Properties

Label 650.3.h.a
Level $650$
Weight $3$
Character orbit 650.h
Analytic conductor $17.711$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(207,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.207"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.h (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (i - 1) q^{2} + ( - 2 i + 2) q^{3} - 2 i q^{4} + 4 i q^{6} + ( - 2 i + 2) q^{7} + (2 i + 2) q^{8} + i q^{9} + 20 i q^{11} + ( - 4 i - 4) q^{12} + 13 i q^{13} + 4 i q^{14} - 4 q^{16} + ( - 17 i - 17) q^{17} + \cdots - 20 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 4 q^{3} + 4 q^{7} + 4 q^{8} - 8 q^{12} - 8 q^{16} - 34 q^{17} - 2 q^{18} - 16 q^{19} - 40 q^{22} - 36 q^{23} + 16 q^{24} - 26 q^{26} + 40 q^{27} - 8 q^{28} + 8 q^{32} + 80 q^{33} + 68 q^{34}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(i\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
207.1
1.00000i
1.00000i
−1.00000 + 1.00000i 2.00000 2.00000i 2.00000i 0 4.00000i 2.00000 2.00000i 2.00000 + 2.00000i 1.00000i 0
493.1 −1.00000 1.00000i 2.00000 + 2.00000i 2.00000i 0 4.00000i 2.00000 + 2.00000i 2.00000 2.00000i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.h odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.3.h.a 2
5.b even 2 1 130.3.h.b yes 2
5.c odd 4 1 130.3.h.a 2
5.c odd 4 1 650.3.h.b 2
13.b even 2 1 650.3.h.b 2
65.d even 2 1 130.3.h.a 2
65.h odd 4 1 130.3.h.b yes 2
65.h odd 4 1 inner 650.3.h.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.3.h.a 2 5.c odd 4 1
130.3.h.a 2 65.d even 2 1
130.3.h.b yes 2 5.b even 2 1
130.3.h.b yes 2 65.h odd 4 1
650.3.h.a 2 1.a even 1 1 trivial
650.3.h.a 2 65.h odd 4 1 inner
650.3.h.b 2 5.c odd 4 1
650.3.h.b 2 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(650, [\chi])\):

\( T_{3}^{2} - 4T_{3} + 8 \) Copy content Toggle raw display
\( T_{7}^{2} - 4T_{7} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} - 4T + 8 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 8 \) Copy content Toggle raw display
$11$ \( T^{2} + 400 \) Copy content Toggle raw display
$13$ \( T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{2} + 34T + 578 \) Copy content Toggle raw display
$19$ \( (T + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36T + 648 \) Copy content Toggle raw display
$29$ \( T^{2} + 1600 \) Copy content Toggle raw display
$31$ \( T^{2} + 1600 \) Copy content Toggle raw display
$37$ \( T^{2} + 86T + 3698 \) Copy content Toggle raw display
$41$ \( T^{2} + 100 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T + 8 \) Copy content Toggle raw display
$47$ \( T^{2} - 44T + 968 \) Copy content Toggle raw display
$53$ \( T^{2} + 26T + 338 \) Copy content Toggle raw display
$59$ \( (T - 32)^{2} \) Copy content Toggle raw display
$61$ \( (T - 112)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 36T + 648 \) Copy content Toggle raw display
$71$ \( T^{2} + 1600 \) Copy content Toggle raw display
$73$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$79$ \( T^{2} + 14400 \) Copy content Toggle raw display
$83$ \( T^{2} + 44T + 968 \) Copy content Toggle raw display
$89$ \( (T - 82)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 66T + 2178 \) Copy content Toggle raw display
show more
show less