gp: [N,k,chi] = [650,6,Mod(1,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
Newform invariants
sage: traces = [4,16,-20,64,0,-80,-178]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 547 x 2 − 1614 x + 22320 x^{4} - 547x^{2} - 1614x + 22320 x 4 − 5 4 7 x 2 − 1 6 1 4 x + 2 2 3 2 0
x^4 - 547*x^2 - 1614*x + 22320
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − 5 ν 3 + 3 ν 2 + 2330 ν + 5232 ) / 288 ( -5\nu^{3} + 3\nu^{2} + 2330\nu + 5232 ) / 288 ( − 5 ν 3 + 3 ν 2 + 2 3 3 0 ν + 5 2 3 2 ) / 2 8 8
(-5*v^3 + 3*v^2 + 2330*v + 5232) / 288
β 3 \beta_{3} β 3 = = =
( − ν 3 + 15 ν 2 + 394 ν − 2928 ) / 72 ( -\nu^{3} + 15\nu^{2} + 394\nu - 2928 ) / 72 ( − ν 3 + 1 5 ν 2 + 3 9 4 ν − 2 9 2 8 ) / 7 2
(-v^3 + 15*v^2 + 394*v - 2928) / 72
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
5 β 3 − 4 β 2 + 5 β 1 + 276 5\beta_{3} - 4\beta_{2} + 5\beta _1 + 276 5 β 3 − 4 β 2 + 5 β 1 + 2 7 6
5*b3 - 4*b2 + 5*b1 + 276
ν 3 \nu^{3} ν 3 = = =
3 β 3 − 60 β 2 + 469 β 1 + 1212 3\beta_{3} - 60\beta_{2} + 469\beta _1 + 1212 3 β 3 − 6 0 β 2 + 4 6 9 β 1 + 1 2 1 2
3*b3 - 60*b2 + 469*b1 + 1212
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 + 20 T 3 3 − 397 T 3 2 − 6584 T 3 + 1200 T_{3}^{4} + 20T_{3}^{3} - 397T_{3}^{2} - 6584T_{3} + 1200 T 3 4 + 2 0 T 3 3 − 3 9 7 T 3 2 − 6 5 8 4 T 3 + 1 2 0 0
T3^4 + 20*T3^3 - 397*T3^2 - 6584*T3 + 1200
acting on S 6 n e w ( Γ 0 ( 650 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(650)) S 6 n e w ( Γ 0 ( 6 5 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 4 ) 4 (T - 4)^{4} ( T − 4 ) 4
(T - 4)^4
3 3 3
T 4 + 20 T 3 + ⋯ + 1200 T^{4} + 20 T^{3} + \cdots + 1200 T 4 + 2 0 T 3 + ⋯ + 1 2 0 0
T^4 + 20*T^3 - 397*T^2 - 6584*T + 1200
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 178 T 3 + ⋯ + 88267500 T^{4} + 178 T^{3} + \cdots + 88267500 T 4 + 1 7 8 T 3 + ⋯ + 8 8 2 6 7 5 0 0
T^4 + 178*T^3 - 18505*T^2 - 2849020*T + 88267500
11 11 1 1
T 4 + 294 T 3 + ⋯ − 443328300 T^{4} + 294 T^{3} + \cdots - 443328300 T 4 + 2 9 4 T 3 + ⋯ − 4 4 3 3 2 8 3 0 0
T^4 + 294*T^3 - 58513*T^2 - 11620008*T - 443328300
13 13 1 3
( T − 169 ) 4 (T - 169)^{4} ( T − 1 6 9 ) 4
(T - 169)^4
17 17 1 7
T 4 + ⋯ − 1646211586716 T^{4} + \cdots - 1646211586716 T 4 + ⋯ − 1 6 4 6 2 1 1 5 8 6 7 1 6
T^4 + 1806*T^3 - 2483235*T^2 - 5529534404*T - 1646211586716
19 19 1 9
T 4 + ⋯ − 28772012160 T^{4} + \cdots - 28772012160 T 4 + ⋯ − 2 8 7 7 2 0 1 2 1 6 0
T^4 - 464*T^3 - 1923020*T^2 - 759795792*T - 28772012160
23 23 2 3
T 4 + ⋯ + 4678507075764 T^{4} + \cdots + 4678507075764 T 4 + ⋯ + 4 6 7 8 5 0 7 0 7 5 7 6 4
T^4 - 1668*T^3 - 6769245*T^2 + 4213108388*T + 4678507075764
29 29 2 9
T 4 + ⋯ + 38291708851565 T^{4} + \cdots + 38291708851565 T 4 + ⋯ + 3 8 2 9 1 7 0 8 8 5 1 5 6 5
T^4 + 4544*T^3 - 9768150*T^2 - 34606842968*T + 38291708851565
31 31 3 1
T 4 + ⋯ − 9017382657420 T^{4} + \cdots - 9017382657420 T 4 + ⋯ − 9 0 1 7 3 8 2 6 5 7 4 2 0
T^4 - 5618*T^3 - 36343193*T^2 - 36428354040*T - 9017382657420
37 37 3 7
T 4 + ⋯ − 31 ⋯ 68 T^{4} + \cdots - 31\!\cdots\!68 T 4 + ⋯ − 3 1 ⋯ 6 8
T^4 + 11148*T^3 - 97276012*T^2 - 1271854702272*T - 3133289749704768
41 41 4 1
T 4 + ⋯ + 352330273075200 T^{4} + \cdots + 352330273075200 T 4 + ⋯ + 3 5 2 3 3 0 2 7 3 0 7 5 2 0 0
T^4 - 13232*T^3 - 150887680*T^2 + 9061575680*T + 352330273075200
43 43 4 3
T 4 + ⋯ − 709484091687900 T^{4} + \cdots - 709484091687900 T 4 + ⋯ − 7 0 9 4 8 4 0 9 1 6 8 7 9 0 0
T^4 + 20648*T^3 + 71957495*T^2 - 252846544964*T - 709484091687900
47 47 4 7
T 4 + ⋯ − 49 ⋯ 36 T^{4} + \cdots - 49\!\cdots\!36 T 4 + ⋯ − 4 9 ⋯ 3 6
T^4 + 8778*T^3 - 170208333*T^2 - 1991227105836*T - 4966529645274336
53 53 5 3
T 4 + ⋯ + 13 ⋯ 49 T^{4} + \cdots + 13\!\cdots\!49 T 4 + ⋯ + 1 3 ⋯ 4 9
T^4 + 52292*T^3 + 889636810*T^2 + 5965970432268*T + 13754888174290149
59 59 5 9
T 4 + ⋯ − 69 ⋯ 20 T^{4} + \cdots - 69\!\cdots\!20 T 4 + ⋯ − 6 9 ⋯ 2 0
T^4 + 44590*T^3 - 1028968893*T^2 - 65402641192248*T - 699268062419943120
61 61 6 1
T 4 + ⋯ + 27 ⋯ 41 T^{4} + \cdots + 27\!\cdots\!41 T 4 + ⋯ + 2 7 ⋯ 4 1
T^4 - 9668*T^3 - 861615478*T^2 + 8291234395412*T + 27007740711891141
67 67 6 7
T 4 + ⋯ + 10 ⋯ 80 T^{4} + \cdots + 10\!\cdots\!80 T 4 + ⋯ + 1 0 ⋯ 8 0
T^4 + 5542*T^3 - 2628443473*T^2 + 17620987068680*T + 100531766330416980
71 71 7 1
T 4 + ⋯ + 30 ⋯ 00 T^{4} + \cdots + 30\!\cdots\!00 T 4 + ⋯ + 3 0 ⋯ 0 0
T^4 - 1160*T^3 - 3574708684*T^2 + 5425465120400*T + 3040671863575584000
73 73 7 3
T 4 + ⋯ − 59 ⋯ 60 T^{4} + \cdots - 59\!\cdots\!60 T 4 + ⋯ − 5 9 ⋯ 6 0
T^4 + 114812*T^3 + 3403497088*T^2 + 14837036874384*T - 59867726817638160
79 79 7 9
T 4 + ⋯ + 80 ⋯ 60 T^{4} + \cdots + 80\!\cdots\!60 T 4 + ⋯ + 8 0 ⋯ 6 0
T^4 + 105740*T^3 - 3778455973*T^2 - 373073170211732*T + 8051761240420030260
83 83 8 3
T 4 + ⋯ + 41 ⋯ 80 T^{4} + \cdots + 41\!\cdots\!80 T 4 + ⋯ + 4 1 ⋯ 8 0
T^4 + 137286*T^3 - 810047317*T^2 - 281382212112600*T + 4130147758091345280
89 89 8 9
T 4 + ⋯ − 33 ⋯ 00 T^{4} + \cdots - 33\!\cdots\!00 T 4 + ⋯ − 3 3 ⋯ 0 0
T^4 + 72772*T^3 - 15119453644*T^2 - 1199247829609600*T - 3366204251331033600
97 97 9 7
T 4 + ⋯ − 38 ⋯ 68 T^{4} + \cdots - 38\!\cdots\!68 T 4 + ⋯ − 3 8 ⋯ 6 8
T^4 + 98300*T^3 - 9964100044*T^2 - 1379837845550336*T - 38653601003576271168
show more
show less