Defining parameters
| Level: | \( N \) | \(=\) | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 650.l (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(210\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(650, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 432 | 120 | 312 |
| Cusp forms | 400 | 120 | 280 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(650, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 650.2.l.a | $4$ | $5.190$ | \(\Q(\zeta_{10})\) | None | \(1\) | \(5\) | \(5\) | \(0\) | \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(2+\cdots)q^{3}+\cdots\) |
| 650.2.l.b | $20$ | $5.190$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(5\) | \(-4\) | \(-10\) | \(8\) | \(q+\beta _{10}q^{2}-\beta _{2}q^{3}-\beta _{13}q^{4}+(-1+\cdots)q^{5}+\cdots\) |
| 650.2.l.c | $24$ | $5.190$ | None | \(-6\) | \(3\) | \(-1\) | \(0\) | ||
| 650.2.l.d | $36$ | $5.190$ | None | \(-9\) | \(3\) | \(-3\) | \(8\) | ||
| 650.2.l.e | $36$ | $5.190$ | None | \(9\) | \(1\) | \(-3\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(650, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)