Properties

Label 650.6.a.m
Level 650650
Weight 66
Character orbit 650.a
Self dual yes
Analytic conductor 104.249104.249
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,6,Mod(1,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 650.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,16,-20,64,0,-80,-178] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 104.249482878104.249482878
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4547x21614x+22320 x^{4} - 547x^{2} - 1614x + 22320 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4q2+(β15)q3+16q4+(4β120)q6+(3β3+β2+46)q7+64q8+(5β34β25β1+58)q9+(β35β2+74)q11++(537β3+1247β2++10864)q99+O(q100) q + 4 q^{2} + (\beta_1 - 5) q^{3} + 16 q^{4} + (4 \beta_1 - 20) q^{6} + ( - 3 \beta_{3} + \beta_{2} + \cdots - 46) q^{7} + 64 q^{8} + (5 \beta_{3} - 4 \beta_{2} - 5 \beta_1 + 58) q^{9} + ( - \beta_{3} - 5 \beta_{2} + \cdots - 74) q^{11}+ \cdots + ( - 537 \beta_{3} + 1247 \beta_{2} + \cdots + 10864) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+16q220q3+64q480q6178q7+256q8+222q9294q11320q12+676q13712q14+1024q161806q17+888q18+464q191008q21++44530q99+O(q100) 4 q + 16 q^{2} - 20 q^{3} + 64 q^{4} - 80 q^{6} - 178 q^{7} + 256 q^{8} + 222 q^{9} - 294 q^{11} - 320 q^{12} + 676 q^{13} - 712 q^{14} + 1024 q^{16} - 1806 q^{17} + 888 q^{18} + 464 q^{19} - 1008 q^{21}+ \cdots + 44530 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4547x21614x+22320 x^{4} - 547x^{2} - 1614x + 22320 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (5ν3+3ν2+2330ν+5232)/288 ( -5\nu^{3} + 3\nu^{2} + 2330\nu + 5232 ) / 288 Copy content Toggle raw display
β3\beta_{3}== (ν3+15ν2+394ν2928)/72 ( -\nu^{3} + 15\nu^{2} + 394\nu - 2928 ) / 72 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 5β34β2+5β1+276 5\beta_{3} - 4\beta_{2} + 5\beta _1 + 276 Copy content Toggle raw display
ν3\nu^{3}== 3β360β2+469β1+1212 3\beta_{3} - 60\beta_{2} + 469\beta _1 + 1212 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−20.3395
−8.83034
5.18032
23.9895
4.00000 −25.3395 16.0000 0 −101.358 −154.564 64.0000 399.089 0
1.2 4.00000 −13.8303 16.0000 0 −55.3213 120.695 64.0000 −51.7218 0
1.3 4.00000 0.180317 16.0000 0 0.721270 27.5588 64.0000 −242.967 0
1.4 4.00000 18.9895 16.0000 0 75.9579 −171.689 64.0000 117.601 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.a.m yes 4
5.b even 2 1 650.6.a.l 4
5.c odd 4 2 650.6.b.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.6.a.l 4 5.b even 2 1
650.6.a.m yes 4 1.a even 1 1 trivial
650.6.b.k 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+20T33397T326584T3+1200 T_{3}^{4} + 20T_{3}^{3} - 397T_{3}^{2} - 6584T_{3} + 1200 acting on S6new(Γ0(650))S_{6}^{\mathrm{new}}(\Gamma_0(650)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4)4 (T - 4)^{4} Copy content Toggle raw display
33 T4+20T3++1200 T^{4} + 20 T^{3} + \cdots + 1200 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+178T3++88267500 T^{4} + 178 T^{3} + \cdots + 88267500 Copy content Toggle raw display
1111 T4+294T3+443328300 T^{4} + 294 T^{3} + \cdots - 443328300 Copy content Toggle raw display
1313 (T169)4 (T - 169)^{4} Copy content Toggle raw display
1717 T4+1646211586716 T^{4} + \cdots - 1646211586716 Copy content Toggle raw display
1919 T4+28772012160 T^{4} + \cdots - 28772012160 Copy content Toggle raw display
2323 T4++4678507075764 T^{4} + \cdots + 4678507075764 Copy content Toggle raw display
2929 T4++38291708851565 T^{4} + \cdots + 38291708851565 Copy content Toggle raw display
3131 T4+9017382657420 T^{4} + \cdots - 9017382657420 Copy content Toggle raw display
3737 T4+31 ⁣ ⁣68 T^{4} + \cdots - 31\!\cdots\!68 Copy content Toggle raw display
4141 T4++352330273075200 T^{4} + \cdots + 352330273075200 Copy content Toggle raw display
4343 T4+709484091687900 T^{4} + \cdots - 709484091687900 Copy content Toggle raw display
4747 T4+49 ⁣ ⁣36 T^{4} + \cdots - 49\!\cdots\!36 Copy content Toggle raw display
5353 T4++13 ⁣ ⁣49 T^{4} + \cdots + 13\!\cdots\!49 Copy content Toggle raw display
5959 T4+69 ⁣ ⁣20 T^{4} + \cdots - 69\!\cdots\!20 Copy content Toggle raw display
6161 T4++27 ⁣ ⁣41 T^{4} + \cdots + 27\!\cdots\!41 Copy content Toggle raw display
6767 T4++10 ⁣ ⁣80 T^{4} + \cdots + 10\!\cdots\!80 Copy content Toggle raw display
7171 T4++30 ⁣ ⁣00 T^{4} + \cdots + 30\!\cdots\!00 Copy content Toggle raw display
7373 T4+59 ⁣ ⁣60 T^{4} + \cdots - 59\!\cdots\!60 Copy content Toggle raw display
7979 T4++80 ⁣ ⁣60 T^{4} + \cdots + 80\!\cdots\!60 Copy content Toggle raw display
8383 T4++41 ⁣ ⁣80 T^{4} + \cdots + 41\!\cdots\!80 Copy content Toggle raw display
8989 T4+33 ⁣ ⁣00 T^{4} + \cdots - 33\!\cdots\!00 Copy content Toggle raw display
9797 T4+38 ⁣ ⁣68 T^{4} + \cdots - 38\!\cdots\!68 Copy content Toggle raw display
show more
show less