gp: [N,k,chi] = [650,4,Mod(649,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,8,0,16,0,0,-14]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 109 x 2 + 2916 x^{4} + 109x^{2} + 2916 x 4 + 1 0 9 x 2 + 2 9 1 6
x^4 + 109*x^2 + 2916
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 + 55 ν ) / 54 ( \nu^{3} + 55\nu ) / 54 ( ν 3 + 5 5 ν ) / 5 4
(v^3 + 55*v) / 54
β 3 \beta_{3} β 3 = = =
ν 2 + 55 \nu^{2} + 55 ν 2 + 5 5
v^2 + 55
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 − 55 \beta_{3} - 55 β 3 − 5 5
b3 - 55
ν 3 \nu^{3} ν 3 = = =
54 β 2 − 55 β 1 54\beta_{2} - 55\beta_1 5 4 β 2 − 5 5 β 1
54*b2 - 55*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 650 , [ χ ] ) S_{4}^{\mathrm{new}}(650, [\chi]) S 4 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + 113 T 3 2 + 2704 T_{3}^{4} + 113T_{3}^{2} + 2704 T 3 4 + 1 1 3 T 3 2 + 2 7 0 4
T3^4 + 113*T3^2 + 2704
T 7 2 + 7 T 7 − 42 T_{7}^{2} + 7T_{7} - 42 T 7 2 + 7 T 7 − 4 2
T7^2 + 7*T7 - 42
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
3 3 3
T 4 + 113 T 2 + 2704 T^{4} + 113T^{2} + 2704 T 4 + 1 1 3 T 2 + 2 7 0 4
T^4 + 113*T^2 + 2704
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T 2 + 7 T − 42 ) 2 (T^{2} + 7 T - 42)^{2} ( T 2 + 7 T − 4 2 ) 2
(T^2 + 7*T - 42)^2
11 11 1 1
T 4 + 4068 T 2 + 3504384 T^{4} + 4068 T^{2} + 3504384 T 4 + 4 0 6 8 T 2 + 3 5 0 4 3 8 4
T^4 + 4068*T^2 + 3504384
13 13 1 3
T 4 + 22 T 3 + ⋯ + 4826809 T^{4} + 22 T^{3} + \cdots + 4826809 T 4 + 2 2 T 3 + ⋯ + 4 8 2 6 8 0 9
T^4 + 22*T^3 - 910*T^2 + 48334*T + 4826809
17 17 1 7
T 4 + 2797 T 2 + 1726596 T^{4} + 2797 T^{2} + 1726596 T 4 + 2 7 9 7 T 2 + 1 7 2 6 5 9 6
T^4 + 2797*T^2 + 1726596
19 19 1 9
T 4 + 22824 T 2 + 17740944 T^{4} + 22824 T^{2} + 17740944 T 4 + 2 2 8 2 4 T 2 + 1 7 7 4 0 9 4 4
T^4 + 22824*T^2 + 17740944
23 23 2 3
T 4 + 15652 T 2 + 9144576 T^{4} + 15652 T^{2} + 9144576 T 4 + 1 5 6 5 2 T 2 + 9 1 4 4 5 7 6
T^4 + 15652*T^2 + 9144576
29 29 2 9
( T 2 + 374 T + 24336 ) 2 (T^{2} + 374 T + 24336)^{2} ( T 2 + 3 7 4 T + 2 4 3 3 6 ) 2
(T^2 + 374*T + 24336)^2
31 31 3 1
T 4 + ⋯ + 1747908864 T^{4} + \cdots + 1747908864 T 4 + ⋯ + 1 7 4 7 9 0 8 8 6 4
T^4 + 84484*T^2 + 1747908864
37 37 3 7
( T 2 − 13 T − 15636 ) 2 (T^{2} - 13 T - 15636)^{2} ( T 2 − 1 3 T − 1 5 6 3 6 ) 2
(T^2 - 13*T - 15636)^2
41 41 4 1
T 4 + ⋯ + 1052872704 T^{4} + \cdots + 1052872704 T 4 + ⋯ + 1 0 5 2 8 7 2 7 0 4
T^4 + 157312*T^2 + 1052872704
43 43 4 3
T 4 + 91793 T 2 + 480311056 T^{4} + 91793 T^{2} + 480311056 T 4 + 9 1 7 9 3 T 2 + 4 8 0 3 1 1 0 5 6
T^4 + 91793*T^2 + 480311056
47 47 4 7
( T 2 − 465 T + 49662 ) 2 (T^{2} - 465 T + 49662)^{2} ( T 2 − 4 6 5 T + 4 9 6 6 2 ) 2
(T^2 - 465*T + 49662)^2
53 53 5 3
T 4 + 15912 T 2 + 58798224 T^{4} + 15912 T^{2} + 58798224 T 4 + 1 5 9 1 2 T 2 + 5 8 7 9 8 2 2 4
T^4 + 15912*T^2 + 58798224
59 59 5 9
T 4 + ⋯ + 7836498576 T^{4} + \cdots + 7836498576 T 4 + ⋯ + 7 8 3 6 4 9 8 5 7 6
T^4 + 263848*T^2 + 7836498576
61 61 6 1
( T 2 + 282 T − 94912 ) 2 (T^{2} + 282 T - 94912)^{2} ( T 2 + 2 8 2 T − 9 4 9 1 2 ) 2
(T^2 + 282*T - 94912)^2
67 67 6 7
( T 2 + 94 T − 133416 ) 2 (T^{2} + 94 T - 133416)^{2} ( T 2 + 9 4 T − 1 3 3 4 1 6 ) 2
(T^2 + 94*T - 133416)^2
71 71 7 1
T 4 + ⋯ + 11761402500 T^{4} + \cdots + 11761402500 T 4 + ⋯ + 1 1 7 6 1 4 0 2 5 0 0
T^4 + 222525*T^2 + 11761402500
73 73 7 3
( T 2 − 950 T + 90000 ) 2 (T^{2} - 950 T + 90000)^{2} ( T 2 − 9 5 0 T + 9 0 0 0 0 ) 2
(T^2 - 950*T + 90000)^2
79 79 7 9
( T 2 − 722 T − 166752 ) 2 (T^{2} - 722 T - 166752)^{2} ( T 2 − 7 2 2 T − 1 6 6 7 5 2 ) 2
(T^2 - 722*T - 166752)^2
83 83 8 3
( T 2 + 1252 T − 28236 ) 2 (T^{2} + 1252 T - 28236)^{2} ( T 2 + 1 2 5 2 T − 2 8 2 3 6 ) 2
(T^2 + 1252*T - 28236)^2
89 89 8 9
T 4 + ⋯ + 827983524096 T^{4} + \cdots + 827983524096 T 4 + ⋯ + 8 2 7 9 8 3 5 2 4 0 9 6
T^4 + 2312676*T^2 + 827983524096
97 97 9 7
( T 2 − 564 T − 865728 ) 2 (T^{2} - 564 T - 865728)^{2} ( T 2 − 5 6 4 T − 8 6 5 7 2 8 ) 2
(T^2 - 564*T - 865728)^2
show more
show less