
6552.2.wx $$\chi_{6552}(1423, \cdot)$$ None 0 4
6552.2.wy $$\chi_{6552}(499, \cdot)$$ n/a 5344 4
6552.2.xb $$\chi_{6552}(163, \cdot)$$ n/a 2224 4
6552.2.xd $$\chi_{6552}(2983, \cdot)$$ None 0 4
6552.2.xf $$\chi_{6552}(4519, \cdot)$$ None 0 4
6552.2.xh $$\chi_{6552}(1307, \cdot)$$ n/a 5344 4
6552.2.xi $$\chi_{6552}(1259, \cdot)$$ n/a 1792 4
6552.2.xk $$\chi_{6552}(1007, \cdot)$$ None 0 4
6552.2.xn $$\chi_{6552}(2567, \cdot)$$ None 0 4
6552.2.xp $$\chi_{6552}(2351, \cdot)$$ None 0 4
6552.2.xr $$\chi_{6552}(2231, \cdot)$$ None 0 4
6552.2.xt $$\chi_{6552}(899, \cdot)$$ n/a 1792 4
6552.2.xu $$\chi_{6552}(1139, \cdot)$$ n/a 5344 4
6552.2.xx $$\chi_{6552}(215, \cdot)$$ None 0 4
6552.2.xy $$\chi_{6552}(983, \cdot)$$ None 0 4
6552.2.yb $$\chi_{6552}(395, \cdot)$$ n/a 1792 4
6552.2.yd $$\chi_{6552}(587, \cdot)$$ n/a 5344 4
6552.2.yf $$\chi_{6552}(1087, \cdot)$$ None 0 4
6552.2.yh $$\chi_{6552}(4363, \cdot)$$ n/a 5344 4
6552.2.yi $$\chi_{6552}(2515, \cdot)$$ n/a 5344 4
6552.2.yl $$\chi_{6552}(799, \cdot)$$ None 0 4
6552.2.yn $$\chi_{6552}(3235, \cdot)$$ n/a 4032 4
6552.2.yo $$\chi_{6552}(1159, \cdot)$$ None 0 4
6552.2.yq $$\chi_{6552}(145, \cdot)$$ n/a 560 4
6552.2.ys $$\chi_{6552}(1333, \cdot)$$ n/a 2224 4
6552.2.yu $$\chi_{6552}(2489, \cdot)$$ n/a 1344 4
6552.2.yw $$\chi_{6552}(821, \cdot)$$ n/a 5344 4
6552.2.yy $$\chi_{6552}(1373, \cdot)$$ n/a 4032 4
6552.2.zb $$\chi_{6552}(1397, \cdot)$$ n/a 5344 4
6552.2.zd $$\chi_{6552}(137, \cdot)$$ n/a 1344 4
6552.2.ze $$\chi_{6552}(281, \cdot)$$ n/a 1008 4
6552.2.zg $$\chi_{6552}(3685, \cdot)$$ n/a 5344 4
6552.2.zi $$\chi_{6552}(409, \cdot)$$ n/a 1344 4
6552.2.zl $$\chi_{6552}(241, \cdot)$$ n/a 1344 4
6552.2.zm $$\chi_{6552}(265, \cdot)$$ n/a 1344 4
6552.2.zo $$\chi_{6552}(853, \cdot)$$ n/a 5344 4
6552.2.zr $$\chi_{6552}(1237, \cdot)$$ n/a 5344 4
6552.2.zs $$\chi_{6552}(1493, \cdot)$$ n/a 1792 4
6552.2.zu $$\chi_{6552}(305, \cdot)$$ n/a 448 4

"n/a" means that newforms for that character have not been added to the database yet

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(6552))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(6552)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(13))$$$$^{\oplus 24}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(14))$$$$^{\oplus 18}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(18))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(21))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(24))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(26))$$$$^{\oplus 18}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(28))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(36))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(39))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(42))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(52))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(56))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(63))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(72))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(78))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(84))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(91))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(104))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(117))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(126))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(156))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(168))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(182))$$$$^{\oplus 9}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(234))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(252))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(273))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(312))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(364))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(468))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(504))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(546))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(728))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(819))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(936))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1092))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1638))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2184))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3276))$$$$^{\oplus 2}$$