Properties

Label 6525.2.a.bu.1.7
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-2,0,10,0,0,-1,-3,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 10x^{5} + 19x^{4} + 24x^{3} - 44x^{2} - 3x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2175)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.47806\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.47806 q^{2} +4.14079 q^{4} -2.83516 q^{7} +5.30500 q^{8} -6.09835 q^{11} +3.00195 q^{13} -7.02571 q^{14} +4.86455 q^{16} -2.74182 q^{17} +8.03698 q^{19} -15.1121 q^{22} -7.56737 q^{23} +7.43901 q^{26} -11.7398 q^{28} +1.00000 q^{29} -5.32278 q^{31} +1.44464 q^{32} -6.79439 q^{34} -6.28158 q^{37} +19.9161 q^{38} +9.04088 q^{41} -9.06154 q^{43} -25.2520 q^{44} -18.7524 q^{46} -0.0839748 q^{47} +1.03815 q^{49} +12.4304 q^{52} +3.82861 q^{53} -15.0405 q^{56} +2.47806 q^{58} -11.9122 q^{59} -0.275669 q^{61} -13.1902 q^{62} -6.14919 q^{64} -7.36750 q^{67} -11.3533 q^{68} -15.2213 q^{71} +8.77173 q^{73} -15.5661 q^{74} +33.2794 q^{76} +17.2898 q^{77} +1.64999 q^{79} +22.4039 q^{82} -1.38875 q^{83} -22.4551 q^{86} -32.3518 q^{88} +1.05825 q^{89} -8.51101 q^{91} -31.3349 q^{92} -0.208095 q^{94} +9.18751 q^{97} +2.57260 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} + 10 q^{4} - q^{7} - 3 q^{8} - 4 q^{11} - q^{13} - 15 q^{14} + 12 q^{16} - 8 q^{17} + 15 q^{19} + 3 q^{22} - 14 q^{23} - 6 q^{26} - 24 q^{28} + 7 q^{29} + 5 q^{31} - 18 q^{32} + 7 q^{34}+ \cdots + 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.47806 1.75225 0.876127 0.482080i \(-0.160119\pi\)
0.876127 + 0.482080i \(0.160119\pi\)
\(3\) 0 0
\(4\) 4.14079 2.07039
\(5\) 0 0
\(6\) 0 0
\(7\) −2.83516 −1.07159 −0.535795 0.844348i \(-0.679988\pi\)
−0.535795 + 0.844348i \(0.679988\pi\)
\(8\) 5.30500 1.87560
\(9\) 0 0
\(10\) 0 0
\(11\) −6.09835 −1.83872 −0.919361 0.393416i \(-0.871293\pi\)
−0.919361 + 0.393416i \(0.871293\pi\)
\(12\) 0 0
\(13\) 3.00195 0.832591 0.416295 0.909229i \(-0.363328\pi\)
0.416295 + 0.909229i \(0.363328\pi\)
\(14\) −7.02571 −1.87770
\(15\) 0 0
\(16\) 4.86455 1.21614
\(17\) −2.74182 −0.664988 −0.332494 0.943105i \(-0.607890\pi\)
−0.332494 + 0.943105i \(0.607890\pi\)
\(18\) 0 0
\(19\) 8.03698 1.84381 0.921905 0.387415i \(-0.126632\pi\)
0.921905 + 0.387415i \(0.126632\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −15.1121 −3.22191
\(23\) −7.56737 −1.57791 −0.788953 0.614453i \(-0.789377\pi\)
−0.788953 + 0.614453i \(0.789377\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 7.43901 1.45891
\(27\) 0 0
\(28\) −11.7398 −2.21862
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −5.32278 −0.956000 −0.478000 0.878360i \(-0.658638\pi\)
−0.478000 + 0.878360i \(0.658638\pi\)
\(32\) 1.44464 0.255379
\(33\) 0 0
\(34\) −6.79439 −1.16523
\(35\) 0 0
\(36\) 0 0
\(37\) −6.28158 −1.03268 −0.516342 0.856382i \(-0.672707\pi\)
−0.516342 + 0.856382i \(0.672707\pi\)
\(38\) 19.9161 3.23082
\(39\) 0 0
\(40\) 0 0
\(41\) 9.04088 1.41195 0.705974 0.708238i \(-0.250509\pi\)
0.705974 + 0.708238i \(0.250509\pi\)
\(42\) 0 0
\(43\) −9.06154 −1.38187 −0.690936 0.722916i \(-0.742801\pi\)
−0.690936 + 0.722916i \(0.742801\pi\)
\(44\) −25.2520 −3.80688
\(45\) 0 0
\(46\) −18.7524 −2.76489
\(47\) −0.0839748 −0.0122490 −0.00612449 0.999981i \(-0.501949\pi\)
−0.00612449 + 0.999981i \(0.501949\pi\)
\(48\) 0 0
\(49\) 1.03815 0.148307
\(50\) 0 0
\(51\) 0 0
\(52\) 12.4304 1.72379
\(53\) 3.82861 0.525900 0.262950 0.964809i \(-0.415305\pi\)
0.262950 + 0.964809i \(0.415305\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −15.0405 −2.00988
\(57\) 0 0
\(58\) 2.47806 0.325385
\(59\) −11.9122 −1.55084 −0.775421 0.631444i \(-0.782462\pi\)
−0.775421 + 0.631444i \(0.782462\pi\)
\(60\) 0 0
\(61\) −0.275669 −0.0352958 −0.0176479 0.999844i \(-0.505618\pi\)
−0.0176479 + 0.999844i \(0.505618\pi\)
\(62\) −13.1902 −1.67515
\(63\) 0 0
\(64\) −6.14919 −0.768648
\(65\) 0 0
\(66\) 0 0
\(67\) −7.36750 −0.900083 −0.450042 0.893008i \(-0.648591\pi\)
−0.450042 + 0.893008i \(0.648591\pi\)
\(68\) −11.3533 −1.37679
\(69\) 0 0
\(70\) 0 0
\(71\) −15.2213 −1.80643 −0.903215 0.429188i \(-0.858800\pi\)
−0.903215 + 0.429188i \(0.858800\pi\)
\(72\) 0 0
\(73\) 8.77173 1.02665 0.513327 0.858193i \(-0.328413\pi\)
0.513327 + 0.858193i \(0.328413\pi\)
\(74\) −15.5661 −1.80953
\(75\) 0 0
\(76\) 33.2794 3.81741
\(77\) 17.2898 1.97036
\(78\) 0 0
\(79\) 1.64999 0.185638 0.0928191 0.995683i \(-0.470412\pi\)
0.0928191 + 0.995683i \(0.470412\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 22.4039 2.47409
\(83\) −1.38875 −0.152435 −0.0762176 0.997091i \(-0.524284\pi\)
−0.0762176 + 0.997091i \(0.524284\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −22.4551 −2.42139
\(87\) 0 0
\(88\) −32.3518 −3.44871
\(89\) 1.05825 0.112174 0.0560872 0.998426i \(-0.482138\pi\)
0.0560872 + 0.998426i \(0.482138\pi\)
\(90\) 0 0
\(91\) −8.51101 −0.892196
\(92\) −31.3349 −3.26689
\(93\) 0 0
\(94\) −0.208095 −0.0214633
\(95\) 0 0
\(96\) 0 0
\(97\) 9.18751 0.932850 0.466425 0.884561i \(-0.345542\pi\)
0.466425 + 0.884561i \(0.345542\pi\)
\(98\) 2.57260 0.259872
\(99\) 0 0
\(100\) 0 0
\(101\) 4.02738 0.400739 0.200369 0.979720i \(-0.435786\pi\)
0.200369 + 0.979720i \(0.435786\pi\)
\(102\) 0 0
\(103\) −5.12350 −0.504833 −0.252417 0.967619i \(-0.581225\pi\)
−0.252417 + 0.967619i \(0.581225\pi\)
\(104\) 15.9253 1.56161
\(105\) 0 0
\(106\) 9.48753 0.921511
\(107\) −11.6381 −1.12510 −0.562549 0.826764i \(-0.690179\pi\)
−0.562549 + 0.826764i \(0.690179\pi\)
\(108\) 0 0
\(109\) −13.7720 −1.31912 −0.659561 0.751651i \(-0.729258\pi\)
−0.659561 + 0.751651i \(0.729258\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −13.7918 −1.30320
\(113\) −16.4395 −1.54650 −0.773250 0.634101i \(-0.781370\pi\)
−0.773250 + 0.634101i \(0.781370\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.14079 0.384462
\(117\) 0 0
\(118\) −29.5193 −2.71747
\(119\) 7.77350 0.712596
\(120\) 0 0
\(121\) 26.1899 2.38090
\(122\) −0.683125 −0.0618473
\(123\) 0 0
\(124\) −22.0405 −1.97930
\(125\) 0 0
\(126\) 0 0
\(127\) 7.47638 0.663422 0.331711 0.943381i \(-0.392374\pi\)
0.331711 + 0.943381i \(0.392374\pi\)
\(128\) −18.1273 −1.60225
\(129\) 0 0
\(130\) 0 0
\(131\) 7.63547 0.667114 0.333557 0.942730i \(-0.391751\pi\)
0.333557 + 0.942730i \(0.391751\pi\)
\(132\) 0 0
\(133\) −22.7862 −1.97581
\(134\) −18.2571 −1.57717
\(135\) 0 0
\(136\) −14.5454 −1.24725
\(137\) 8.83004 0.754401 0.377201 0.926132i \(-0.376887\pi\)
0.377201 + 0.926132i \(0.376887\pi\)
\(138\) 0 0
\(139\) 1.29281 0.109655 0.0548274 0.998496i \(-0.482539\pi\)
0.0548274 + 0.998496i \(0.482539\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −37.7192 −3.16533
\(143\) −18.3069 −1.53090
\(144\) 0 0
\(145\) 0 0
\(146\) 21.7369 1.79896
\(147\) 0 0
\(148\) −26.0107 −2.13806
\(149\) 10.9561 0.897561 0.448780 0.893642i \(-0.351859\pi\)
0.448780 + 0.893642i \(0.351859\pi\)
\(150\) 0 0
\(151\) −15.0875 −1.22781 −0.613903 0.789382i \(-0.710401\pi\)
−0.613903 + 0.789382i \(0.710401\pi\)
\(152\) 42.6362 3.45826
\(153\) 0 0
\(154\) 42.8452 3.45257
\(155\) 0 0
\(156\) 0 0
\(157\) 17.1333 1.36739 0.683693 0.729770i \(-0.260373\pi\)
0.683693 + 0.729770i \(0.260373\pi\)
\(158\) 4.08877 0.325285
\(159\) 0 0
\(160\) 0 0
\(161\) 21.4547 1.69087
\(162\) 0 0
\(163\) 3.12031 0.244402 0.122201 0.992505i \(-0.461005\pi\)
0.122201 + 0.992505i \(0.461005\pi\)
\(164\) 37.4364 2.92329
\(165\) 0 0
\(166\) −3.44141 −0.267105
\(167\) 7.92935 0.613591 0.306796 0.951775i \(-0.400743\pi\)
0.306796 + 0.951775i \(0.400743\pi\)
\(168\) 0 0
\(169\) −3.98831 −0.306793
\(170\) 0 0
\(171\) 0 0
\(172\) −37.5219 −2.86102
\(173\) −12.5868 −0.956956 −0.478478 0.878100i \(-0.658811\pi\)
−0.478478 + 0.878100i \(0.658811\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −29.6657 −2.23614
\(177\) 0 0
\(178\) 2.62241 0.196558
\(179\) −12.3291 −0.921520 −0.460760 0.887525i \(-0.652423\pi\)
−0.460760 + 0.887525i \(0.652423\pi\)
\(180\) 0 0
\(181\) 18.2467 1.35626 0.678132 0.734940i \(-0.262790\pi\)
0.678132 + 0.734940i \(0.262790\pi\)
\(182\) −21.0908 −1.56335
\(183\) 0 0
\(184\) −40.1449 −2.95952
\(185\) 0 0
\(186\) 0 0
\(187\) 16.7206 1.22273
\(188\) −0.347722 −0.0253602
\(189\) 0 0
\(190\) 0 0
\(191\) −1.43334 −0.103713 −0.0518564 0.998655i \(-0.516514\pi\)
−0.0518564 + 0.998655i \(0.516514\pi\)
\(192\) 0 0
\(193\) −1.01402 −0.0729910 −0.0364955 0.999334i \(-0.511619\pi\)
−0.0364955 + 0.999334i \(0.511619\pi\)
\(194\) 22.7672 1.63459
\(195\) 0 0
\(196\) 4.29876 0.307054
\(197\) −2.30413 −0.164162 −0.0820812 0.996626i \(-0.526157\pi\)
−0.0820812 + 0.996626i \(0.526157\pi\)
\(198\) 0 0
\(199\) 6.61638 0.469023 0.234511 0.972113i \(-0.424651\pi\)
0.234511 + 0.972113i \(0.424651\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 9.98008 0.702196
\(203\) −2.83516 −0.198989
\(204\) 0 0
\(205\) 0 0
\(206\) −12.6963 −0.884596
\(207\) 0 0
\(208\) 14.6031 1.01254
\(209\) −49.0123 −3.39025
\(210\) 0 0
\(211\) 15.7936 1.08728 0.543639 0.839319i \(-0.317046\pi\)
0.543639 + 0.839319i \(0.317046\pi\)
\(212\) 15.8535 1.08882
\(213\) 0 0
\(214\) −28.8399 −1.97146
\(215\) 0 0
\(216\) 0 0
\(217\) 15.0910 1.02444
\(218\) −34.1280 −2.31144
\(219\) 0 0
\(220\) 0 0
\(221\) −8.23079 −0.553663
\(222\) 0 0
\(223\) 7.24477 0.485146 0.242573 0.970133i \(-0.422009\pi\)
0.242573 + 0.970133i \(0.422009\pi\)
\(224\) −4.09579 −0.273662
\(225\) 0 0
\(226\) −40.7381 −2.70986
\(227\) −4.03611 −0.267886 −0.133943 0.990989i \(-0.542764\pi\)
−0.133943 + 0.990989i \(0.542764\pi\)
\(228\) 0 0
\(229\) 21.8237 1.44215 0.721076 0.692856i \(-0.243648\pi\)
0.721076 + 0.692856i \(0.243648\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.30500 0.348291
\(233\) −19.0324 −1.24685 −0.623425 0.781883i \(-0.714260\pi\)
−0.623425 + 0.781883i \(0.714260\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −49.3261 −3.21085
\(237\) 0 0
\(238\) 19.2632 1.24865
\(239\) 9.13075 0.590619 0.295309 0.955402i \(-0.404577\pi\)
0.295309 + 0.955402i \(0.404577\pi\)
\(240\) 0 0
\(241\) −15.1578 −0.976401 −0.488201 0.872731i \(-0.662347\pi\)
−0.488201 + 0.872731i \(0.662347\pi\)
\(242\) 64.9001 4.17194
\(243\) 0 0
\(244\) −1.14149 −0.0730763
\(245\) 0 0
\(246\) 0 0
\(247\) 24.1266 1.53514
\(248\) −28.2374 −1.79307
\(249\) 0 0
\(250\) 0 0
\(251\) 19.1722 1.21014 0.605070 0.796172i \(-0.293145\pi\)
0.605070 + 0.796172i \(0.293145\pi\)
\(252\) 0 0
\(253\) 46.1485 2.90133
\(254\) 18.5269 1.16248
\(255\) 0 0
\(256\) −32.6223 −2.03889
\(257\) −0.186589 −0.0116391 −0.00581954 0.999983i \(-0.501852\pi\)
−0.00581954 + 0.999983i \(0.501852\pi\)
\(258\) 0 0
\(259\) 17.8093 1.10662
\(260\) 0 0
\(261\) 0 0
\(262\) 18.9212 1.16895
\(263\) 18.6625 1.15078 0.575391 0.817879i \(-0.304850\pi\)
0.575391 + 0.817879i \(0.304850\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −56.4655 −3.46212
\(267\) 0 0
\(268\) −30.5072 −1.86353
\(269\) 6.55984 0.399960 0.199980 0.979800i \(-0.435912\pi\)
0.199980 + 0.979800i \(0.435912\pi\)
\(270\) 0 0
\(271\) −6.03232 −0.366437 −0.183219 0.983072i \(-0.558652\pi\)
−0.183219 + 0.983072i \(0.558652\pi\)
\(272\) −13.3377 −0.808717
\(273\) 0 0
\(274\) 21.8814 1.32190
\(275\) 0 0
\(276\) 0 0
\(277\) −4.24630 −0.255136 −0.127568 0.991830i \(-0.540717\pi\)
−0.127568 + 0.991830i \(0.540717\pi\)
\(278\) 3.20367 0.192143
\(279\) 0 0
\(280\) 0 0
\(281\) 17.2019 1.02618 0.513091 0.858334i \(-0.328500\pi\)
0.513091 + 0.858334i \(0.328500\pi\)
\(282\) 0 0
\(283\) −11.1095 −0.660393 −0.330196 0.943912i \(-0.607115\pi\)
−0.330196 + 0.943912i \(0.607115\pi\)
\(284\) −63.0280 −3.74002
\(285\) 0 0
\(286\) −45.3657 −2.68253
\(287\) −25.6324 −1.51303
\(288\) 0 0
\(289\) −9.48244 −0.557790
\(290\) 0 0
\(291\) 0 0
\(292\) 36.3219 2.12558
\(293\) −31.4210 −1.83564 −0.917818 0.397000i \(-0.870051\pi\)
−0.917818 + 0.397000i \(0.870051\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −33.3238 −1.93691
\(297\) 0 0
\(298\) 27.1499 1.57275
\(299\) −22.7169 −1.31375
\(300\) 0 0
\(301\) 25.6910 1.48080
\(302\) −37.3878 −2.15143
\(303\) 0 0
\(304\) 39.0963 2.24233
\(305\) 0 0
\(306\) 0 0
\(307\) −16.7120 −0.953804 −0.476902 0.878957i \(-0.658240\pi\)
−0.476902 + 0.878957i \(0.658240\pi\)
\(308\) 71.5935 4.07942
\(309\) 0 0
\(310\) 0 0
\(311\) 13.1232 0.744147 0.372073 0.928203i \(-0.378647\pi\)
0.372073 + 0.928203i \(0.378647\pi\)
\(312\) 0 0
\(313\) −21.7294 −1.22822 −0.614110 0.789221i \(-0.710485\pi\)
−0.614110 + 0.789221i \(0.710485\pi\)
\(314\) 42.4574 2.39601
\(315\) 0 0
\(316\) 6.83225 0.384344
\(317\) 17.8775 1.00410 0.502049 0.864839i \(-0.332580\pi\)
0.502049 + 0.864839i \(0.332580\pi\)
\(318\) 0 0
\(319\) −6.09835 −0.341442
\(320\) 0 0
\(321\) 0 0
\(322\) 53.1661 2.96283
\(323\) −22.0359 −1.22611
\(324\) 0 0
\(325\) 0 0
\(326\) 7.73233 0.428254
\(327\) 0 0
\(328\) 47.9619 2.64825
\(329\) 0.238082 0.0131259
\(330\) 0 0
\(331\) 1.52663 0.0839111 0.0419555 0.999119i \(-0.486641\pi\)
0.0419555 + 0.999119i \(0.486641\pi\)
\(332\) −5.75052 −0.315601
\(333\) 0 0
\(334\) 19.6494 1.07517
\(335\) 0 0
\(336\) 0 0
\(337\) −12.7719 −0.695732 −0.347866 0.937544i \(-0.613094\pi\)
−0.347866 + 0.937544i \(0.613094\pi\)
\(338\) −9.88327 −0.537579
\(339\) 0 0
\(340\) 0 0
\(341\) 32.4602 1.75782
\(342\) 0 0
\(343\) 16.9028 0.912666
\(344\) −48.0715 −2.59184
\(345\) 0 0
\(346\) −31.1908 −1.67683
\(347\) 17.1670 0.921571 0.460785 0.887512i \(-0.347568\pi\)
0.460785 + 0.887512i \(0.347568\pi\)
\(348\) 0 0
\(349\) −25.0051 −1.33849 −0.669247 0.743040i \(-0.733383\pi\)
−0.669247 + 0.743040i \(0.733383\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.80993 −0.469571
\(353\) 6.33813 0.337345 0.168672 0.985672i \(-0.446052\pi\)
0.168672 + 0.985672i \(0.446052\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.38200 0.232245
\(357\) 0 0
\(358\) −30.5523 −1.61474
\(359\) 36.2964 1.91565 0.957827 0.287347i \(-0.0927731\pi\)
0.957827 + 0.287347i \(0.0927731\pi\)
\(360\) 0 0
\(361\) 45.5931 2.39964
\(362\) 45.2163 2.37652
\(363\) 0 0
\(364\) −35.2423 −1.84720
\(365\) 0 0
\(366\) 0 0
\(367\) −0.515494 −0.0269086 −0.0134543 0.999909i \(-0.504283\pi\)
−0.0134543 + 0.999909i \(0.504283\pi\)
\(368\) −36.8118 −1.91895
\(369\) 0 0
\(370\) 0 0
\(371\) −10.8547 −0.563550
\(372\) 0 0
\(373\) 25.6201 1.32656 0.663279 0.748372i \(-0.269164\pi\)
0.663279 + 0.748372i \(0.269164\pi\)
\(374\) 41.4346 2.14253
\(375\) 0 0
\(376\) −0.445487 −0.0229742
\(377\) 3.00195 0.154608
\(378\) 0 0
\(379\) 31.7258 1.62965 0.814824 0.579709i \(-0.196834\pi\)
0.814824 + 0.579709i \(0.196834\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.55190 −0.181731
\(383\) 20.8586 1.06582 0.532912 0.846170i \(-0.321098\pi\)
0.532912 + 0.846170i \(0.321098\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.51281 −0.127899
\(387\) 0 0
\(388\) 38.0435 1.93137
\(389\) −36.7636 −1.86399 −0.931993 0.362476i \(-0.881931\pi\)
−0.931993 + 0.362476i \(0.881931\pi\)
\(390\) 0 0
\(391\) 20.7484 1.04929
\(392\) 5.50739 0.278165
\(393\) 0 0
\(394\) −5.70977 −0.287654
\(395\) 0 0
\(396\) 0 0
\(397\) −8.62743 −0.432999 −0.216499 0.976283i \(-0.569464\pi\)
−0.216499 + 0.976283i \(0.569464\pi\)
\(398\) 16.3958 0.821847
\(399\) 0 0
\(400\) 0 0
\(401\) −17.9078 −0.894274 −0.447137 0.894465i \(-0.647556\pi\)
−0.447137 + 0.894465i \(0.647556\pi\)
\(402\) 0 0
\(403\) −15.9787 −0.795956
\(404\) 16.6765 0.829687
\(405\) 0 0
\(406\) −7.02571 −0.348680
\(407\) 38.3072 1.89882
\(408\) 0 0
\(409\) 32.6668 1.61527 0.807633 0.589685i \(-0.200748\pi\)
0.807633 + 0.589685i \(0.200748\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −21.2153 −1.04520
\(413\) 33.7732 1.66187
\(414\) 0 0
\(415\) 0 0
\(416\) 4.33674 0.212626
\(417\) 0 0
\(418\) −121.456 −5.94059
\(419\) 23.5677 1.15136 0.575679 0.817676i \(-0.304738\pi\)
0.575679 + 0.817676i \(0.304738\pi\)
\(420\) 0 0
\(421\) 21.7941 1.06218 0.531089 0.847316i \(-0.321783\pi\)
0.531089 + 0.847316i \(0.321783\pi\)
\(422\) 39.1376 1.90519
\(423\) 0 0
\(424\) 20.3108 0.986379
\(425\) 0 0
\(426\) 0 0
\(427\) 0.781567 0.0378227
\(428\) −48.1909 −2.32940
\(429\) 0 0
\(430\) 0 0
\(431\) 24.6107 1.18545 0.592727 0.805403i \(-0.298051\pi\)
0.592727 + 0.805403i \(0.298051\pi\)
\(432\) 0 0
\(433\) 16.7103 0.803045 0.401523 0.915849i \(-0.368481\pi\)
0.401523 + 0.915849i \(0.368481\pi\)
\(434\) 37.3963 1.79508
\(435\) 0 0
\(436\) −57.0271 −2.73110
\(437\) −60.8189 −2.90936
\(438\) 0 0
\(439\) −30.8206 −1.47099 −0.735494 0.677532i \(-0.763050\pi\)
−0.735494 + 0.677532i \(0.763050\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −20.3964 −0.970158
\(443\) −25.0299 −1.18921 −0.594604 0.804019i \(-0.702691\pi\)
−0.594604 + 0.804019i \(0.702691\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 17.9530 0.850098
\(447\) 0 0
\(448\) 17.4339 0.823676
\(449\) 2.48864 0.117446 0.0587230 0.998274i \(-0.481297\pi\)
0.0587230 + 0.998274i \(0.481297\pi\)
\(450\) 0 0
\(451\) −55.1344 −2.59618
\(452\) −68.0726 −3.20186
\(453\) 0 0
\(454\) −10.0017 −0.469405
\(455\) 0 0
\(456\) 0 0
\(457\) −21.5308 −1.00717 −0.503585 0.863946i \(-0.667986\pi\)
−0.503585 + 0.863946i \(0.667986\pi\)
\(458\) 54.0805 2.52702
\(459\) 0 0
\(460\) 0 0
\(461\) 14.1345 0.658311 0.329156 0.944276i \(-0.393236\pi\)
0.329156 + 0.944276i \(0.393236\pi\)
\(462\) 0 0
\(463\) −11.7525 −0.546184 −0.273092 0.961988i \(-0.588046\pi\)
−0.273092 + 0.961988i \(0.588046\pi\)
\(464\) 4.86455 0.225831
\(465\) 0 0
\(466\) −47.1633 −2.18480
\(467\) −28.0936 −1.30002 −0.650009 0.759926i \(-0.725235\pi\)
−0.650009 + 0.759926i \(0.725235\pi\)
\(468\) 0 0
\(469\) 20.8881 0.964521
\(470\) 0 0
\(471\) 0 0
\(472\) −63.1945 −2.90876
\(473\) 55.2605 2.54088
\(474\) 0 0
\(475\) 0 0
\(476\) 32.1884 1.47535
\(477\) 0 0
\(478\) 22.6266 1.03491
\(479\) −5.25749 −0.240221 −0.120110 0.992761i \(-0.538325\pi\)
−0.120110 + 0.992761i \(0.538325\pi\)
\(480\) 0 0
\(481\) −18.8570 −0.859803
\(482\) −37.5620 −1.71090
\(483\) 0 0
\(484\) 108.447 4.92939
\(485\) 0 0
\(486\) 0 0
\(487\) −4.48076 −0.203043 −0.101521 0.994833i \(-0.532371\pi\)
−0.101521 + 0.994833i \(0.532371\pi\)
\(488\) −1.46243 −0.0662009
\(489\) 0 0
\(490\) 0 0
\(491\) 10.5211 0.474810 0.237405 0.971411i \(-0.423703\pi\)
0.237405 + 0.971411i \(0.423703\pi\)
\(492\) 0 0
\(493\) −2.74182 −0.123485
\(494\) 59.7872 2.68995
\(495\) 0 0
\(496\) −25.8929 −1.16263
\(497\) 43.1547 1.93575
\(498\) 0 0
\(499\) 29.4564 1.31865 0.659325 0.751858i \(-0.270842\pi\)
0.659325 + 0.751858i \(0.270842\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 47.5100 2.12047
\(503\) −17.5927 −0.784419 −0.392210 0.919876i \(-0.628289\pi\)
−0.392210 + 0.919876i \(0.628289\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 114.359 5.08387
\(507\) 0 0
\(508\) 30.9581 1.37354
\(509\) −2.87587 −0.127471 −0.0637354 0.997967i \(-0.520301\pi\)
−0.0637354 + 0.997967i \(0.520301\pi\)
\(510\) 0 0
\(511\) −24.8693 −1.10015
\(512\) −44.5854 −1.97041
\(513\) 0 0
\(514\) −0.462378 −0.0203946
\(515\) 0 0
\(516\) 0 0
\(517\) 0.512108 0.0225225
\(518\) 44.1325 1.93907
\(519\) 0 0
\(520\) 0 0
\(521\) −37.9466 −1.66247 −0.831235 0.555921i \(-0.812366\pi\)
−0.831235 + 0.555921i \(0.812366\pi\)
\(522\) 0 0
\(523\) 23.0805 1.00924 0.504619 0.863342i \(-0.331633\pi\)
0.504619 + 0.863342i \(0.331633\pi\)
\(524\) 31.6169 1.38119
\(525\) 0 0
\(526\) 46.2469 2.01646
\(527\) 14.5941 0.635729
\(528\) 0 0
\(529\) 34.2651 1.48979
\(530\) 0 0
\(531\) 0 0
\(532\) −94.3527 −4.09071
\(533\) 27.1403 1.17557
\(534\) 0 0
\(535\) 0 0
\(536\) −39.0846 −1.68820
\(537\) 0 0
\(538\) 16.2557 0.700832
\(539\) −6.33100 −0.272695
\(540\) 0 0
\(541\) −14.2524 −0.612758 −0.306379 0.951910i \(-0.599117\pi\)
−0.306379 + 0.951910i \(0.599117\pi\)
\(542\) −14.9485 −0.642091
\(543\) 0 0
\(544\) −3.96094 −0.169824
\(545\) 0 0
\(546\) 0 0
\(547\) −11.6415 −0.497754 −0.248877 0.968535i \(-0.580062\pi\)
−0.248877 + 0.968535i \(0.580062\pi\)
\(548\) 36.5633 1.56191
\(549\) 0 0
\(550\) 0 0
\(551\) 8.03698 0.342387
\(552\) 0 0
\(553\) −4.67799 −0.198928
\(554\) −10.5226 −0.447062
\(555\) 0 0
\(556\) 5.35326 0.227029
\(557\) −15.2321 −0.645406 −0.322703 0.946500i \(-0.604592\pi\)
−0.322703 + 0.946500i \(0.604592\pi\)
\(558\) 0 0
\(559\) −27.2023 −1.15053
\(560\) 0 0
\(561\) 0 0
\(562\) 42.6275 1.79813
\(563\) −35.7787 −1.50789 −0.753946 0.656937i \(-0.771852\pi\)
−0.753946 + 0.656937i \(0.771852\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −27.5301 −1.15718
\(567\) 0 0
\(568\) −80.7488 −3.38815
\(569\) −3.07401 −0.128869 −0.0644347 0.997922i \(-0.520524\pi\)
−0.0644347 + 0.997922i \(0.520524\pi\)
\(570\) 0 0
\(571\) 0.569487 0.0238323 0.0119161 0.999929i \(-0.496207\pi\)
0.0119161 + 0.999929i \(0.496207\pi\)
\(572\) −75.8051 −3.16957
\(573\) 0 0
\(574\) −63.5186 −2.65121
\(575\) 0 0
\(576\) 0 0
\(577\) −34.4259 −1.43317 −0.716584 0.697501i \(-0.754295\pi\)
−0.716584 + 0.697501i \(0.754295\pi\)
\(578\) −23.4981 −0.977390
\(579\) 0 0
\(580\) 0 0
\(581\) 3.93733 0.163348
\(582\) 0 0
\(583\) −23.3482 −0.966984
\(584\) 46.5341 1.92559
\(585\) 0 0
\(586\) −77.8633 −3.21650
\(587\) 21.6502 0.893600 0.446800 0.894634i \(-0.352563\pi\)
0.446800 + 0.894634i \(0.352563\pi\)
\(588\) 0 0
\(589\) −42.7791 −1.76268
\(590\) 0 0
\(591\) 0 0
\(592\) −30.5570 −1.25589
\(593\) −13.0532 −0.536031 −0.268015 0.963415i \(-0.586368\pi\)
−0.268015 + 0.963415i \(0.586368\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 45.3670 1.85830
\(597\) 0 0
\(598\) −56.2938 −2.30202
\(599\) −2.53099 −0.103413 −0.0517066 0.998662i \(-0.516466\pi\)
−0.0517066 + 0.998662i \(0.516466\pi\)
\(600\) 0 0
\(601\) 28.0697 1.14499 0.572493 0.819910i \(-0.305977\pi\)
0.572493 + 0.819910i \(0.305977\pi\)
\(602\) 63.6638 2.59474
\(603\) 0 0
\(604\) −62.4743 −2.54204
\(605\) 0 0
\(606\) 0 0
\(607\) 12.5431 0.509109 0.254554 0.967058i \(-0.418071\pi\)
0.254554 + 0.967058i \(0.418071\pi\)
\(608\) 11.6106 0.470871
\(609\) 0 0
\(610\) 0 0
\(611\) −0.252088 −0.0101984
\(612\) 0 0
\(613\) −47.7414 −1.92826 −0.964129 0.265435i \(-0.914485\pi\)
−0.964129 + 0.265435i \(0.914485\pi\)
\(614\) −41.4133 −1.67131
\(615\) 0 0
\(616\) 91.7225 3.69561
\(617\) −34.9338 −1.40638 −0.703191 0.711001i \(-0.748242\pi\)
−0.703191 + 0.711001i \(0.748242\pi\)
\(618\) 0 0
\(619\) −21.1586 −0.850437 −0.425218 0.905091i \(-0.639803\pi\)
−0.425218 + 0.905091i \(0.639803\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 32.5200 1.30393
\(623\) −3.00032 −0.120205
\(624\) 0 0
\(625\) 0 0
\(626\) −53.8468 −2.15215
\(627\) 0 0
\(628\) 70.9453 2.83103
\(629\) 17.2229 0.686723
\(630\) 0 0
\(631\) −48.5973 −1.93463 −0.967313 0.253585i \(-0.918390\pi\)
−0.967313 + 0.253585i \(0.918390\pi\)
\(632\) 8.75320 0.348183
\(633\) 0 0
\(634\) 44.3015 1.75944
\(635\) 0 0
\(636\) 0 0
\(637\) 3.11647 0.123479
\(638\) −15.1121 −0.598293
\(639\) 0 0
\(640\) 0 0
\(641\) −9.13307 −0.360735 −0.180367 0.983599i \(-0.557729\pi\)
−0.180367 + 0.983599i \(0.557729\pi\)
\(642\) 0 0
\(643\) 26.2899 1.03677 0.518386 0.855146i \(-0.326533\pi\)
0.518386 + 0.855146i \(0.326533\pi\)
\(644\) 88.8395 3.50077
\(645\) 0 0
\(646\) −54.6064 −2.14846
\(647\) 28.7440 1.13004 0.565021 0.825077i \(-0.308868\pi\)
0.565021 + 0.825077i \(0.308868\pi\)
\(648\) 0 0
\(649\) 72.6450 2.85157
\(650\) 0 0
\(651\) 0 0
\(652\) 12.9206 0.506008
\(653\) 14.7225 0.576135 0.288068 0.957610i \(-0.406987\pi\)
0.288068 + 0.957610i \(0.406987\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 43.9798 1.71712
\(657\) 0 0
\(658\) 0.589982 0.0229999
\(659\) −43.6117 −1.69887 −0.849435 0.527693i \(-0.823057\pi\)
−0.849435 + 0.527693i \(0.823057\pi\)
\(660\) 0 0
\(661\) 31.3884 1.22087 0.610433 0.792068i \(-0.290995\pi\)
0.610433 + 0.792068i \(0.290995\pi\)
\(662\) 3.78308 0.147034
\(663\) 0 0
\(664\) −7.36733 −0.285908
\(665\) 0 0
\(666\) 0 0
\(667\) −7.56737 −0.293010
\(668\) 32.8337 1.27038
\(669\) 0 0
\(670\) 0 0
\(671\) 1.68113 0.0648992
\(672\) 0 0
\(673\) −27.3226 −1.05321 −0.526604 0.850110i \(-0.676535\pi\)
−0.526604 + 0.850110i \(0.676535\pi\)
\(674\) −31.6496 −1.21910
\(675\) 0 0
\(676\) −16.5147 −0.635182
\(677\) 0.598834 0.0230151 0.0115075 0.999934i \(-0.496337\pi\)
0.0115075 + 0.999934i \(0.496337\pi\)
\(678\) 0 0
\(679\) −26.0481 −0.999634
\(680\) 0 0
\(681\) 0 0
\(682\) 80.4383 3.08014
\(683\) 11.9236 0.456243 0.228122 0.973633i \(-0.426742\pi\)
0.228122 + 0.973633i \(0.426742\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 41.8862 1.59922
\(687\) 0 0
\(688\) −44.0803 −1.68055
\(689\) 11.4933 0.437859
\(690\) 0 0
\(691\) 34.6437 1.31791 0.658955 0.752183i \(-0.270999\pi\)
0.658955 + 0.752183i \(0.270999\pi\)
\(692\) −52.1192 −1.98128
\(693\) 0 0
\(694\) 42.5408 1.61483
\(695\) 0 0
\(696\) 0 0
\(697\) −24.7884 −0.938929
\(698\) −61.9642 −2.34538
\(699\) 0 0
\(700\) 0 0
\(701\) 16.1632 0.610477 0.305239 0.952276i \(-0.401264\pi\)
0.305239 + 0.952276i \(0.401264\pi\)
\(702\) 0 0
\(703\) −50.4849 −1.90408
\(704\) 37.4999 1.41333
\(705\) 0 0
\(706\) 15.7063 0.591113
\(707\) −11.4183 −0.429428
\(708\) 0 0
\(709\) −26.8631 −1.00887 −0.504433 0.863451i \(-0.668298\pi\)
−0.504433 + 0.863451i \(0.668298\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 5.61403 0.210395
\(713\) 40.2795 1.50848
\(714\) 0 0
\(715\) 0 0
\(716\) −51.0522 −1.90791
\(717\) 0 0
\(718\) 89.9448 3.35671
\(719\) −6.96465 −0.259738 −0.129869 0.991531i \(-0.541456\pi\)
−0.129869 + 0.991531i \(0.541456\pi\)
\(720\) 0 0
\(721\) 14.5259 0.540975
\(722\) 112.983 4.20478
\(723\) 0 0
\(724\) 75.5556 2.80800
\(725\) 0 0
\(726\) 0 0
\(727\) −36.7261 −1.36210 −0.681048 0.732239i \(-0.738475\pi\)
−0.681048 + 0.732239i \(0.738475\pi\)
\(728\) −45.1509 −1.67341
\(729\) 0 0
\(730\) 0 0
\(731\) 24.8451 0.918929
\(732\) 0 0
\(733\) −39.3167 −1.45219 −0.726097 0.687592i \(-0.758668\pi\)
−0.726097 + 0.687592i \(0.758668\pi\)
\(734\) −1.27743 −0.0471507
\(735\) 0 0
\(736\) −10.9321 −0.402964
\(737\) 44.9296 1.65500
\(738\) 0 0
\(739\) −31.4897 −1.15837 −0.579184 0.815197i \(-0.696629\pi\)
−0.579184 + 0.815197i \(0.696629\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −26.8987 −0.987482
\(743\) −30.2195 −1.10864 −0.554322 0.832302i \(-0.687022\pi\)
−0.554322 + 0.832302i \(0.687022\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 63.4882 2.32447
\(747\) 0 0
\(748\) 69.2363 2.53153
\(749\) 32.9959 1.20565
\(750\) 0 0
\(751\) 14.3956 0.525304 0.262652 0.964891i \(-0.415403\pi\)
0.262652 + 0.964891i \(0.415403\pi\)
\(752\) −0.408499 −0.0148964
\(753\) 0 0
\(754\) 7.43901 0.270913
\(755\) 0 0
\(756\) 0 0
\(757\) 6.44800 0.234356 0.117178 0.993111i \(-0.462615\pi\)
0.117178 + 0.993111i \(0.462615\pi\)
\(758\) 78.6186 2.85556
\(759\) 0 0
\(760\) 0 0
\(761\) −36.8289 −1.33505 −0.667523 0.744589i \(-0.732646\pi\)
−0.667523 + 0.744589i \(0.732646\pi\)
\(762\) 0 0
\(763\) 39.0460 1.41356
\(764\) −5.93516 −0.214726
\(765\) 0 0
\(766\) 51.6889 1.86760
\(767\) −35.7599 −1.29122
\(768\) 0 0
\(769\) −13.5699 −0.489344 −0.244672 0.969606i \(-0.578680\pi\)
−0.244672 + 0.969606i \(0.578680\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.19885 −0.151120
\(773\) 3.84475 0.138286 0.0691429 0.997607i \(-0.477974\pi\)
0.0691429 + 0.997607i \(0.477974\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 48.7398 1.74966
\(777\) 0 0
\(778\) −91.1023 −3.26618
\(779\) 72.6614 2.60337
\(780\) 0 0
\(781\) 92.8245 3.32152
\(782\) 51.4157 1.83862
\(783\) 0 0
\(784\) 5.05013 0.180362
\(785\) 0 0
\(786\) 0 0
\(787\) −18.1619 −0.647400 −0.323700 0.946160i \(-0.604927\pi\)
−0.323700 + 0.946160i \(0.604927\pi\)
\(788\) −9.54091 −0.339881
\(789\) 0 0
\(790\) 0 0
\(791\) 46.6087 1.65722
\(792\) 0 0
\(793\) −0.827545 −0.0293870
\(794\) −21.3793 −0.758723
\(795\) 0 0
\(796\) 27.3970 0.971062
\(797\) 34.3762 1.21767 0.608834 0.793298i \(-0.291638\pi\)
0.608834 + 0.793298i \(0.291638\pi\)
\(798\) 0 0
\(799\) 0.230244 0.00814543
\(800\) 0 0
\(801\) 0 0
\(802\) −44.3767 −1.56700
\(803\) −53.4931 −1.88773
\(804\) 0 0
\(805\) 0 0
\(806\) −39.5962 −1.39472
\(807\) 0 0
\(808\) 21.3652 0.751627
\(809\) −19.8011 −0.696169 −0.348084 0.937463i \(-0.613168\pi\)
−0.348084 + 0.937463i \(0.613168\pi\)
\(810\) 0 0
\(811\) 6.59998 0.231756 0.115878 0.993263i \(-0.463032\pi\)
0.115878 + 0.993263i \(0.463032\pi\)
\(812\) −11.7398 −0.411987
\(813\) 0 0
\(814\) 94.9277 3.32721
\(815\) 0 0
\(816\) 0 0
\(817\) −72.8275 −2.54791
\(818\) 80.9502 2.83036
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0216 0.628959 0.314479 0.949264i \(-0.398170\pi\)
0.314479 + 0.949264i \(0.398170\pi\)
\(822\) 0 0
\(823\) 12.5622 0.437892 0.218946 0.975737i \(-0.429738\pi\)
0.218946 + 0.975737i \(0.429738\pi\)
\(824\) −27.1802 −0.946866
\(825\) 0 0
\(826\) 83.6920 2.91202
\(827\) 12.1147 0.421270 0.210635 0.977565i \(-0.432447\pi\)
0.210635 + 0.977565i \(0.432447\pi\)
\(828\) 0 0
\(829\) −14.0551 −0.488152 −0.244076 0.969756i \(-0.578485\pi\)
−0.244076 + 0.969756i \(0.578485\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −18.4595 −0.639969
\(833\) −2.84642 −0.0986225
\(834\) 0 0
\(835\) 0 0
\(836\) −202.950 −7.01916
\(837\) 0 0
\(838\) 58.4023 2.01747
\(839\) −7.95419 −0.274609 −0.137305 0.990529i \(-0.543844\pi\)
−0.137305 + 0.990529i \(0.543844\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 54.0070 1.86121
\(843\) 0 0
\(844\) 65.3980 2.25109
\(845\) 0 0
\(846\) 0 0
\(847\) −74.2525 −2.55135
\(848\) 18.6245 0.639567
\(849\) 0 0
\(850\) 0 0
\(851\) 47.5350 1.62948
\(852\) 0 0
\(853\) 43.0370 1.47356 0.736779 0.676133i \(-0.236346\pi\)
0.736779 + 0.676133i \(0.236346\pi\)
\(854\) 1.93677 0.0662750
\(855\) 0 0
\(856\) −61.7402 −2.11024
\(857\) −19.2579 −0.657837 −0.328919 0.944358i \(-0.606684\pi\)
−0.328919 + 0.944358i \(0.606684\pi\)
\(858\) 0 0
\(859\) 23.5213 0.802535 0.401268 0.915961i \(-0.368570\pi\)
0.401268 + 0.915961i \(0.368570\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 60.9868 2.07722
\(863\) −16.8210 −0.572593 −0.286296 0.958141i \(-0.592424\pi\)
−0.286296 + 0.958141i \(0.592424\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 41.4091 1.40714
\(867\) 0 0
\(868\) 62.4884 2.12100
\(869\) −10.0622 −0.341337
\(870\) 0 0
\(871\) −22.1168 −0.749401
\(872\) −73.0607 −2.47415
\(873\) 0 0
\(874\) −150.713 −5.09794
\(875\) 0 0
\(876\) 0 0
\(877\) −28.6157 −0.966283 −0.483142 0.875542i \(-0.660504\pi\)
−0.483142 + 0.875542i \(0.660504\pi\)
\(878\) −76.3753 −2.57754
\(879\) 0 0
\(880\) 0 0
\(881\) −11.5327 −0.388546 −0.194273 0.980948i \(-0.562235\pi\)
−0.194273 + 0.980948i \(0.562235\pi\)
\(882\) 0 0
\(883\) 0.259436 0.00873072 0.00436536 0.999990i \(-0.498610\pi\)
0.00436536 + 0.999990i \(0.498610\pi\)
\(884\) −34.0820 −1.14630
\(885\) 0 0
\(886\) −62.0257 −2.08379
\(887\) 25.6339 0.860702 0.430351 0.902662i \(-0.358390\pi\)
0.430351 + 0.902662i \(0.358390\pi\)
\(888\) 0 0
\(889\) −21.1968 −0.710917
\(890\) 0 0
\(891\) 0 0
\(892\) 29.9991 1.00444
\(893\) −0.674904 −0.0225848
\(894\) 0 0
\(895\) 0 0
\(896\) 51.3940 1.71695
\(897\) 0 0
\(898\) 6.16699 0.205795
\(899\) −5.32278 −0.177525
\(900\) 0 0
\(901\) −10.4974 −0.349718
\(902\) −136.627 −4.54917
\(903\) 0 0
\(904\) −87.2117 −2.90062
\(905\) 0 0
\(906\) 0 0
\(907\) −38.4925 −1.27812 −0.639060 0.769156i \(-0.720677\pi\)
−0.639060 + 0.769156i \(0.720677\pi\)
\(908\) −16.7127 −0.554630
\(909\) 0 0
\(910\) 0 0
\(911\) −48.7894 −1.61646 −0.808232 0.588864i \(-0.799575\pi\)
−0.808232 + 0.588864i \(0.799575\pi\)
\(912\) 0 0
\(913\) 8.46909 0.280286
\(914\) −53.3547 −1.76482
\(915\) 0 0
\(916\) 90.3674 2.98582
\(917\) −21.6478 −0.714873
\(918\) 0 0
\(919\) 1.29772 0.0428079 0.0214040 0.999771i \(-0.493186\pi\)
0.0214040 + 0.999771i \(0.493186\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 35.0263 1.15353
\(923\) −45.6934 −1.50402
\(924\) 0 0
\(925\) 0 0
\(926\) −29.1234 −0.957053
\(927\) 0 0
\(928\) 1.44464 0.0474227
\(929\) 6.26915 0.205684 0.102842 0.994698i \(-0.467206\pi\)
0.102842 + 0.994698i \(0.467206\pi\)
\(930\) 0 0
\(931\) 8.34359 0.273450
\(932\) −78.8089 −2.58147
\(933\) 0 0
\(934\) −69.6178 −2.27796
\(935\) 0 0
\(936\) 0 0
\(937\) −6.64562 −0.217103 −0.108552 0.994091i \(-0.534621\pi\)
−0.108552 + 0.994091i \(0.534621\pi\)
\(938\) 51.7619 1.69009
\(939\) 0 0
\(940\) 0 0
\(941\) 6.21026 0.202449 0.101224 0.994864i \(-0.467724\pi\)
0.101224 + 0.994864i \(0.467724\pi\)
\(942\) 0 0
\(943\) −68.4157 −2.22792
\(944\) −57.9477 −1.88604
\(945\) 0 0
\(946\) 136.939 4.45226
\(947\) −13.9468 −0.453209 −0.226604 0.973987i \(-0.572762\pi\)
−0.226604 + 0.973987i \(0.572762\pi\)
\(948\) 0 0
\(949\) 26.3323 0.854782
\(950\) 0 0
\(951\) 0 0
\(952\) 41.2384 1.33655
\(953\) 17.9504 0.581469 0.290735 0.956804i \(-0.406100\pi\)
0.290735 + 0.956804i \(0.406100\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 37.8085 1.22281
\(957\) 0 0
\(958\) −13.0284 −0.420928
\(959\) −25.0346 −0.808409
\(960\) 0 0
\(961\) −2.66800 −0.0860645
\(962\) −46.7287 −1.50659
\(963\) 0 0
\(964\) −62.7653 −2.02154
\(965\) 0 0
\(966\) 0 0
\(967\) −46.8801 −1.50756 −0.753782 0.657125i \(-0.771772\pi\)
−0.753782 + 0.657125i \(0.771772\pi\)
\(968\) 138.937 4.46561
\(969\) 0 0
\(970\) 0 0
\(971\) 42.6028 1.36719 0.683595 0.729861i \(-0.260415\pi\)
0.683595 + 0.729861i \(0.260415\pi\)
\(972\) 0 0
\(973\) −3.66533 −0.117505
\(974\) −11.1036 −0.355782
\(975\) 0 0
\(976\) −1.34101 −0.0429246
\(977\) −14.4907 −0.463599 −0.231800 0.972764i \(-0.574461\pi\)
−0.231800 + 0.972764i \(0.574461\pi\)
\(978\) 0 0
\(979\) −6.45359 −0.206258
\(980\) 0 0
\(981\) 0 0
\(982\) 26.0719 0.831987
\(983\) −47.0175 −1.49963 −0.749813 0.661649i \(-0.769857\pi\)
−0.749813 + 0.661649i \(0.769857\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6.79439 −0.216378
\(987\) 0 0
\(988\) 99.9032 3.17834
\(989\) 68.5721 2.18046
\(990\) 0 0
\(991\) 30.1662 0.958262 0.479131 0.877743i \(-0.340952\pi\)
0.479131 + 0.877743i \(0.340952\pi\)
\(992\) −7.68951 −0.244142
\(993\) 0 0
\(994\) 106.940 3.39193
\(995\) 0 0
\(996\) 0 0
\(997\) 26.4657 0.838176 0.419088 0.907946i \(-0.362350\pi\)
0.419088 + 0.907946i \(0.362350\pi\)
\(998\) 72.9948 2.31061
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bu.1.7 7
3.2 odd 2 2175.2.a.bb.1.1 yes 7
5.4 even 2 6525.2.a.bx.1.1 7
15.2 even 4 2175.2.c.o.349.2 14
15.8 even 4 2175.2.c.o.349.13 14
15.14 odd 2 2175.2.a.ba.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.ba.1.7 7 15.14 odd 2
2175.2.a.bb.1.1 yes 7 3.2 odd 2
2175.2.c.o.349.2 14 15.2 even 4
2175.2.c.o.349.13 14 15.8 even 4
6525.2.a.bu.1.7 7 1.1 even 1 trivial
6525.2.a.bx.1.1 7 5.4 even 2