Properties

Label 650.4.c.f
Level 650650
Weight 44
Character orbit 650.c
Analytic conductor 38.35138.351
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(649,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.649"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 650.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,0,16,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.351241503738.3512415037
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,217)\Q(i, \sqrt{217})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+109x2+2916 x^{4} + 109x^{2} + 2916 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2q2+(β2+β1)q3+4q4+(2β2+2β1)q6+(β34)q7+8q8+(3β331)q9+(12β26β1)q11+(4β2+4β1)q12++(636β2+150β1)q99+O(q100) q + 2 q^{2} + ( - \beta_{2} + \beta_1) q^{3} + 4 q^{4} + ( - 2 \beta_{2} + 2 \beta_1) q^{6} + (\beta_{3} - 4) q^{7} + 8 q^{8} + (3 \beta_{3} - 31) q^{9} + ( - 12 \beta_{2} - 6 \beta_1) q^{11} + ( - 4 \beta_{2} + 4 \beta_1) q^{12}+ \cdots + ( - 636 \beta_{2} + 150 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q2+16q414q7+32q8118q922q1328q14+64q16236q1844q2656q28748q29+128q32+1248q33472q36+26q37+52q39+2212q98+O(q100) 4 q + 8 q^{2} + 16 q^{4} - 14 q^{7} + 32 q^{8} - 118 q^{9} - 22 q^{13} - 28 q^{14} + 64 q^{16} - 236 q^{18} - 44 q^{26} - 56 q^{28} - 748 q^{29} + 128 q^{32} + 1248 q^{33} - 472 q^{36} + 26 q^{37} + 52 q^{39}+ \cdots - 2212 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+109x2+2916 x^{4} + 109x^{2} + 2916 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+55ν)/54 ( \nu^{3} + 55\nu ) / 54 Copy content Toggle raw display
β3\beta_{3}== ν2+55 \nu^{2} + 55 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β355 \beta_{3} - 55 Copy content Toggle raw display
ν3\nu^{3}== 54β255β1 54\beta_{2} - 55\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
649.1
7.86546i
6.86546i
6.86546i
7.86546i
2.00000 8.86546i 4.00000 0 17.7309i −10.8655 8.00000 −51.5964 0
649.2 2.00000 5.86546i 4.00000 0 11.7309i 3.86546 8.00000 −7.40362 0
649.3 2.00000 5.86546i 4.00000 0 11.7309i 3.86546 8.00000 −7.40362 0
649.4 2.00000 8.86546i 4.00000 0 17.7309i −10.8655 8.00000 −51.5964 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.c.f 4
5.b even 2 1 650.4.c.e 4
5.c odd 4 1 26.4.b.a 4
5.c odd 4 1 650.4.d.d 4
13.b even 2 1 650.4.c.e 4
15.e even 4 1 234.4.b.b 4
20.e even 4 1 208.4.f.d 4
40.i odd 4 1 832.4.f.j 4
40.k even 4 1 832.4.f.h 4
65.d even 2 1 inner 650.4.c.f 4
65.f even 4 1 338.4.a.f 2
65.h odd 4 1 26.4.b.a 4
65.h odd 4 1 650.4.d.d 4
65.k even 4 1 338.4.a.i 2
65.o even 12 2 338.4.c.h 4
65.q odd 12 2 338.4.e.g 8
65.r odd 12 2 338.4.e.g 8
65.t even 12 2 338.4.c.i 4
195.s even 4 1 234.4.b.b 4
260.p even 4 1 208.4.f.d 4
520.bc even 4 1 832.4.f.h 4
520.bg odd 4 1 832.4.f.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.b.a 4 5.c odd 4 1
26.4.b.a 4 65.h odd 4 1
208.4.f.d 4 20.e even 4 1
208.4.f.d 4 260.p even 4 1
234.4.b.b 4 15.e even 4 1
234.4.b.b 4 195.s even 4 1
338.4.a.f 2 65.f even 4 1
338.4.a.i 2 65.k even 4 1
338.4.c.h 4 65.o even 12 2
338.4.c.i 4 65.t even 12 2
338.4.e.g 8 65.q odd 12 2
338.4.e.g 8 65.r odd 12 2
650.4.c.e 4 5.b even 2 1
650.4.c.e 4 13.b even 2 1
650.4.c.f 4 1.a even 1 1 trivial
650.4.c.f 4 65.d even 2 1 inner
650.4.d.d 4 5.c odd 4 1
650.4.d.d 4 65.h odd 4 1
832.4.f.h 4 40.k even 4 1
832.4.f.h 4 520.bc even 4 1
832.4.f.j 4 40.i odd 4 1
832.4.f.j 4 520.bg odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(650,[χ])S_{4}^{\mathrm{new}}(650, [\chi]):

T34+113T32+2704 T_{3}^{4} + 113T_{3}^{2} + 2704 Copy content Toggle raw display
T72+7T742 T_{7}^{2} + 7T_{7} - 42 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2)4 (T - 2)^{4} Copy content Toggle raw display
33 T4+113T2+2704 T^{4} + 113T^{2} + 2704 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+7T42)2 (T^{2} + 7 T - 42)^{2} Copy content Toggle raw display
1111 T4+4068T2+3504384 T^{4} + 4068 T^{2} + 3504384 Copy content Toggle raw display
1313 T4+22T3++4826809 T^{4} + 22 T^{3} + \cdots + 4826809 Copy content Toggle raw display
1717 T4+2797T2+1726596 T^{4} + 2797 T^{2} + 1726596 Copy content Toggle raw display
1919 T4+22824T2+17740944 T^{4} + 22824 T^{2} + 17740944 Copy content Toggle raw display
2323 T4+15652T2+9144576 T^{4} + 15652 T^{2} + 9144576 Copy content Toggle raw display
2929 (T2+374T+24336)2 (T^{2} + 374 T + 24336)^{2} Copy content Toggle raw display
3131 T4++1747908864 T^{4} + \cdots + 1747908864 Copy content Toggle raw display
3737 (T213T15636)2 (T^{2} - 13 T - 15636)^{2} Copy content Toggle raw display
4141 T4++1052872704 T^{4} + \cdots + 1052872704 Copy content Toggle raw display
4343 T4+91793T2+480311056 T^{4} + 91793 T^{2} + 480311056 Copy content Toggle raw display
4747 (T2465T+49662)2 (T^{2} - 465 T + 49662)^{2} Copy content Toggle raw display
5353 T4+15912T2+58798224 T^{4} + 15912 T^{2} + 58798224 Copy content Toggle raw display
5959 T4++7836498576 T^{4} + \cdots + 7836498576 Copy content Toggle raw display
6161 (T2+282T94912)2 (T^{2} + 282 T - 94912)^{2} Copy content Toggle raw display
6767 (T2+94T133416)2 (T^{2} + 94 T - 133416)^{2} Copy content Toggle raw display
7171 T4++11761402500 T^{4} + \cdots + 11761402500 Copy content Toggle raw display
7373 (T2950T+90000)2 (T^{2} - 950 T + 90000)^{2} Copy content Toggle raw display
7979 (T2722T166752)2 (T^{2} - 722 T - 166752)^{2} Copy content Toggle raw display
8383 (T2+1252T28236)2 (T^{2} + 1252 T - 28236)^{2} Copy content Toggle raw display
8989 T4++827983524096 T^{4} + \cdots + 827983524096 Copy content Toggle raw display
9797 (T2564T865728)2 (T^{2} - 564 T - 865728)^{2} Copy content Toggle raw display
show more
show less