Defining parameters
| Level: | \( N \) | \(=\) | \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6552.qh (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3276 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(2688\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6552, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2720 | 0 | 2720 |
| Cusp forms | 2656 | 0 | 2656 |
| Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{old}}(6552, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6552, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(3276, [\chi])\)\(^{\oplus 2}\)