Properties

Label 650.2.l
Level $650$
Weight $2$
Character orbit 650.l
Rep. character $\chi_{650}(131,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $120$
Newform subspaces $5$
Sturm bound $210$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.l (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 5 \)
Sturm bound: \(210\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(650, [\chi])\).

Total New Old
Modular forms 432 120 312
Cusp forms 400 120 280
Eisenstein series 32 0 32

Trace form

\( 120 q + 8 q^{3} - 30 q^{4} - 12 q^{5} + 4 q^{6} + 16 q^{7} - 22 q^{9} + 4 q^{10} - 8 q^{11} - 12 q^{12} + 24 q^{15} - 30 q^{16} + 12 q^{17} + 4 q^{19} + 8 q^{20} + 32 q^{21} - 16 q^{22} - 16 q^{23} - 16 q^{24}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(650, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
650.2.l.a 650.l 25.d $4$ $5.190$ \(\Q(\zeta_{10})\) None 650.2.l.a \(1\) \(5\) \(5\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(2+\cdots)q^{3}+\cdots\)
650.2.l.b 650.l 25.d $20$ $5.190$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 650.2.l.b \(5\) \(-4\) \(-10\) \(8\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{10}q^{2}-\beta _{2}q^{3}-\beta _{13}q^{4}+(-1+\cdots)q^{5}+\cdots\)
650.2.l.c 650.l 25.d $24$ $5.190$ None 650.2.l.c \(-6\) \(3\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{5}]$
650.2.l.d 650.l 25.d $36$ $5.190$ None 650.2.l.d \(-9\) \(3\) \(-3\) \(8\) $\mathrm{SU}(2)[C_{5}]$
650.2.l.e 650.l 25.d $36$ $5.190$ None 650.2.l.e \(9\) \(1\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(650, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)