Properties

Label 65.4.b.a.14.1
Level $65$
Weight $4$
Character 65.14
Analytic conductor $3.835$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [65,4,Mod(14,65)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(65, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("65.14"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 65.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83512415037\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 14.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 65.14
Dual form 65.4.b.a.14.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{2} +4.00000i q^{3} -1.00000 q^{4} +(2.00000 + 11.0000i) q^{5} +12.0000 q^{6} +28.0000i q^{7} -21.0000i q^{8} +11.0000 q^{9} +(33.0000 - 6.00000i) q^{10} +2.00000 q^{11} -4.00000i q^{12} -13.0000i q^{13} +84.0000 q^{14} +(-44.0000 + 8.00000i) q^{15} -71.0000 q^{16} -44.0000i q^{17} -33.0000i q^{18} +94.0000 q^{19} +(-2.00000 - 11.0000i) q^{20} -112.000 q^{21} -6.00000i q^{22} -18.0000i q^{23} +84.0000 q^{24} +(-117.000 + 44.0000i) q^{25} -39.0000 q^{26} +152.000i q^{27} -28.0000i q^{28} -118.000 q^{29} +(24.0000 + 132.000i) q^{30} -100.000 q^{31} +45.0000i q^{32} +8.00000i q^{33} -132.000 q^{34} +(-308.000 + 56.0000i) q^{35} -11.0000 q^{36} -126.000i q^{37} -282.000i q^{38} +52.0000 q^{39} +(231.000 - 42.0000i) q^{40} +474.000 q^{41} +336.000i q^{42} -200.000i q^{43} -2.00000 q^{44} +(22.0000 + 121.000i) q^{45} -54.0000 q^{46} -448.000i q^{47} -284.000i q^{48} -441.000 q^{49} +(132.000 + 351.000i) q^{50} +176.000 q^{51} +13.0000i q^{52} -754.000i q^{53} +456.000 q^{54} +(4.00000 + 22.0000i) q^{55} +588.000 q^{56} +376.000i q^{57} +354.000i q^{58} +446.000 q^{59} +(44.0000 - 8.00000i) q^{60} -638.000 q^{61} +300.000i q^{62} +308.000i q^{63} -433.000 q^{64} +(143.000 - 26.0000i) q^{65} +24.0000 q^{66} +868.000i q^{67} +44.0000i q^{68} +72.0000 q^{69} +(168.000 + 924.000i) q^{70} +536.000 q^{71} -231.000i q^{72} -58.0000i q^{73} -378.000 q^{74} +(-176.000 - 468.000i) q^{75} -94.0000 q^{76} +56.0000i q^{77} -156.000i q^{78} -232.000 q^{79} +(-142.000 - 781.000i) q^{80} -311.000 q^{81} -1422.00i q^{82} -108.000i q^{83} +112.000 q^{84} +(484.000 - 88.0000i) q^{85} -600.000 q^{86} -472.000i q^{87} -42.0000i q^{88} -1038.00 q^{89} +(363.000 - 66.0000i) q^{90} +364.000 q^{91} +18.0000i q^{92} -400.000i q^{93} -1344.00 q^{94} +(188.000 + 1034.00i) q^{95} -180.000 q^{96} +774.000i q^{97} +1323.00i q^{98} +22.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 4 q^{5} + 24 q^{6} + 22 q^{9} + 66 q^{10} + 4 q^{11} + 168 q^{14} - 88 q^{15} - 142 q^{16} + 188 q^{19} - 4 q^{20} - 224 q^{21} + 168 q^{24} - 234 q^{25} - 78 q^{26} - 236 q^{29} + 48 q^{30}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000i 1.06066i −0.847791 0.530330i \(-0.822068\pi\)
0.847791 0.530330i \(-0.177932\pi\)
\(3\) 4.00000i 0.769800i 0.922958 + 0.384900i \(0.125764\pi\)
−0.922958 + 0.384900i \(0.874236\pi\)
\(4\) −1.00000 −0.125000
\(5\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(6\) 12.0000 0.816497
\(7\) 28.0000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 21.0000i 0.928078i
\(9\) 11.0000 0.407407
\(10\) 33.0000 6.00000i 1.04355 0.189737i
\(11\) 2.00000 0.0548202 0.0274101 0.999624i \(-0.491274\pi\)
0.0274101 + 0.999624i \(0.491274\pi\)
\(12\) 4.00000i 0.0962250i
\(13\) 13.0000i 0.277350i
\(14\) 84.0000 1.60357
\(15\) −44.0000 + 8.00000i −0.757383 + 0.137706i
\(16\) −71.0000 −1.10938
\(17\) 44.0000i 0.627739i −0.949466 0.313870i \(-0.898375\pi\)
0.949466 0.313870i \(-0.101625\pi\)
\(18\) 33.0000i 0.432121i
\(19\) 94.0000 1.13500 0.567502 0.823372i \(-0.307910\pi\)
0.567502 + 0.823372i \(0.307910\pi\)
\(20\) −2.00000 11.0000i −0.0223607 0.122984i
\(21\) −112.000 −1.16383
\(22\) 6.00000i 0.0581456i
\(23\) 18.0000i 0.163185i −0.996666 0.0815926i \(-0.973999\pi\)
0.996666 0.0815926i \(-0.0260006\pi\)
\(24\) 84.0000 0.714435
\(25\) −117.000 + 44.0000i −0.936000 + 0.352000i
\(26\) −39.0000 −0.294174
\(27\) 152.000i 1.08342i
\(28\) 28.0000i 0.188982i
\(29\) −118.000 −0.755588 −0.377794 0.925890i \(-0.623317\pi\)
−0.377794 + 0.925890i \(0.623317\pi\)
\(30\) 24.0000 + 132.000i 0.146059 + 0.803326i
\(31\) −100.000 −0.579372 −0.289686 0.957122i \(-0.593551\pi\)
−0.289686 + 0.957122i \(0.593551\pi\)
\(32\) 45.0000i 0.248592i
\(33\) 8.00000i 0.0422006i
\(34\) −132.000 −0.665818
\(35\) −308.000 + 56.0000i −1.48747 + 0.270449i
\(36\) −11.0000 −0.0509259
\(37\) 126.000i 0.559845i −0.960023 0.279923i \(-0.909691\pi\)
0.960023 0.279923i \(-0.0903088\pi\)
\(38\) 282.000i 1.20385i
\(39\) 52.0000 0.213504
\(40\) 231.000 42.0000i 0.913108 0.166020i
\(41\) 474.000 1.80552 0.902761 0.430144i \(-0.141537\pi\)
0.902761 + 0.430144i \(0.141537\pi\)
\(42\) 336.000i 1.23443i
\(43\) 200.000i 0.709296i −0.935000 0.354648i \(-0.884601\pi\)
0.935000 0.354648i \(-0.115399\pi\)
\(44\) −2.00000 −0.00685253
\(45\) 22.0000 + 121.000i 0.0728793 + 0.400836i
\(46\) −54.0000 −0.173084
\(47\) 448.000i 1.39037i −0.718830 0.695186i \(-0.755322\pi\)
0.718830 0.695186i \(-0.244678\pi\)
\(48\) 284.000i 0.853997i
\(49\) −441.000 −1.28571
\(50\) 132.000 + 351.000i 0.373352 + 0.992778i
\(51\) 176.000 0.483234
\(52\) 13.0000i 0.0346688i
\(53\) 754.000i 1.95415i −0.212899 0.977074i \(-0.568291\pi\)
0.212899 0.977074i \(-0.431709\pi\)
\(54\) 456.000 1.14914
\(55\) 4.00000 + 22.0000i 0.00980654 + 0.0539360i
\(56\) 588.000 1.40312
\(57\) 376.000i 0.873727i
\(58\) 354.000i 0.801422i
\(59\) 446.000 0.984140 0.492070 0.870556i \(-0.336240\pi\)
0.492070 + 0.870556i \(0.336240\pi\)
\(60\) 44.0000 8.00000i 0.0946729 0.0172133i
\(61\) −638.000 −1.33914 −0.669570 0.742749i \(-0.733522\pi\)
−0.669570 + 0.742749i \(0.733522\pi\)
\(62\) 300.000i 0.614517i
\(63\) 308.000i 0.615942i
\(64\) −433.000 −0.845703
\(65\) 143.000 26.0000i 0.272876 0.0496139i
\(66\) 24.0000 0.0447605
\(67\) 868.000i 1.58273i 0.611342 + 0.791366i \(0.290630\pi\)
−0.611342 + 0.791366i \(0.709370\pi\)
\(68\) 44.0000i 0.0784674i
\(69\) 72.0000 0.125620
\(70\) 168.000 + 924.000i 0.286855 + 1.57770i
\(71\) 536.000 0.895937 0.447968 0.894049i \(-0.352148\pi\)
0.447968 + 0.894049i \(0.352148\pi\)
\(72\) 231.000i 0.378106i
\(73\) 58.0000i 0.0929916i −0.998918 0.0464958i \(-0.985195\pi\)
0.998918 0.0464958i \(-0.0148054\pi\)
\(74\) −378.000 −0.593806
\(75\) −176.000 468.000i −0.270970 0.720533i
\(76\) −94.0000 −0.141876
\(77\) 56.0000i 0.0828804i
\(78\) 156.000i 0.226455i
\(79\) −232.000 −0.330406 −0.165203 0.986260i \(-0.552828\pi\)
−0.165203 + 0.986260i \(0.552828\pi\)
\(80\) −142.000 781.000i −0.198451 1.09148i
\(81\) −311.000 −0.426612
\(82\) 1422.00i 1.91504i
\(83\) 108.000i 0.142826i −0.997447 0.0714129i \(-0.977249\pi\)
0.997447 0.0714129i \(-0.0227508\pi\)
\(84\) 112.000 0.145479
\(85\) 484.000 88.0000i 0.617614 0.112293i
\(86\) −600.000 −0.752322
\(87\) 472.000i 0.581652i
\(88\) 42.0000i 0.0508774i
\(89\) −1038.00 −1.23627 −0.618134 0.786073i \(-0.712111\pi\)
−0.618134 + 0.786073i \(0.712111\pi\)
\(90\) 363.000 66.0000i 0.425151 0.0773001i
\(91\) 364.000 0.419314
\(92\) 18.0000i 0.0203981i
\(93\) 400.000i 0.446001i
\(94\) −1344.00 −1.47471
\(95\) 188.000 + 1034.00i 0.203036 + 1.11670i
\(96\) −180.000 −0.191366
\(97\) 774.000i 0.810183i 0.914276 + 0.405092i \(0.132760\pi\)
−0.914276 + 0.405092i \(0.867240\pi\)
\(98\) 1323.00i 1.36371i
\(99\) 22.0000 0.0223342
\(100\) 117.000 44.0000i 0.117000 0.0440000i
\(101\) 682.000 0.671896 0.335948 0.941880i \(-0.390943\pi\)
0.335948 + 0.941880i \(0.390943\pi\)
\(102\) 528.000i 0.512547i
\(103\) 1134.00i 1.08482i −0.840114 0.542409i \(-0.817512\pi\)
0.840114 0.542409i \(-0.182488\pi\)
\(104\) −273.000 −0.257402
\(105\) −224.000 1232.00i −0.208192 1.14506i
\(106\) −2262.00 −2.07269
\(107\) 1720.00i 1.55401i 0.629497 + 0.777003i \(0.283261\pi\)
−0.629497 + 0.777003i \(0.716739\pi\)
\(108\) 152.000i 0.135428i
\(109\) 420.000 0.369071 0.184535 0.982826i \(-0.440922\pi\)
0.184535 + 0.982826i \(0.440922\pi\)
\(110\) 66.0000 12.0000i 0.0572078 0.0104014i
\(111\) 504.000 0.430969
\(112\) 1988.00i 1.67722i
\(113\) 828.000i 0.689307i 0.938730 + 0.344653i \(0.112004\pi\)
−0.938730 + 0.344653i \(0.887996\pi\)
\(114\) 1128.00 0.926727
\(115\) 198.000 36.0000i 0.160553 0.0291915i
\(116\) 118.000 0.0944485
\(117\) 143.000i 0.112994i
\(118\) 1338.00i 1.04384i
\(119\) 1232.00 0.949053
\(120\) 168.000 + 924.000i 0.127802 + 0.702911i
\(121\) −1327.00 −0.996995
\(122\) 1914.00i 1.42037i
\(123\) 1896.00i 1.38989i
\(124\) 100.000 0.0724215
\(125\) −718.000 1199.00i −0.513759 0.857935i
\(126\) 924.000 0.653305
\(127\) 294.000i 0.205420i 0.994711 + 0.102710i \(0.0327513\pi\)
−0.994711 + 0.102710i \(0.967249\pi\)
\(128\) 1659.00i 1.14560i
\(129\) 800.000 0.546016
\(130\) −78.0000 429.000i −0.0526235 0.289429i
\(131\) 600.000 0.400170 0.200085 0.979779i \(-0.435878\pi\)
0.200085 + 0.979779i \(0.435878\pi\)
\(132\) 8.00000i 0.00527508i
\(133\) 2632.00i 1.71596i
\(134\) 2604.00 1.67874
\(135\) −1672.00 + 304.000i −1.06595 + 0.193809i
\(136\) −924.000 −0.582591
\(137\) 1246.00i 0.777029i −0.921443 0.388514i \(-0.872988\pi\)
0.921443 0.388514i \(-0.127012\pi\)
\(138\) 216.000i 0.133240i
\(139\) 3080.00 1.87944 0.939720 0.341945i \(-0.111086\pi\)
0.939720 + 0.341945i \(0.111086\pi\)
\(140\) 308.000 56.0000i 0.185934 0.0338062i
\(141\) 1792.00 1.07031
\(142\) 1608.00i 0.950284i
\(143\) 26.0000i 0.0152044i
\(144\) −781.000 −0.451968
\(145\) −236.000 1298.00i −0.135164 0.743400i
\(146\) −174.000 −0.0986325
\(147\) 1764.00i 0.989743i
\(148\) 126.000i 0.0699807i
\(149\) −3312.00 −1.82100 −0.910502 0.413505i \(-0.864305\pi\)
−0.910502 + 0.413505i \(0.864305\pi\)
\(150\) −1404.00 + 528.000i −0.764241 + 0.287407i
\(151\) 2360.00 1.27188 0.635941 0.771738i \(-0.280612\pi\)
0.635941 + 0.771738i \(0.280612\pi\)
\(152\) 1974.00i 1.05337i
\(153\) 484.000i 0.255746i
\(154\) 168.000 0.0879080
\(155\) −200.000 1100.00i −0.103641 0.570027i
\(156\) −52.0000 −0.0266880
\(157\) 1742.00i 0.885521i 0.896640 + 0.442760i \(0.146001\pi\)
−0.896640 + 0.442760i \(0.853999\pi\)
\(158\) 696.000i 0.350448i
\(159\) 3016.00 1.50430
\(160\) −495.000 + 90.0000i −0.244582 + 0.0444695i
\(161\) 504.000 0.246713
\(162\) 933.000i 0.452490i
\(163\) 964.000i 0.463229i 0.972808 + 0.231614i \(0.0744008\pi\)
−0.972808 + 0.231614i \(0.925599\pi\)
\(164\) −474.000 −0.225690
\(165\) −88.0000 + 16.0000i −0.0415199 + 0.00754908i
\(166\) −324.000 −0.151490
\(167\) 264.000i 0.122329i 0.998128 + 0.0611645i \(0.0194814\pi\)
−0.998128 + 0.0611645i \(0.980519\pi\)
\(168\) 2352.00i 1.08012i
\(169\) −169.000 −0.0769231
\(170\) −264.000 1452.00i −0.119105 0.655078i
\(171\) 1034.00 0.462409
\(172\) 200.000i 0.0886620i
\(173\) 2098.00i 0.922011i −0.887397 0.461006i \(-0.847489\pi\)
0.887397 0.461006i \(-0.152511\pi\)
\(174\) −1416.00 −0.616935
\(175\) −1232.00 3276.00i −0.532174 1.41510i
\(176\) −142.000 −0.0608162
\(177\) 1784.00i 0.757591i
\(178\) 3114.00i 1.31126i
\(179\) −2568.00 −1.07230 −0.536149 0.844123i \(-0.680121\pi\)
−0.536149 + 0.844123i \(0.680121\pi\)
\(180\) −22.0000 121.000i −0.00910991 0.0501045i
\(181\) −3042.00 −1.24923 −0.624613 0.780934i \(-0.714743\pi\)
−0.624613 + 0.780934i \(0.714743\pi\)
\(182\) 1092.00i 0.444750i
\(183\) 2552.00i 1.03087i
\(184\) −378.000 −0.151449
\(185\) 1386.00 252.000i 0.550815 0.100148i
\(186\) −1200.00 −0.473055
\(187\) 88.0000i 0.0344128i
\(188\) 448.000i 0.173797i
\(189\) −4256.00 −1.63798
\(190\) 3102.00 564.000i 1.18444 0.215352i
\(191\) 480.000 0.181841 0.0909204 0.995858i \(-0.471019\pi\)
0.0909204 + 0.995858i \(0.471019\pi\)
\(192\) 1732.00i 0.651023i
\(193\) 1434.00i 0.534827i 0.963582 + 0.267413i \(0.0861689\pi\)
−0.963582 + 0.267413i \(0.913831\pi\)
\(194\) 2322.00 0.859329
\(195\) 104.000 + 572.000i 0.0381928 + 0.210060i
\(196\) 441.000 0.160714
\(197\) 2402.00i 0.868708i 0.900742 + 0.434354i \(0.143023\pi\)
−0.900742 + 0.434354i \(0.856977\pi\)
\(198\) 66.0000i 0.0236890i
\(199\) −4296.00 −1.53033 −0.765164 0.643835i \(-0.777342\pi\)
−0.765164 + 0.643835i \(0.777342\pi\)
\(200\) 924.000 + 2457.00i 0.326683 + 0.868681i
\(201\) −3472.00 −1.21839
\(202\) 2046.00i 0.712654i
\(203\) 3304.00i 1.14234i
\(204\) −176.000 −0.0604042
\(205\) 948.000 + 5214.00i 0.322981 + 1.77640i
\(206\) −3402.00 −1.15062
\(207\) 198.000i 0.0664829i
\(208\) 923.000i 0.307685i
\(209\) 188.000 0.0622212
\(210\) −3696.00 + 672.000i −1.21452 + 0.220821i
\(211\) 1052.00 0.343235 0.171618 0.985164i \(-0.445101\pi\)
0.171618 + 0.985164i \(0.445101\pi\)
\(212\) 754.000i 0.244269i
\(213\) 2144.00i 0.689692i
\(214\) 5160.00 1.64827
\(215\) 2200.00 400.000i 0.697855 0.126883i
\(216\) 3192.00 1.00550
\(217\) 2800.00i 0.875928i
\(218\) 1260.00i 0.391459i
\(219\) 232.000 0.0715850
\(220\) −4.00000 22.0000i −0.00122582 0.00674200i
\(221\) −572.000 −0.174104
\(222\) 1512.00i 0.457112i
\(223\) 2408.00i 0.723101i −0.932352 0.361551i \(-0.882247\pi\)
0.932352 0.361551i \(-0.117753\pi\)
\(224\) −1260.00 −0.375836
\(225\) −1287.00 + 484.000i −0.381333 + 0.143407i
\(226\) 2484.00 0.731120
\(227\) 5532.00i 1.61750i 0.588155 + 0.808748i \(0.299855\pi\)
−0.588155 + 0.808748i \(0.700145\pi\)
\(228\) 376.000i 0.109216i
\(229\) 3088.00 0.891095 0.445548 0.895258i \(-0.353009\pi\)
0.445548 + 0.895258i \(0.353009\pi\)
\(230\) −108.000 594.000i −0.0309622 0.170292i
\(231\) −224.000 −0.0638014
\(232\) 2478.00i 0.701244i
\(233\) 3500.00i 0.984089i −0.870570 0.492044i \(-0.836250\pi\)
0.870570 0.492044i \(-0.163750\pi\)
\(234\) −429.000 −0.119849
\(235\) 4928.00 896.000i 1.36795 0.248717i
\(236\) −446.000 −0.123017
\(237\) 928.000i 0.254346i
\(238\) 3696.00i 1.00662i
\(239\) −3636.00 −0.984072 −0.492036 0.870575i \(-0.663747\pi\)
−0.492036 + 0.870575i \(0.663747\pi\)
\(240\) 3124.00 568.000i 0.840222 0.152768i
\(241\) −3870.00 −1.03439 −0.517196 0.855867i \(-0.673024\pi\)
−0.517196 + 0.855867i \(0.673024\pi\)
\(242\) 3981.00i 1.05747i
\(243\) 2860.00i 0.755017i
\(244\) 638.000 0.167392
\(245\) −882.000 4851.00i −0.229996 1.26498i
\(246\) 5688.00 1.47420
\(247\) 1222.00i 0.314794i
\(248\) 2100.00i 0.537702i
\(249\) 432.000 0.109947
\(250\) −3597.00 + 2154.00i −0.909977 + 0.544924i
\(251\) 1164.00 0.292713 0.146357 0.989232i \(-0.453245\pi\)
0.146357 + 0.989232i \(0.453245\pi\)
\(252\) 308.000i 0.0769928i
\(253\) 36.0000i 0.00894585i
\(254\) 882.000 0.217880
\(255\) 352.000 + 1936.00i 0.0864435 + 0.475439i
\(256\) 1513.00 0.369385
\(257\) 5244.00i 1.27281i −0.771356 0.636404i \(-0.780421\pi\)
0.771356 0.636404i \(-0.219579\pi\)
\(258\) 2400.00i 0.579137i
\(259\) 3528.00 0.846406
\(260\) −143.000 + 26.0000i −0.0341096 + 0.00620174i
\(261\) −1298.00 −0.307832
\(262\) 1800.00i 0.424444i
\(263\) 82.0000i 0.0192256i 0.999954 + 0.00961281i \(0.00305990\pi\)
−0.999954 + 0.00961281i \(0.996940\pi\)
\(264\) 168.000 0.0391655
\(265\) 8294.00 1508.00i 1.92263 0.349569i
\(266\) 7896.00 1.82006
\(267\) 4152.00i 0.951679i
\(268\) 868.000i 0.197842i
\(269\) −4954.00 −1.12287 −0.561433 0.827523i \(-0.689750\pi\)
−0.561433 + 0.827523i \(0.689750\pi\)
\(270\) 912.000 + 5016.00i 0.205565 + 1.13061i
\(271\) −128.000 −0.0286917 −0.0143458 0.999897i \(-0.504567\pi\)
−0.0143458 + 0.999897i \(0.504567\pi\)
\(272\) 3124.00i 0.696398i
\(273\) 1456.00i 0.322788i
\(274\) −3738.00 −0.824164
\(275\) −234.000 + 88.0000i −0.0513117 + 0.0192967i
\(276\) −72.0000 −0.0157025
\(277\) 7418.00i 1.60904i 0.593925 + 0.804521i \(0.297578\pi\)
−0.593925 + 0.804521i \(0.702422\pi\)
\(278\) 9240.00i 1.99345i
\(279\) −1100.00 −0.236040
\(280\) 1176.00 + 6468.00i 0.250998 + 1.38049i
\(281\) −3906.00 −0.829226 −0.414613 0.909998i \(-0.636083\pi\)
−0.414613 + 0.909998i \(0.636083\pi\)
\(282\) 5376.00i 1.13523i
\(283\) 3164.00i 0.664595i −0.943175 0.332297i \(-0.892176\pi\)
0.943175 0.332297i \(-0.107824\pi\)
\(284\) −536.000 −0.111992
\(285\) −4136.00 + 752.000i −0.859633 + 0.156297i
\(286\) −78.0000 −0.0161267
\(287\) 13272.0i 2.72969i
\(288\) 495.000i 0.101278i
\(289\) 2977.00 0.605943
\(290\) −3894.00 + 708.000i −0.788495 + 0.143363i
\(291\) −3096.00 −0.623679
\(292\) 58.0000i 0.0116239i
\(293\) 154.000i 0.0307057i −0.999882 0.0153529i \(-0.995113\pi\)
0.999882 0.0153529i \(-0.00488716\pi\)
\(294\) −5292.00 −1.04978
\(295\) 892.000 + 4906.00i 0.176048 + 0.968266i
\(296\) −2646.00 −0.519580
\(297\) 304.000i 0.0593935i
\(298\) 9936.00i 1.93147i
\(299\) −234.000 −0.0452594
\(300\) 176.000 + 468.000i 0.0338712 + 0.0900666i
\(301\) 5600.00 1.07235
\(302\) 7080.00i 1.34903i
\(303\) 2728.00i 0.517226i
\(304\) −6674.00 −1.25915
\(305\) −1276.00 7018.00i −0.239553 1.31754i
\(306\) −1452.00 −0.271259
\(307\) 9484.00i 1.76313i 0.472064 + 0.881564i \(0.343509\pi\)
−0.472064 + 0.881564i \(0.656491\pi\)
\(308\) 56.0000i 0.0103601i
\(309\) 4536.00 0.835094
\(310\) −3300.00 + 600.000i −0.604605 + 0.109928i
\(311\) −4264.00 −0.777457 −0.388729 0.921352i \(-0.627086\pi\)
−0.388729 + 0.921352i \(0.627086\pi\)
\(312\) 1092.00i 0.198148i
\(313\) 5096.00i 0.920265i −0.887850 0.460133i \(-0.847802\pi\)
0.887850 0.460133i \(-0.152198\pi\)
\(314\) 5226.00 0.939236
\(315\) −3388.00 + 616.000i −0.606007 + 0.110183i
\(316\) 232.000 0.0413007
\(317\) 2214.00i 0.392273i −0.980577 0.196137i \(-0.937160\pi\)
0.980577 0.196137i \(-0.0628396\pi\)
\(318\) 9048.00i 1.59556i
\(319\) −236.000 −0.0414215
\(320\) −866.000 4763.00i −0.151284 0.832062i
\(321\) −6880.00 −1.19627
\(322\) 1512.00i 0.261678i
\(323\) 4136.00i 0.712487i
\(324\) 311.000 0.0533265
\(325\) 572.000 + 1521.00i 0.0976272 + 0.259600i
\(326\) 2892.00 0.491328
\(327\) 1680.00i 0.284111i
\(328\) 9954.00i 1.67566i
\(329\) 12544.0 2.10205
\(330\) 48.0000 + 264.000i 0.00800701 + 0.0440386i
\(331\) −4638.00 −0.770174 −0.385087 0.922880i \(-0.625829\pi\)
−0.385087 + 0.922880i \(0.625829\pi\)
\(332\) 108.000i 0.0178532i
\(333\) 1386.00i 0.228085i
\(334\) 792.000 0.129749
\(335\) −9548.00 + 1736.00i −1.55720 + 0.283128i
\(336\) 7952.00 1.29112
\(337\) 7712.00i 1.24659i −0.781988 0.623293i \(-0.785794\pi\)
0.781988 0.623293i \(-0.214206\pi\)
\(338\) 507.000i 0.0815892i
\(339\) −3312.00 −0.530629
\(340\) −484.000 + 88.0000i −0.0772017 + 0.0140367i
\(341\) −200.000 −0.0317613
\(342\) 3102.00i 0.490459i
\(343\) 2744.00i 0.431959i
\(344\) −4200.00 −0.658281
\(345\) 144.000 + 792.000i 0.0224716 + 0.123594i
\(346\) −6294.00 −0.977941
\(347\) 2136.00i 0.330451i −0.986256 0.165225i \(-0.947165\pi\)
0.986256 0.165225i \(-0.0528352\pi\)
\(348\) 472.000i 0.0727065i
\(349\) 8140.00 1.24849 0.624247 0.781227i \(-0.285406\pi\)
0.624247 + 0.781227i \(0.285406\pi\)
\(350\) −9828.00 + 3696.00i −1.50094 + 0.564456i
\(351\) 1976.00 0.300487
\(352\) 90.0000i 0.0136279i
\(353\) 406.000i 0.0612159i −0.999531 0.0306079i \(-0.990256\pi\)
0.999531 0.0306079i \(-0.00974433\pi\)
\(354\) 5352.00 0.803547
\(355\) 1072.00 + 5896.00i 0.160270 + 0.881485i
\(356\) 1038.00 0.154533
\(357\) 4928.00i 0.730581i
\(358\) 7704.00i 1.13734i
\(359\) −6740.00 −0.990874 −0.495437 0.868644i \(-0.664992\pi\)
−0.495437 + 0.868644i \(0.664992\pi\)
\(360\) 2541.00 462.000i 0.372007 0.0676376i
\(361\) 1977.00 0.288234
\(362\) 9126.00i 1.32501i
\(363\) 5308.00i 0.767487i
\(364\) −364.000 −0.0524142
\(365\) 638.000 116.000i 0.0914916 0.0166348i
\(366\) −7656.00 −1.09340
\(367\) 6002.00i 0.853684i −0.904326 0.426842i \(-0.859626\pi\)
0.904326 0.426842i \(-0.140374\pi\)
\(368\) 1278.00i 0.181034i
\(369\) 5214.00 0.735583
\(370\) −756.000 4158.00i −0.106223 0.584227i
\(371\) 21112.0 2.95439
\(372\) 400.000i 0.0557501i
\(373\) 4442.00i 0.616617i 0.951286 + 0.308308i \(0.0997629\pi\)
−0.951286 + 0.308308i \(0.900237\pi\)
\(374\) −264.000 −0.0365003
\(375\) 4796.00 2872.00i 0.660438 0.395492i
\(376\) −9408.00 −1.29037
\(377\) 1534.00i 0.209562i
\(378\) 12768.0i 1.73734i
\(379\) 12070.0 1.63587 0.817934 0.575312i \(-0.195119\pi\)
0.817934 + 0.575312i \(0.195119\pi\)
\(380\) −188.000 1034.00i −0.0253795 0.139587i
\(381\) −1176.00 −0.158132
\(382\) 1440.00i 0.192871i
\(383\) 1476.00i 0.196919i 0.995141 + 0.0984596i \(0.0313915\pi\)
−0.995141 + 0.0984596i \(0.968608\pi\)
\(384\) −6636.00 −0.881880
\(385\) −616.000 + 112.000i −0.0815436 + 0.0148261i
\(386\) 4302.00 0.567270
\(387\) 2200.00i 0.288972i
\(388\) 774.000i 0.101273i
\(389\) 5330.00 0.694709 0.347354 0.937734i \(-0.387080\pi\)
0.347354 + 0.937734i \(0.387080\pi\)
\(390\) 1716.00 312.000i 0.222803 0.0405096i
\(391\) −792.000 −0.102438
\(392\) 9261.00i 1.19324i
\(393\) 2400.00i 0.308051i
\(394\) 7206.00 0.921404
\(395\) −464.000 2552.00i −0.0591047 0.325076i
\(396\) −22.0000 −0.00279177
\(397\) 13362.0i 1.68922i −0.535384 0.844609i \(-0.679833\pi\)
0.535384 0.844609i \(-0.320167\pi\)
\(398\) 12888.0i 1.62316i
\(399\) −10528.0 −1.32095
\(400\) 8307.00 3124.00i 1.03838 0.390500i
\(401\) −5250.00 −0.653797 −0.326898 0.945060i \(-0.606003\pi\)
−0.326898 + 0.945060i \(0.606003\pi\)
\(402\) 10416.0i 1.29230i
\(403\) 1300.00i 0.160689i
\(404\) −682.000 −0.0839870
\(405\) −622.000 3421.00i −0.0763146 0.419731i
\(406\) −9912.00 −1.21164
\(407\) 252.000i 0.0306909i
\(408\) 3696.00i 0.448479i
\(409\) 2018.00 0.243970 0.121985 0.992532i \(-0.461074\pi\)
0.121985 + 0.992532i \(0.461074\pi\)
\(410\) 15642.0 2844.00i 1.88415 0.342574i
\(411\) 4984.00 0.598157
\(412\) 1134.00i 0.135602i
\(413\) 12488.0i 1.48788i
\(414\) −594.000 −0.0705157
\(415\) 1188.00 216.000i 0.140522 0.0255495i
\(416\) 585.000 0.0689471
\(417\) 12320.0i 1.44679i
\(418\) 564.000i 0.0659956i
\(419\) 3080.00 0.359112 0.179556 0.983748i \(-0.442534\pi\)
0.179556 + 0.983748i \(0.442534\pi\)
\(420\) 224.000 + 1232.00i 0.0260240 + 0.143132i
\(421\) 13420.0 1.55356 0.776782 0.629769i \(-0.216850\pi\)
0.776782 + 0.629769i \(0.216850\pi\)
\(422\) 3156.00i 0.364056i
\(423\) 4928.00i 0.566448i
\(424\) −15834.0 −1.81360
\(425\) 1936.00 + 5148.00i 0.220964 + 0.587564i
\(426\) 6432.00 0.731529
\(427\) 17864.0i 2.02459i
\(428\) 1720.00i 0.194251i
\(429\) 104.000 0.0117044
\(430\) −1200.00 6600.00i −0.134579 0.740187i
\(431\) −17336.0 −1.93746 −0.968731 0.248115i \(-0.920189\pi\)
−0.968731 + 0.248115i \(0.920189\pi\)
\(432\) 10792.0i 1.20192i
\(433\) 14880.0i 1.65147i 0.564057 + 0.825736i \(0.309240\pi\)
−0.564057 + 0.825736i \(0.690760\pi\)
\(434\) −8400.00 −0.929062
\(435\) 5192.00 944.000i 0.572270 0.104049i
\(436\) −420.000 −0.0461338
\(437\) 1692.00i 0.185216i
\(438\) 696.000i 0.0759273i
\(439\) −7040.00 −0.765378 −0.382689 0.923877i \(-0.625002\pi\)
−0.382689 + 0.923877i \(0.625002\pi\)
\(440\) 462.000 84.0000i 0.0500568 0.00910123i
\(441\) −4851.00 −0.523810
\(442\) 1716.00i 0.184665i
\(443\) 10088.0i 1.08193i −0.841045 0.540965i \(-0.818059\pi\)
0.841045 0.540965i \(-0.181941\pi\)
\(444\) −504.000 −0.0538711
\(445\) −2076.00 11418.0i −0.221150 1.21633i
\(446\) −7224.00 −0.766965
\(447\) 13248.0i 1.40181i
\(448\) 12124.0i 1.27858i
\(449\) 1434.00 0.150723 0.0753615 0.997156i \(-0.475989\pi\)
0.0753615 + 0.997156i \(0.475989\pi\)
\(450\) 1452.00 + 3861.00i 0.152107 + 0.404465i
\(451\) 948.000 0.0989791
\(452\) 828.000i 0.0861634i
\(453\) 9440.00i 0.979095i
\(454\) 16596.0 1.71561
\(455\) 728.000 + 4004.00i 0.0750092 + 0.412550i
\(456\) 7896.00 0.810886
\(457\) 4534.00i 0.464095i 0.972704 + 0.232048i \(0.0745425\pi\)
−0.972704 + 0.232048i \(0.925457\pi\)
\(458\) 9264.00i 0.945149i
\(459\) 6688.00 0.680107
\(460\) −198.000 + 36.0000i −0.0200691 + 0.00364893i
\(461\) 12860.0 1.29924 0.649620 0.760259i \(-0.274928\pi\)
0.649620 + 0.760259i \(0.274928\pi\)
\(462\) 672.000i 0.0676716i
\(463\) 4908.00i 0.492644i 0.969188 + 0.246322i \(0.0792220\pi\)
−0.969188 + 0.246322i \(0.920778\pi\)
\(464\) 8378.00 0.838230
\(465\) 4400.00 800.000i 0.438807 0.0797830i
\(466\) −10500.0 −1.04378
\(467\) 8720.00i 0.864055i 0.901861 + 0.432027i \(0.142202\pi\)
−0.901861 + 0.432027i \(0.857798\pi\)
\(468\) 143.000i 0.0141243i
\(469\) −24304.0 −2.39287
\(470\) −2688.00 14784.0i −0.263805 1.45093i
\(471\) −6968.00 −0.681674
\(472\) 9366.00i 0.913358i
\(473\) 400.000i 0.0388838i
\(474\) −2784.00 −0.269775
\(475\) −10998.0 + 4136.00i −1.06236 + 0.399521i
\(476\) −1232.00 −0.118632
\(477\) 8294.00i 0.796135i
\(478\) 10908.0i 1.04377i
\(479\) −12660.0 −1.20762 −0.603810 0.797128i \(-0.706352\pi\)
−0.603810 + 0.797128i \(0.706352\pi\)
\(480\) −360.000 1980.00i −0.0342327 0.188280i
\(481\) −1638.00 −0.155273
\(482\) 11610.0i 1.09714i
\(483\) 2016.00i 0.189920i
\(484\) 1327.00 0.124624
\(485\) −8514.00 + 1548.00i −0.797115 + 0.144930i
\(486\) 8580.00 0.800816
\(487\) 2320.00i 0.215871i −0.994158 0.107936i \(-0.965576\pi\)
0.994158 0.107936i \(-0.0344240\pi\)
\(488\) 13398.0i 1.24283i
\(489\) −3856.00 −0.356594
\(490\) −14553.0 + 2646.00i −1.34171 + 0.243947i
\(491\) −5584.00 −0.513243 −0.256622 0.966512i \(-0.582609\pi\)
−0.256622 + 0.966512i \(0.582609\pi\)
\(492\) 1896.00i 0.173736i
\(493\) 5192.00i 0.474312i
\(494\) −3666.00 −0.333889
\(495\) 44.0000 + 242.000i 0.00399526 + 0.0219739i
\(496\) 7100.00 0.642741
\(497\) 15008.0i 1.35453i
\(498\) 1296.00i 0.116617i
\(499\) −19470.0 −1.74669 −0.873344 0.487105i \(-0.838053\pi\)
−0.873344 + 0.487105i \(0.838053\pi\)
\(500\) 718.000 + 1199.00i 0.0642199 + 0.107242i
\(501\) −1056.00 −0.0941689
\(502\) 3492.00i 0.310469i
\(503\) 4554.00i 0.403684i −0.979418 0.201842i \(-0.935307\pi\)
0.979418 0.201842i \(-0.0646927\pi\)
\(504\) 6468.00 0.571642
\(505\) 1364.00 + 7502.00i 0.120192 + 0.661059i
\(506\) −108.000 −0.00948851
\(507\) 676.000i 0.0592154i
\(508\) 294.000i 0.0256774i
\(509\) 9184.00 0.799752 0.399876 0.916569i \(-0.369053\pi\)
0.399876 + 0.916569i \(0.369053\pi\)
\(510\) 5808.00 1056.00i 0.504280 0.0916872i
\(511\) 1624.00 0.140590
\(512\) 8733.00i 0.753804i
\(513\) 14288.0i 1.22969i
\(514\) −15732.0 −1.35002
\(515\) 12474.0 2268.00i 1.06732 0.194058i
\(516\) −800.000 −0.0682520
\(517\) 896.000i 0.0762206i
\(518\) 10584.0i 0.897750i
\(519\) 8392.00 0.709765
\(520\) −546.000 3003.00i −0.0460455 0.253251i
\(521\) 2966.00 0.249410 0.124705 0.992194i \(-0.460201\pi\)
0.124705 + 0.992194i \(0.460201\pi\)
\(522\) 3894.00i 0.326505i
\(523\) 9208.00i 0.769862i 0.922945 + 0.384931i \(0.125775\pi\)
−0.922945 + 0.384931i \(0.874225\pi\)
\(524\) −600.000 −0.0500212
\(525\) 13104.0 4928.00i 1.08934 0.409668i
\(526\) 246.000 0.0203918
\(527\) 4400.00i 0.363695i
\(528\) 568.000i 0.0468163i
\(529\) 11843.0 0.973371
\(530\) −4524.00 24882.0i −0.370774 2.03925i
\(531\) 4906.00 0.400946
\(532\) 2632.00i 0.214496i
\(533\) 6162.00i 0.500761i
\(534\) −12456.0 −1.00941
\(535\) −18920.0 + 3440.00i −1.52894 + 0.277989i
\(536\) 18228.0 1.46890
\(537\) 10272.0i 0.825455i
\(538\) 14862.0i 1.19098i
\(539\) −882.000 −0.0704832
\(540\) 1672.00 304.000i 0.133243 0.0242261i
\(541\) 14008.0 1.11322 0.556609 0.830775i \(-0.312102\pi\)
0.556609 + 0.830775i \(0.312102\pi\)
\(542\) 384.000i 0.0304321i
\(543\) 12168.0i 0.961655i
\(544\) 1980.00 0.156051
\(545\) 840.000 + 4620.00i 0.0660214 + 0.363118i
\(546\) 4368.00 0.342368
\(547\) 2548.00i 0.199167i −0.995029 0.0995837i \(-0.968249\pi\)
0.995029 0.0995837i \(-0.0317511\pi\)
\(548\) 1246.00i 0.0971286i
\(549\) −7018.00 −0.545575
\(550\) 264.000 + 702.000i 0.0204673 + 0.0544243i
\(551\) −11092.0 −0.857595
\(552\) 1512.00i 0.116585i
\(553\) 6496.00i 0.499526i
\(554\) 22254.0 1.70665
\(555\) 1008.00 + 5544.00i 0.0770941 + 0.424017i
\(556\) −3080.00 −0.234930
\(557\) 14218.0i 1.08157i −0.841160 0.540786i \(-0.818127\pi\)
0.841160 0.540786i \(-0.181873\pi\)
\(558\) 3300.00i 0.250359i
\(559\) −2600.00 −0.196723
\(560\) 21868.0 3976.00i 1.65016 0.300030i
\(561\) 352.000 0.0264910
\(562\) 11718.0i 0.879527i
\(563\) 11344.0i 0.849188i 0.905384 + 0.424594i \(0.139583\pi\)
−0.905384 + 0.424594i \(0.860417\pi\)
\(564\) −1792.00 −0.133789
\(565\) −9108.00 + 1656.00i −0.678188 + 0.123307i
\(566\) −9492.00 −0.704909
\(567\) 8708.00i 0.644976i
\(568\) 11256.0i 0.831499i
\(569\) −12006.0 −0.884565 −0.442283 0.896876i \(-0.645831\pi\)
−0.442283 + 0.896876i \(0.645831\pi\)
\(570\) 2256.00 + 12408.0i 0.165778 + 0.911779i
\(571\) 6084.00 0.445898 0.222949 0.974830i \(-0.428432\pi\)
0.222949 + 0.974830i \(0.428432\pi\)
\(572\) 26.0000i 0.00190055i
\(573\) 1920.00i 0.139981i
\(574\) 39816.0 2.89527
\(575\) 792.000 + 2106.00i 0.0574412 + 0.152741i
\(576\) −4763.00 −0.344546
\(577\) 16774.0i 1.21024i −0.796133 0.605122i \(-0.793124\pi\)
0.796133 0.605122i \(-0.206876\pi\)
\(578\) 8931.00i 0.642700i
\(579\) −5736.00 −0.411710
\(580\) 236.000 + 1298.00i 0.0168955 + 0.0929250i
\(581\) 3024.00 0.215932
\(582\) 9288.00i 0.661512i
\(583\) 1508.00i 0.107127i
\(584\) −1218.00 −0.0863034
\(585\) 1573.00 286.000i 0.111172 0.0202131i
\(586\) −462.000 −0.0325683
\(587\) 1908.00i 0.134159i 0.997748 + 0.0670797i \(0.0213682\pi\)
−0.997748 + 0.0670797i \(0.978632\pi\)
\(588\) 1764.00i 0.123718i
\(589\) −9400.00 −0.657590
\(590\) 14718.0 2676.00i 1.02700 0.186727i
\(591\) −9608.00 −0.668731
\(592\) 8946.00i 0.621078i
\(593\) 14242.0i 0.986254i 0.869957 + 0.493127i \(0.164146\pi\)
−0.869957 + 0.493127i \(0.835854\pi\)
\(594\) 912.000 0.0629963
\(595\) 2464.00 + 13552.0i 0.169772 + 0.933744i
\(596\) 3312.00 0.227626
\(597\) 17184.0i 1.17805i
\(598\) 702.000i 0.0480049i
\(599\) 16096.0 1.09794 0.548969 0.835843i \(-0.315021\pi\)
0.548969 + 0.835843i \(0.315021\pi\)
\(600\) −9828.00 + 3696.00i −0.668711 + 0.251481i
\(601\) 11270.0 0.764913 0.382457 0.923973i \(-0.375078\pi\)
0.382457 + 0.923973i \(0.375078\pi\)
\(602\) 16800.0i 1.13740i
\(603\) 9548.00i 0.644817i
\(604\) −2360.00 −0.158985
\(605\) −2654.00 14597.0i −0.178348 0.980913i
\(606\) 8184.00 0.548601
\(607\) 22122.0i 1.47925i 0.673020 + 0.739625i \(0.264997\pi\)
−0.673020 + 0.739625i \(0.735003\pi\)
\(608\) 4230.00i 0.282153i
\(609\) 13216.0 0.879375
\(610\) −21054.0 + 3828.00i −1.39746 + 0.254084i
\(611\) −5824.00 −0.385620
\(612\) 484.000i 0.0319682i
\(613\) 20738.0i 1.36639i −0.730234 0.683197i \(-0.760589\pi\)
0.730234 0.683197i \(-0.239411\pi\)
\(614\) 28452.0 1.87008
\(615\) −20856.0 + 3792.00i −1.36747 + 0.248631i
\(616\) 1176.00 0.0769195
\(617\) 12734.0i 0.830878i 0.909621 + 0.415439i \(0.136372\pi\)
−0.909621 + 0.415439i \(0.863628\pi\)
\(618\) 13608.0i 0.885751i
\(619\) 1398.00 0.0907760 0.0453880 0.998969i \(-0.485548\pi\)
0.0453880 + 0.998969i \(0.485548\pi\)
\(620\) 200.000 + 1100.00i 0.0129552 + 0.0712533i
\(621\) 2736.00 0.176799
\(622\) 12792.0i 0.824618i
\(623\) 29064.0i 1.86906i
\(624\) −3692.00 −0.236856
\(625\) 11753.0 10296.0i 0.752192 0.658944i
\(626\) −15288.0 −0.976088
\(627\) 752.000i 0.0478979i
\(628\) 1742.00i 0.110690i
\(629\) −5544.00 −0.351437
\(630\) 1848.00 + 10164.0i 0.116867 + 0.642767i
\(631\) −12944.0 −0.816628 −0.408314 0.912841i \(-0.633883\pi\)
−0.408314 + 0.912841i \(0.633883\pi\)
\(632\) 4872.00i 0.306642i
\(633\) 4208.00i 0.264223i
\(634\) −6642.00 −0.416069
\(635\) −3234.00 + 588.000i −0.202106 + 0.0367466i
\(636\) −3016.00 −0.188038
\(637\) 5733.00i 0.356593i
\(638\) 708.000i 0.0439342i
\(639\) 5896.00 0.365011
\(640\) −18249.0 + 3318.00i −1.12712 + 0.204930i
\(641\) −14306.0 −0.881518 −0.440759 0.897625i \(-0.645291\pi\)
−0.440759 + 0.897625i \(0.645291\pi\)
\(642\) 20640.0i 1.26884i
\(643\) 10588.0i 0.649378i −0.945821 0.324689i \(-0.894740\pi\)
0.945821 0.324689i \(-0.105260\pi\)
\(644\) −504.000 −0.0308391
\(645\) 1600.00 + 8800.00i 0.0976743 + 0.537209i
\(646\) −12408.0 −0.755706
\(647\) 8286.00i 0.503487i −0.967794 0.251744i \(-0.918996\pi\)
0.967794 0.251744i \(-0.0810040\pi\)
\(648\) 6531.00i 0.395929i
\(649\) 892.000 0.0539508
\(650\) 4563.00 1716.00i 0.275347 0.103549i
\(651\) 11200.0 0.674290
\(652\) 964.000i 0.0579036i
\(653\) 2162.00i 0.129564i 0.997899 + 0.0647822i \(0.0206353\pi\)
−0.997899 + 0.0647822i \(0.979365\pi\)
\(654\) 5040.00 0.301345
\(655\) 1200.00 + 6600.00i 0.0715845 + 0.393715i
\(656\) −33654.0 −2.00300
\(657\) 638.000i 0.0378855i
\(658\) 37632.0i 2.22956i
\(659\) 26480.0 1.56527 0.782636 0.622480i \(-0.213875\pi\)
0.782636 + 0.622480i \(0.213875\pi\)
\(660\) 88.0000 16.0000i 0.00518999 0.000943635i
\(661\) 24312.0 1.43060 0.715300 0.698817i \(-0.246290\pi\)
0.715300 + 0.698817i \(0.246290\pi\)
\(662\) 13914.0i 0.816893i
\(663\) 2288.00i 0.134025i
\(664\) −2268.00 −0.132553
\(665\) −28952.0 + 5264.00i −1.68829 + 0.306961i
\(666\) −4158.00 −0.241921
\(667\) 2124.00i 0.123301i
\(668\) 264.000i 0.0152911i
\(669\) 9632.00 0.556644
\(670\) 5208.00 + 28644.0i 0.300302 + 1.65166i
\(671\) −1276.00 −0.0734120
\(672\) 5040.00i 0.289319i
\(673\) 1620.00i 0.0927881i 0.998923 + 0.0463941i \(0.0147730\pi\)
−0.998923 + 0.0463941i \(0.985227\pi\)
\(674\) −23136.0 −1.32220
\(675\) −6688.00 17784.0i −0.381365 1.01408i
\(676\) 169.000 0.00961538
\(677\) 12818.0i 0.727675i −0.931463 0.363837i \(-0.881466\pi\)
0.931463 0.363837i \(-0.118534\pi\)
\(678\) 9936.00i 0.562817i
\(679\) −21672.0 −1.22488
\(680\) −1848.00 10164.0i −0.104217 0.573194i
\(681\) −22128.0 −1.24515
\(682\) 600.000i 0.0336880i
\(683\) 23580.0i 1.32103i −0.750813 0.660515i \(-0.770338\pi\)
0.750813 0.660515i \(-0.229662\pi\)
\(684\) −1034.00 −0.0578011
\(685\) 13706.0 2492.00i 0.764495 0.138999i
\(686\) −8232.00 −0.458162
\(687\) 12352.0i 0.685965i
\(688\) 14200.0i 0.786875i
\(689\) −9802.00 −0.541983
\(690\) 2376.00 432.000i 0.131091 0.0238347i
\(691\) −5038.00 −0.277358 −0.138679 0.990337i \(-0.544286\pi\)
−0.138679 + 0.990337i \(0.544286\pi\)
\(692\) 2098.00i 0.115251i
\(693\) 616.000i 0.0337661i
\(694\) −6408.00 −0.350496
\(695\) 6160.00 + 33880.0i 0.336204 + 1.84912i
\(696\) −9912.00 −0.539818
\(697\) 20856.0i 1.13340i
\(698\) 24420.0i 1.32423i
\(699\) 14000.0 0.757552
\(700\) 1232.00 + 3276.00i 0.0665217 + 0.176887i
\(701\) 6474.00 0.348815 0.174408 0.984674i \(-0.444199\pi\)
0.174408 + 0.984674i \(0.444199\pi\)
\(702\) 5928.00i 0.318715i
\(703\) 11844.0i 0.635427i
\(704\) −866.000 −0.0463617
\(705\) 3584.00 + 19712.0i 0.191463 + 1.05305i
\(706\) −1218.00 −0.0649292
\(707\) 19096.0i 1.01581i
\(708\) 1784.00i 0.0946989i
\(709\) −16480.0 −0.872947 −0.436473 0.899717i \(-0.643773\pi\)
−0.436473 + 0.899717i \(0.643773\pi\)
\(710\) 17688.0 3216.00i 0.934956 0.169992i
\(711\) −2552.00 −0.134610
\(712\) 21798.0i 1.14735i
\(713\) 1800.00i 0.0945449i
\(714\) 14784.0 0.774898
\(715\) 286.000 52.0000i 0.0149592 0.00271985i
\(716\) 2568.00 0.134037
\(717\) 14544.0i 0.757539i
\(718\) 20220.0i 1.05098i
\(719\) 24408.0 1.26602 0.633008 0.774146i \(-0.281820\pi\)
0.633008 + 0.774146i \(0.281820\pi\)
\(720\) −1562.00 8591.00i −0.0808504 0.444677i
\(721\) 31752.0 1.64009
\(722\) 5931.00i 0.305719i
\(723\) 15480.0i 0.796276i
\(724\) 3042.00 0.156153
\(725\) 13806.0 5192.00i 0.707230 0.265967i
\(726\) −15924.0 −0.814043
\(727\) 16474.0i 0.840422i −0.907426 0.420211i \(-0.861956\pi\)
0.907426 0.420211i \(-0.138044\pi\)
\(728\) 7644.00i 0.389156i
\(729\) −19837.0 −1.00782
\(730\) −348.000 1914.00i −0.0176439 0.0970415i
\(731\) −8800.00 −0.445253
\(732\) 2552.00i 0.128859i
\(733\) 29402.0i 1.48157i 0.671745 + 0.740783i \(0.265545\pi\)
−0.671745 + 0.740783i \(0.734455\pi\)
\(734\) −18006.0 −0.905468
\(735\) 19404.0 3528.00i 0.973779 0.177051i
\(736\) 810.000 0.0405666
\(737\) 1736.00i 0.0867658i
\(738\) 15642.0i 0.780203i
\(739\) −11854.0 −0.590063 −0.295031 0.955488i \(-0.595330\pi\)
−0.295031 + 0.955488i \(0.595330\pi\)
\(740\) −1386.00 + 252.000i −0.0688519 + 0.0125185i
\(741\) 4888.00 0.242328
\(742\) 63336.0i 3.13361i
\(743\) 1804.00i 0.0890745i 0.999008 + 0.0445372i \(0.0141813\pi\)
−0.999008 + 0.0445372i \(0.985819\pi\)
\(744\) −8400.00 −0.413923
\(745\) −6624.00 36432.0i −0.325751 1.79163i
\(746\) 13326.0 0.654021
\(747\) 1188.00i 0.0581883i
\(748\) 88.0000i 0.00430160i
\(749\) −48160.0 −2.34944
\(750\) −8616.00 14388.0i −0.419482 0.700501i
\(751\) 27072.0 1.31541 0.657704 0.753277i \(-0.271528\pi\)
0.657704 + 0.753277i \(0.271528\pi\)
\(752\) 31808.0i 1.54244i
\(753\) 4656.00i 0.225331i
\(754\) 4602.00 0.222274
\(755\) 4720.00 + 25960.0i 0.227521 + 1.25137i
\(756\) 4256.00 0.204748
\(757\) 27746.0i 1.33216i 0.745880 + 0.666080i \(0.232029\pi\)
−0.745880 + 0.666080i \(0.767971\pi\)
\(758\) 36210.0i 1.73510i
\(759\) 144.000 0.00688652
\(760\) 21714.0 3948.00i 1.03638 0.188433i
\(761\) 30398.0 1.44800 0.723999 0.689801i \(-0.242302\pi\)
0.723999 + 0.689801i \(0.242302\pi\)
\(762\) 3528.00i 0.167724i
\(763\) 11760.0i 0.557982i
\(764\) −480.000 −0.0227301
\(765\) 5324.00 968.000i 0.251620 0.0457492i
\(766\) 4428.00 0.208864
\(767\) 5798.00i 0.272951i
\(768\) 6052.00i 0.284353i
\(769\) 2086.00 0.0978194 0.0489097 0.998803i \(-0.484425\pi\)
0.0489097 + 0.998803i \(0.484425\pi\)
\(770\) 336.000 + 1848.00i 0.0157255 + 0.0864900i
\(771\) 20976.0 0.979808
\(772\) 1434.00i 0.0668534i
\(773\) 27034.0i 1.25789i 0.777452 + 0.628943i \(0.216512\pi\)
−0.777452 + 0.628943i \(0.783488\pi\)
\(774\) −6600.00 −0.306501
\(775\) 11700.0 4400.00i 0.542292 0.203939i
\(776\) 16254.0 0.751913
\(777\) 14112.0i 0.651564i
\(778\) 15990.0i 0.736850i
\(779\) 44556.0 2.04927
\(780\) −104.000 572.000i −0.00477410 0.0262575i
\(781\) 1072.00 0.0491155
\(782\) 2376.00i 0.108652i
\(783\) 17936.0i 0.818621i
\(784\) 31311.0 1.42634
\(785\) −19162.0 + 3484.00i −0.871237 + 0.158407i
\(786\) 7200.00 0.326737
\(787\) 43604.0i 1.97499i 0.157660 + 0.987493i \(0.449605\pi\)
−0.157660 + 0.987493i \(0.550395\pi\)
\(788\) 2402.00i 0.108588i
\(789\) −328.000 −0.0147999
\(790\) −7656.00 + 1392.00i −0.344795 + 0.0626900i
\(791\) −23184.0 −1.04213
\(792\) 462.000i 0.0207278i
\(793\) 8294.00i 0.371411i
\(794\) −40086.0 −1.79169
\(795\) 6032.00 + 33176.0i 0.269098 + 1.48004i
\(796\) 4296.00 0.191291
\(797\) 19066.0i 0.847368i 0.905810 + 0.423684i \(0.139263\pi\)
−0.905810 + 0.423684i \(0.860737\pi\)
\(798\) 31584.0i 1.40108i
\(799\) −19712.0 −0.872792
\(800\) −1980.00 5265.00i −0.0875045 0.232682i
\(801\) −11418.0 −0.503664
\(802\) 15750.0i 0.693456i
\(803\) 116.000i 0.00509782i
\(804\) 3472.00 0.152299
\(805\) 1008.00 + 5544.00i 0.0441333 + 0.242733i
\(806\) 3900.00 0.170436
\(807\) 19816.0i 0.864382i
\(808\) 14322.0i 0.623572i
\(809\) 20578.0 0.894294 0.447147 0.894460i \(-0.352440\pi\)
0.447147 + 0.894460i \(0.352440\pi\)
\(810\) −10263.0 + 1866.00i −0.445191 + 0.0809439i
\(811\) 34558.0 1.49630 0.748148 0.663532i \(-0.230943\pi\)
0.748148 + 0.663532i \(0.230943\pi\)
\(812\) 3304.00i 0.142793i
\(813\) 512.000i 0.0220869i
\(814\) −756.000 −0.0325526
\(815\) −10604.0 + 1928.00i −0.455757 + 0.0828649i
\(816\) −12496.0 −0.536088
\(817\) 18800.0i 0.805054i
\(818\) 6054.00i 0.258769i
\(819\) 4004.00 0.170832
\(820\) −948.000 5214.00i −0.0403727 0.222050i
\(821\) 2580.00 0.109674 0.0548372 0.998495i \(-0.482536\pi\)
0.0548372 + 0.998495i \(0.482536\pi\)
\(822\) 14952.0i 0.634441i
\(823\) 17662.0i 0.748066i 0.927415 + 0.374033i \(0.122025\pi\)
−0.927415 + 0.374033i \(0.877975\pi\)
\(824\) −23814.0 −1.00680
\(825\) −352.000 936.000i −0.0148546 0.0394998i
\(826\) 37464.0 1.57813
\(827\) 3516.00i 0.147840i −0.997264 0.0739198i \(-0.976449\pi\)
0.997264 0.0739198i \(-0.0235509\pi\)
\(828\) 198.000i 0.00831036i
\(829\) 2814.00 0.117894 0.0589471 0.998261i \(-0.481226\pi\)
0.0589471 + 0.998261i \(0.481226\pi\)
\(830\) −648.000 3564.00i −0.0270993 0.149046i
\(831\) −29672.0 −1.23864
\(832\) 5629.00i 0.234556i
\(833\) 19404.0i 0.807093i
\(834\) 36960.0 1.53456
\(835\) −2904.00 + 528.000i −0.120356 + 0.0218829i
\(836\) −188.000 −0.00777765
\(837\) 15200.0i 0.627705i
\(838\) 9240.00i 0.380896i
\(839\) −8992.00 −0.370010 −0.185005 0.982738i \(-0.559230\pi\)
−0.185005 + 0.982738i \(0.559230\pi\)
\(840\) −25872.0 + 4704.00i −1.06270 + 0.193218i
\(841\) −10465.0 −0.429087
\(842\) 40260.0i 1.64780i
\(843\) 15624.0i 0.638338i
\(844\) −1052.00 −0.0429044
\(845\) −338.000 1859.00i −0.0137604 0.0756823i
\(846\) −14784.0 −0.600809
\(847\) 37156.0i 1.50731i
\(848\) 53534.0i 2.16788i
\(849\) 12656.0 0.511605
\(850\) 15444.0 5808.00i 0.623206 0.234368i
\(851\) −2268.00 −0.0913584
\(852\) 2144.00i 0.0862115i
\(853\) 7182.00i 0.288285i −0.989557 0.144142i \(-0.953958\pi\)
0.989557 0.144142i \(-0.0460423\pi\)
\(854\) −53592.0 −2.14740
\(855\) 2068.00 + 11374.0i 0.0827183 + 0.454950i
\(856\) 36120.0 1.44224
\(857\) 4696.00i 0.187179i −0.995611 0.0935894i \(-0.970166\pi\)
0.995611 0.0935894i \(-0.0298341\pi\)
\(858\) 312.000i 0.0124143i
\(859\) 8140.00 0.323322 0.161661 0.986846i \(-0.448315\pi\)
0.161661 + 0.986846i \(0.448315\pi\)
\(860\) −2200.00 + 400.000i −0.0872318 + 0.0158603i
\(861\) −53088.0 −2.10132
\(862\) 52008.0i 2.05499i
\(863\) 4944.00i 0.195012i −0.995235 0.0975062i \(-0.968913\pi\)
0.995235 0.0975062i \(-0.0310866\pi\)
\(864\) −6840.00 −0.269330
\(865\) 23078.0 4196.00i 0.907139 0.164934i
\(866\) 44640.0 1.75165
\(867\) 11908.0i 0.466455i
\(868\) 2800.00i 0.109491i
\(869\) −464.000 −0.0181129
\(870\) −2832.00 15576.0i −0.110361 0.606984i
\(871\) 11284.0 0.438971
\(872\) 8820.00i 0.342526i
\(873\) 8514.00i 0.330075i
\(874\) −5076.00 −0.196451
\(875\) 33572.0 20104.0i 1.29708 0.776731i
\(876\) −232.000 −0.00894812
\(877\) 18726.0i 0.721017i −0.932756 0.360509i \(-0.882603\pi\)
0.932756 0.360509i \(-0.117397\pi\)
\(878\) 21120.0i 0.811806i
\(879\) 616.000 0.0236373
\(880\) −284.000 1562.00i −0.0108791 0.0598352i
\(881\) −15022.0 −0.574465 −0.287233 0.957861i \(-0.592735\pi\)
−0.287233 + 0.957861i \(0.592735\pi\)
\(882\) 14553.0i 0.555584i
\(883\) 2064.00i 0.0786627i 0.999226 + 0.0393313i \(0.0125228\pi\)
−0.999226 + 0.0393313i \(0.987477\pi\)
\(884\) 572.000 0.0217629
\(885\) −19624.0 + 3568.00i −0.745371 + 0.135522i
\(886\) −30264.0 −1.14756
\(887\) 12354.0i 0.467651i 0.972279 + 0.233826i \(0.0751245\pi\)
−0.972279 + 0.233826i \(0.924876\pi\)
\(888\) 10584.0i 0.399973i
\(889\) −8232.00 −0.310565
\(890\) −34254.0 + 6228.00i −1.29011 + 0.234565i
\(891\) −622.000 −0.0233870
\(892\) 2408.00i 0.0903877i
\(893\) 42112.0i 1.57808i
\(894\) −39744.0 −1.48684
\(895\) −5136.00 28248.0i −0.191818 1.05500i
\(896\) −46452.0 −1.73198
\(897\) 936.000i 0.0348407i
\(898\) 4302.00i 0.159866i
\(899\) 11800.0 0.437766
\(900\) 1287.00 484.000i 0.0476667 0.0179259i
\(901\) −33176.0 −1.22670
\(902\) 2844.00i 0.104983i
\(903\) 22400.0i 0.825499i
\(904\) 17388.0 0.639730
\(905\) −6084.00 33462.0i −0.223469 1.22908i
\(906\) 28320.0 1.03849
\(907\) 512.000i 0.0187439i −0.999956 0.00937193i \(-0.997017\pi\)
0.999956 0.00937193i \(-0.00298322\pi\)
\(908\) 5532.00i 0.202187i
\(909\) 7502.00 0.273736
\(910\) 12012.0 2184.00i 0.437576 0.0795592i
\(911\) 6112.00 0.222283 0.111141 0.993805i \(-0.464549\pi\)
0.111141 + 0.993805i \(0.464549\pi\)
\(912\) 26696.0i 0.969290i
\(913\) 216.000i 0.00782974i
\(914\) 13602.0 0.492247
\(915\) 28072.0 5104.00i 1.01424 0.184408i
\(916\) −3088.00 −0.111387
\(917\) 16800.0i 0.605000i
\(918\) 20064.0i 0.721362i
\(919\) −31032.0 −1.11388 −0.556938 0.830554i \(-0.688024\pi\)
−0.556938 + 0.830554i \(0.688024\pi\)
\(920\) −756.000 4158.00i −0.0270919 0.149006i
\(921\) −37936.0 −1.35726
\(922\) 38580.0i 1.37805i
\(923\) 6968.00i 0.248488i
\(924\) 224.000 0.00797517
\(925\) 5544.00 + 14742.0i 0.197066 + 0.524015i
\(926\) 14724.0 0.522528
\(927\) 12474.0i 0.441963i
\(928\) 5310.00i 0.187833i
\(929\) 15122.0 0.534055 0.267027 0.963689i \(-0.413959\pi\)
0.267027 + 0.963689i \(0.413959\pi\)
\(930\) −2400.00 13200.0i −0.0846227 0.465425i
\(931\) −41454.0 −1.45929
\(932\) 3500.00i 0.123011i
\(933\) 17056.0i 0.598487i
\(934\) 26160.0 0.916468
\(935\) 968.000 176.000i 0.0338577 0.00615595i
\(936\) −3003.00 −0.104868
\(937\) 32240.0i 1.12405i −0.827120 0.562025i \(-0.810022\pi\)
0.827120 0.562025i \(-0.189978\pi\)
\(938\) 72912.0i 2.53802i
\(939\) 20384.0 0.708420
\(940\) −4928.00 + 896.000i −0.170993 + 0.0310897i
\(941\) 21688.0 0.751338 0.375669 0.926754i \(-0.377413\pi\)
0.375669 + 0.926754i \(0.377413\pi\)
\(942\) 20904.0i 0.723025i
\(943\) 8532.00i 0.294634i
\(944\) −31666.0 −1.09178
\(945\) −8512.00 46816.0i −0.293011 1.61156i
\(946\) −1200.00 −0.0412425
\(947\) 3852.00i 0.132179i 0.997814 + 0.0660893i \(0.0210522\pi\)
−0.997814 + 0.0660893i \(0.978948\pi\)
\(948\) 928.000i 0.0317933i
\(949\) −754.000 −0.0257912
\(950\) 12408.0 + 32994.0i 0.423757 + 1.12681i
\(951\) 8856.00 0.301972
\(952\) 25872.0i 0.880794i
\(953\) 6144.00i 0.208839i 0.994533 + 0.104420i \(0.0332985\pi\)
−0.994533 + 0.104420i \(0.966702\pi\)
\(954\) −24882.0 −0.844428
\(955\) 960.000 + 5280.00i 0.0325287 + 0.178908i
\(956\) 3636.00 0.123009
\(957\) 944.000i 0.0318863i
\(958\) 37980.0i 1.28087i
\(959\) 34888.0 1.17476
\(960\) 19052.0 3464.00i 0.640522 0.116458i
\(961\) −19791.0 −0.664328
\(962\) 4914.00i 0.164692i
\(963\) 18920.0i 0.633114i
\(964\) 3870.00 0.129299
\(965\) −15774.0 + 2868.00i −0.526200 + 0.0956727i
\(966\) 6048.00 0.201440
\(967\) 49916.0i 1.65997i 0.557786 + 0.829985i \(0.311651\pi\)
−0.557786 + 0.829985i \(0.688349\pi\)
\(968\) 27867.0i 0.925289i
\(969\) 16544.0 0.548472
\(970\) 4644.00 + 25542.0i 0.153721 + 0.845468i
\(971\) −48868.0 −1.61509 −0.807543 0.589809i \(-0.799203\pi\)
−0.807543 + 0.589809i \(0.799203\pi\)
\(972\) 2860.00i 0.0943771i
\(973\) 86240.0i 2.84145i
\(974\) −6960.00 −0.228966
\(975\) −6084.00 + 2288.00i −0.199840 + 0.0751535i
\(976\) 45298.0 1.48561
\(977\) 45126.0i 1.47770i −0.673872 0.738848i \(-0.735370\pi\)
0.673872 0.738848i \(-0.264630\pi\)
\(978\) 11568.0i 0.378225i
\(979\) −2076.00 −0.0677725
\(980\) 882.000 + 4851.00i 0.0287494 + 0.158122i
\(981\) 4620.00 0.150362
\(982\) 16752.0i 0.544377i
\(983\) 48068.0i 1.55965i 0.626001 + 0.779823i \(0.284691\pi\)
−0.626001 + 0.779823i \(0.715309\pi\)
\(984\) 39816.0 1.28993
\(985\) −26422.0 + 4804.00i −0.854695 + 0.155399i
\(986\) 15576.0 0.503084
\(987\) 50176.0i 1.61816i
\(988\) 1222.00i 0.0393492i
\(989\) −3600.00 −0.115747
\(990\) 726.000 132.000i 0.0233069 0.00423761i
\(991\) −34672.0 −1.11139 −0.555697 0.831385i \(-0.687549\pi\)
−0.555697 + 0.831385i \(0.687549\pi\)
\(992\) 4500.00i 0.144027i
\(993\) 18552.0i 0.592880i
\(994\) 45024.0 1.43669
\(995\) −8592.00 47256.0i −0.273753 1.50564i
\(996\) −432.000 −0.0137434
\(997\) 24254.0i 0.770443i 0.922824 + 0.385222i \(0.125875\pi\)
−0.922824 + 0.385222i \(0.874125\pi\)
\(998\) 58410.0i 1.85264i
\(999\) 19152.0 0.606549
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.4.b.a.14.1 2
3.2 odd 2 585.4.c.b.469.2 2
5.2 odd 4 325.4.a.c.1.1 1
5.3 odd 4 325.4.a.b.1.1 1
5.4 even 2 inner 65.4.b.a.14.2 yes 2
15.14 odd 2 585.4.c.b.469.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.b.a.14.1 2 1.1 even 1 trivial
65.4.b.a.14.2 yes 2 5.4 even 2 inner
325.4.a.b.1.1 1 5.3 odd 4
325.4.a.c.1.1 1 5.2 odd 4
585.4.c.b.469.1 2 15.14 odd 2
585.4.c.b.469.2 2 3.2 odd 2