Properties

Label 648.4.i.n.433.1
Level $648$
Weight $4$
Character 648.433
Analytic conductor $38.233$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,4,Mod(217,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.217"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 648.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-8,0,30,0,0,0,46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2332376837\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-67})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 16x^{2} - 17x + 289 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 433.1
Root \(-3.29436 + 2.47935i\) of defining polynomial
Character \(\chi\) \(=\) 648.433
Dual form 648.4.i.n.217.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.08872 + 15.7421i) q^{5} +(0.411277 + 0.712352i) q^{7} +(32.7662 + 56.7527i) q^{11} +(-15.9113 + 27.5591i) q^{13} +124.420 q^{17} +27.8872 q^{19} +(21.5887 - 37.3928i) q^{23} +(-102.710 - 177.899i) q^{25} +(-19.9113 - 34.4873i) q^{29} +(-147.420 + 255.338i) q^{31} -14.9519 q^{35} -104.177 q^{37} +(-153.823 + 266.428i) q^{41} +(180.541 + 312.706i) q^{43} +(-198.823 - 344.371i) q^{47} +(171.162 - 296.461i) q^{49} +107.161 q^{53} -1191.21 q^{55} +(-94.4677 + 163.623i) q^{59} +(49.5083 + 85.7509i) q^{61} +(-289.226 - 500.955i) q^{65} +(-212.524 + 368.102i) q^{67} -445.532 q^{71} -499.806 q^{73} +(-26.9519 + 46.6821i) q^{77} +(-285.138 - 493.873i) q^{79} +(-654.371 - 1133.40i) q^{83} +(-1130.82 + 1958.63i) q^{85} +1323.00 q^{89} -26.1757 q^{91} +(-253.459 + 439.004i) q^{95} +(-472.436 - 818.283i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} + 30 q^{7} + 46 q^{11} - 92 q^{13} + 44 q^{17} - 172 q^{19} + 58 q^{23} - 184 q^{25} - 108 q^{29} - 136 q^{31} + 564 q^{35} - 360 q^{37} - 672 q^{41} + 70 q^{43} - 852 q^{47} - 166 q^{49}+ \cdots - 472 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.08872 + 15.7421i −0.812920 + 1.40802i 0.0978916 + 0.995197i \(0.468790\pi\)
−0.910812 + 0.412822i \(0.864543\pi\)
\(6\) 0 0
\(7\) 0.411277 + 0.712352i 0.0222068 + 0.0384634i 0.876915 0.480645i \(-0.159597\pi\)
−0.854708 + 0.519108i \(0.826264\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 32.7662 + 56.7527i 0.898125 + 1.55560i 0.829889 + 0.557928i \(0.188404\pi\)
0.0682357 + 0.997669i \(0.478263\pi\)
\(12\) 0 0
\(13\) −15.9113 + 27.5591i −0.339461 + 0.587964i −0.984331 0.176328i \(-0.943578\pi\)
0.644870 + 0.764292i \(0.276911\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 124.420 1.77507 0.887535 0.460741i \(-0.152416\pi\)
0.887535 + 0.460741i \(0.152416\pi\)
\(18\) 0 0
\(19\) 27.8872 0.336725 0.168362 0.985725i \(-0.446152\pi\)
0.168362 + 0.985725i \(0.446152\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 21.5887 37.3928i 0.195720 0.338997i −0.751416 0.659828i \(-0.770629\pi\)
0.947136 + 0.320831i \(0.103962\pi\)
\(24\) 0 0
\(25\) −102.710 177.899i −0.821678 1.42319i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −19.9113 34.4873i −0.127498 0.220832i 0.795209 0.606336i \(-0.207361\pi\)
−0.922706 + 0.385503i \(0.874028\pi\)
\(30\) 0 0
\(31\) −147.420 + 255.338i −0.854108 + 1.47936i 0.0233627 + 0.999727i \(0.492563\pi\)
−0.877470 + 0.479631i \(0.840771\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −14.9519 −0.0722096
\(36\) 0 0
\(37\) −104.177 −0.462883 −0.231441 0.972849i \(-0.574344\pi\)
−0.231441 + 0.972849i \(0.574344\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −153.823 + 266.428i −0.585928 + 1.01486i 0.408831 + 0.912610i \(0.365937\pi\)
−0.994759 + 0.102247i \(0.967397\pi\)
\(42\) 0 0
\(43\) 180.541 + 312.706i 0.640283 + 1.10900i 0.985369 + 0.170432i \(0.0545164\pi\)
−0.345086 + 0.938571i \(0.612150\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −198.823 344.371i −0.617048 1.06876i −0.990022 0.140916i \(-0.954995\pi\)
0.372974 0.927842i \(-0.378338\pi\)
\(48\) 0 0
\(49\) 171.162 296.461i 0.499014 0.864317i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 107.161 0.277730 0.138865 0.990311i \(-0.455655\pi\)
0.138865 + 0.990311i \(0.455655\pi\)
\(54\) 0 0
\(55\) −1191.21 −2.92041
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −94.4677 + 163.623i −0.208452 + 0.361049i −0.951227 0.308492i \(-0.900176\pi\)
0.742775 + 0.669541i \(0.233509\pi\)
\(60\) 0 0
\(61\) 49.5083 + 85.7509i 0.103916 + 0.179988i 0.913295 0.407299i \(-0.133529\pi\)
−0.809379 + 0.587287i \(0.800196\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −289.226 500.955i −0.551910 0.955935i
\(66\) 0 0
\(67\) −212.524 + 368.102i −0.387522 + 0.671207i −0.992116 0.125327i \(-0.960002\pi\)
0.604594 + 0.796534i \(0.293335\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −445.532 −0.744718 −0.372359 0.928089i \(-0.621451\pi\)
−0.372359 + 0.928089i \(0.621451\pi\)
\(72\) 0 0
\(73\) −499.806 −0.801341 −0.400670 0.916222i \(-0.631223\pi\)
−0.400670 + 0.916222i \(0.631223\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −26.9519 + 46.6821i −0.0398890 + 0.0690898i
\(78\) 0 0
\(79\) −285.138 493.873i −0.406082 0.703355i 0.588365 0.808596i \(-0.299772\pi\)
−0.994447 + 0.105241i \(0.966439\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −654.371 1133.40i −0.865381 1.49888i −0.866669 0.498884i \(-0.833743\pi\)
0.00128787 0.999999i \(-0.499590\pi\)
\(84\) 0 0
\(85\) −1130.82 + 1958.63i −1.44299 + 2.49933i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1323.00 1.57570 0.787852 0.615864i \(-0.211193\pi\)
0.787852 + 0.615864i \(0.211193\pi\)
\(90\) 0 0
\(91\) −26.1757 −0.0301534
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −253.459 + 439.004i −0.273730 + 0.474115i
\(96\) 0 0
\(97\) −472.436 818.283i −0.494522 0.856537i 0.505458 0.862851i \(-0.331323\pi\)
−0.999980 + 0.00631404i \(0.997990\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 699.050 + 1210.79i 0.688694 + 1.19285i 0.972261 + 0.233900i \(0.0751488\pi\)
−0.283567 + 0.958952i \(0.591518\pi\)
\(102\) 0 0
\(103\) 480.275 831.861i 0.459446 0.795784i −0.539486 0.841995i \(-0.681381\pi\)
0.998932 + 0.0462110i \(0.0147147\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1935.87 1.74905 0.874523 0.484983i \(-0.161174\pi\)
0.874523 + 0.484983i \(0.161174\pi\)
\(108\) 0 0
\(109\) −1305.40 −1.14711 −0.573555 0.819167i \(-0.694436\pi\)
−0.573555 + 0.819167i \(0.694436\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −547.016 + 947.459i −0.455389 + 0.788756i −0.998710 0.0507683i \(-0.983833\pi\)
0.543322 + 0.839524i \(0.317166\pi\)
\(114\) 0 0
\(115\) 392.428 + 679.705i 0.318209 + 0.551155i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 51.1709 + 88.6305i 0.0394187 + 0.0682752i
\(120\) 0 0
\(121\) −1481.74 + 2566.46i −1.11326 + 1.92822i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1461.82 1.04600
\(126\) 0 0
\(127\) −1301.05 −0.909050 −0.454525 0.890734i \(-0.650191\pi\)
−0.454525 + 0.890734i \(0.650191\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −978.833 + 1695.39i −0.652832 + 1.13074i 0.329601 + 0.944120i \(0.393086\pi\)
−0.982433 + 0.186618i \(0.940247\pi\)
\(132\) 0 0
\(133\) 11.4694 + 19.8655i 0.00747760 + 0.0129516i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1276.98 + 2211.80i 0.796351 + 1.37932i 0.921978 + 0.387243i \(0.126573\pi\)
−0.125626 + 0.992078i \(0.540094\pi\)
\(138\) 0 0
\(139\) −102.630 + 177.761i −0.0626258 + 0.108471i −0.895638 0.444783i \(-0.853281\pi\)
0.833013 + 0.553254i \(0.186614\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2085.41 −1.21951
\(144\) 0 0
\(145\) 723.872 0.414582
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −82.1202 + 142.236i −0.0451513 + 0.0782044i −0.887718 0.460388i \(-0.847710\pi\)
0.842567 + 0.538592i \(0.181044\pi\)
\(150\) 0 0
\(151\) −1713.86 2968.49i −0.923654 1.59982i −0.793712 0.608294i \(-0.791854\pi\)
−0.129942 0.991522i \(-0.541479\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2679.71 4641.40i −1.38864 2.40520i
\(156\) 0 0
\(157\) 494.042 855.706i 0.251139 0.434986i −0.712700 0.701468i \(-0.752528\pi\)
0.963840 + 0.266482i \(0.0858614\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 35.5157 0.0173853
\(162\) 0 0
\(163\) −2845.45 −1.36732 −0.683660 0.729801i \(-0.739613\pi\)
−0.683660 + 0.729801i \(0.739613\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1602.95 2776.38i 0.742752 1.28648i −0.208485 0.978026i \(-0.566853\pi\)
0.951238 0.308459i \(-0.0998133\pi\)
\(168\) 0 0
\(169\) 592.163 + 1025.66i 0.269532 + 0.466844i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −892.817 1546.40i −0.392368 0.679601i 0.600394 0.799705i \(-0.295011\pi\)
−0.992761 + 0.120104i \(0.961677\pi\)
\(174\) 0 0
\(175\) 84.4843 146.331i 0.0364938 0.0632091i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1318.84 −0.550696 −0.275348 0.961345i \(-0.588793\pi\)
−0.275348 + 0.961345i \(0.588793\pi\)
\(180\) 0 0
\(181\) 3462.97 1.42210 0.711051 0.703141i \(-0.248220\pi\)
0.711051 + 0.703141i \(0.248220\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 946.840 1639.97i 0.376287 0.651748i
\(186\) 0 0
\(187\) 4076.75 + 7061.14i 1.59423 + 2.76129i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −795.655 1378.12i −0.301422 0.522078i 0.675036 0.737784i \(-0.264128\pi\)
−0.976458 + 0.215706i \(0.930795\pi\)
\(192\) 0 0
\(193\) 382.228 662.038i 0.142556 0.246915i −0.785902 0.618351i \(-0.787801\pi\)
0.928459 + 0.371436i \(0.121134\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1191.63 0.430965 0.215483 0.976508i \(-0.430868\pi\)
0.215483 + 0.976508i \(0.430868\pi\)
\(198\) 0 0
\(199\) −2708.20 −0.964719 −0.482360 0.875973i \(-0.660220\pi\)
−0.482360 + 0.875973i \(0.660220\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.3781 28.3677i 0.00566264 0.00980798i
\(204\) 0 0
\(205\) −2796.10 4842.99i −0.952625 1.65000i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 913.758 + 1582.68i 0.302421 + 0.523808i
\(210\) 0 0
\(211\) 1649.48 2856.98i 0.538173 0.932144i −0.460829 0.887489i \(-0.652448\pi\)
0.999002 0.0446549i \(-0.0142188\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6563.54 −2.08200
\(216\) 0 0
\(217\) −242.521 −0.0758682
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1979.67 + 3428.90i −0.602567 + 1.04368i
\(222\) 0 0
\(223\) 1260.83 + 2183.83i 0.378617 + 0.655784i 0.990861 0.134885i \(-0.0430664\pi\)
−0.612244 + 0.790669i \(0.709733\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1657.33 + 2870.59i 0.484586 + 0.839328i 0.999843 0.0177077i \(-0.00563684\pi\)
−0.515257 + 0.857036i \(0.672304\pi\)
\(228\) 0 0
\(229\) 2064.83 3576.39i 0.595842 1.03203i −0.397585 0.917565i \(-0.630152\pi\)
0.993427 0.114464i \(-0.0365151\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 986.257 0.277304 0.138652 0.990341i \(-0.455723\pi\)
0.138652 + 0.990341i \(0.455723\pi\)
\(234\) 0 0
\(235\) 7228.17 2.00644
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −179.499 + 310.902i −0.0485809 + 0.0841446i −0.889293 0.457337i \(-0.848803\pi\)
0.840712 + 0.541482i \(0.182137\pi\)
\(240\) 0 0
\(241\) −1021.02 1768.45i −0.272902 0.472680i 0.696702 0.717361i \(-0.254650\pi\)
−0.969604 + 0.244681i \(0.921317\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3111.28 + 5388.90i 0.811317 + 1.40524i
\(246\) 0 0
\(247\) −443.721 + 768.548i −0.114305 + 0.197982i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2609.69 −0.656264 −0.328132 0.944632i \(-0.606419\pi\)
−0.328132 + 0.944632i \(0.606419\pi\)
\(252\) 0 0
\(253\) 2829.52 0.703124
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 439.419 761.096i 0.106654 0.184731i −0.807759 0.589514i \(-0.799319\pi\)
0.914413 + 0.404783i \(0.132653\pi\)
\(258\) 0 0
\(259\) −42.8457 74.2110i −0.0102792 0.0178040i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1608.67 + 2786.29i 0.377166 + 0.653271i 0.990649 0.136438i \(-0.0435653\pi\)
−0.613483 + 0.789708i \(0.710232\pi\)
\(264\) 0 0
\(265\) −973.955 + 1686.94i −0.225772 + 0.391049i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7978.38 1.80837 0.904183 0.427146i \(-0.140481\pi\)
0.904183 + 0.427146i \(0.140481\pi\)
\(270\) 0 0
\(271\) 4248.21 0.952251 0.476126 0.879377i \(-0.342041\pi\)
0.476126 + 0.879377i \(0.342041\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6730.81 11658.1i 1.47594 2.55640i
\(276\) 0 0
\(277\) −415.517 719.697i −0.0901301 0.156110i 0.817436 0.576020i \(-0.195395\pi\)
−0.907566 + 0.419910i \(0.862062\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1481.00 + 2565.17i 0.314410 + 0.544573i 0.979312 0.202357i \(-0.0648601\pi\)
−0.664902 + 0.746930i \(0.731527\pi\)
\(282\) 0 0
\(283\) 2215.42 3837.22i 0.465346 0.806004i −0.533871 0.845566i \(-0.679263\pi\)
0.999217 + 0.0395625i \(0.0125964\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −253.054 −0.0520465
\(288\) 0 0
\(289\) 10567.2 2.15087
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1711.43 2964.29i 0.341239 0.591043i −0.643424 0.765510i \(-0.722487\pi\)
0.984663 + 0.174467i \(0.0558202\pi\)
\(294\) 0 0
\(295\) −1717.18 2974.24i −0.338909 0.587007i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 687.008 + 1189.93i 0.132879 + 0.230153i
\(300\) 0 0
\(301\) −148.504 + 257.217i −0.0284374 + 0.0492549i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1799.87 −0.337902
\(306\) 0 0
\(307\) 139.734 0.0259774 0.0129887 0.999916i \(-0.495865\pi\)
0.0129887 + 0.999916i \(0.495865\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3799.94 + 6581.69i −0.692845 + 1.20004i 0.278057 + 0.960565i \(0.410310\pi\)
−0.970902 + 0.239478i \(0.923024\pi\)
\(312\) 0 0
\(313\) 1508.76 + 2613.25i 0.272460 + 0.471915i 0.969491 0.245126i \(-0.0788293\pi\)
−0.697031 + 0.717041i \(0.745496\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 960.603 + 1663.81i 0.170198 + 0.294792i 0.938489 0.345309i \(-0.112226\pi\)
−0.768291 + 0.640101i \(0.778893\pi\)
\(318\) 0 0
\(319\) 1304.83 2260.04i 0.229018 0.396670i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3469.72 0.597710
\(324\) 0 0
\(325\) 6536.98 1.11571
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 163.542 283.263i 0.0274054 0.0474675i
\(330\) 0 0
\(331\) −456.206 790.172i −0.0757563 0.131214i 0.825659 0.564170i \(-0.190804\pi\)
−0.901415 + 0.432956i \(0.857470\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3863.14 6691.16i −0.630048 1.09128i
\(336\) 0 0
\(337\) 3007.31 5208.82i 0.486109 0.841965i −0.513764 0.857932i \(-0.671749\pi\)
0.999873 + 0.0159664i \(0.00508248\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −19321.5 −3.06838
\(342\) 0 0
\(343\) 563.715 0.0887398
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1369.92 + 2372.77i −0.211934 + 0.367080i −0.952320 0.305102i \(-0.901309\pi\)
0.740386 + 0.672182i \(0.234643\pi\)
\(348\) 0 0
\(349\) 3804.34 + 6589.32i 0.583501 + 1.01065i 0.995060 + 0.0992704i \(0.0316509\pi\)
−0.411560 + 0.911383i \(0.635016\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4362.56 + 7556.17i 0.657777 + 1.13930i 0.981190 + 0.193046i \(0.0618366\pi\)
−0.323412 + 0.946258i \(0.604830\pi\)
\(354\) 0 0
\(355\) 4049.32 7013.63i 0.605396 1.04858i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10470.0 −1.53923 −0.769614 0.638509i \(-0.779551\pi\)
−0.769614 + 0.638509i \(0.779551\pi\)
\(360\) 0 0
\(361\) −6081.30 −0.886616
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4542.60 7868.01i 0.651426 1.12830i
\(366\) 0 0
\(367\) 3947.07 + 6836.53i 0.561405 + 0.972381i 0.997374 + 0.0724198i \(0.0230721\pi\)
−0.435970 + 0.899961i \(0.643595\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 44.0727 + 76.3362i 0.00616750 + 0.0106824i
\(372\) 0 0
\(373\) 134.970 233.775i 0.0187359 0.0324515i −0.856505 0.516138i \(-0.827369\pi\)
0.875241 + 0.483686i \(0.160702\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1267.26 0.173122
\(378\) 0 0
\(379\) −8580.72 −1.16296 −0.581480 0.813561i \(-0.697526\pi\)
−0.581480 + 0.813561i \(0.697526\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1707.46 + 2957.41i −0.227800 + 0.394561i −0.957156 0.289574i \(-0.906486\pi\)
0.729356 + 0.684134i \(0.239820\pi\)
\(384\) 0 0
\(385\) −489.917 848.561i −0.0648532 0.112329i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1652.00 2861.35i −0.215321 0.372947i 0.738051 0.674745i \(-0.235746\pi\)
−0.953372 + 0.301798i \(0.902413\pi\)
\(390\) 0 0
\(391\) 2686.06 4652.39i 0.347417 0.601743i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10366.1 1.32045
\(396\) 0 0
\(397\) −12756.1 −1.61262 −0.806311 0.591492i \(-0.798539\pi\)
−0.806311 + 0.591492i \(0.798539\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2314.26 4008.42i 0.288201 0.499179i −0.685179 0.728375i \(-0.740276\pi\)
0.973380 + 0.229195i \(0.0736095\pi\)
\(402\) 0 0
\(403\) −4691.27 8125.51i −0.579873 1.00437i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3413.50 5912.35i −0.415727 0.720060i
\(408\) 0 0
\(409\) 1482.78 2568.24i 0.179263 0.310492i −0.762365 0.647147i \(-0.775962\pi\)
0.941628 + 0.336654i \(0.109295\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −155.409 −0.0185162
\(414\) 0 0
\(415\) 23789.6 2.81394
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 935.131 1619.69i 0.109031 0.188848i −0.806347 0.591443i \(-0.798558\pi\)
0.915378 + 0.402595i \(0.131892\pi\)
\(420\) 0 0
\(421\) 6325.31 + 10955.8i 0.732248 + 1.26829i 0.955920 + 0.293627i \(0.0948623\pi\)
−0.223672 + 0.974665i \(0.571804\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12779.1 22134.1i −1.45854 2.52626i
\(426\) 0 0
\(427\) −40.7232 + 70.5347i −0.00461530 + 0.00799394i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3266.47 0.365059 0.182530 0.983200i \(-0.441571\pi\)
0.182530 + 0.983200i \(0.441571\pi\)
\(432\) 0 0
\(433\) 6788.95 0.753478 0.376739 0.926319i \(-0.377045\pi\)
0.376739 + 0.926319i \(0.377045\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 602.050 1042.78i 0.0659038 0.114149i
\(438\) 0 0
\(439\) −2459.27 4259.59i −0.267368 0.463096i 0.700813 0.713345i \(-0.252821\pi\)
−0.968181 + 0.250249i \(0.919487\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7016.74 + 12153.4i 0.752540 + 1.30344i 0.946588 + 0.322446i \(0.104505\pi\)
−0.194047 + 0.980992i \(0.562162\pi\)
\(444\) 0 0
\(445\) −12024.4 + 20826.8i −1.28092 + 2.21862i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5374.04 −0.564848 −0.282424 0.959290i \(-0.591138\pi\)
−0.282424 + 0.959290i \(0.591138\pi\)
\(450\) 0 0
\(451\) −20160.7 −2.10495
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 237.904 412.062i 0.0245123 0.0424566i
\(456\) 0 0
\(457\) −6084.62 10538.9i −0.622815 1.07875i −0.988959 0.148189i \(-0.952655\pi\)
0.366144 0.930558i \(-0.380678\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3093.04 + 5357.30i 0.312489 + 0.541246i 0.978900 0.204338i \(-0.0655041\pi\)
−0.666412 + 0.745584i \(0.732171\pi\)
\(462\) 0 0
\(463\) −7598.89 + 13161.7i −0.762743 + 1.32111i 0.178688 + 0.983906i \(0.442815\pi\)
−0.941431 + 0.337204i \(0.890519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1981.82 0.196377 0.0981883 0.995168i \(-0.468695\pi\)
0.0981883 + 0.995168i \(0.468695\pi\)
\(468\) 0 0
\(469\) −349.625 −0.0344225
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11831.3 + 20492.3i −1.15011 + 1.99205i
\(474\) 0 0
\(475\) −2864.29 4961.10i −0.276679 0.479223i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4889.76 + 8469.31i 0.466427 + 0.807876i 0.999265 0.0383417i \(-0.0122075\pi\)
−0.532837 + 0.846218i \(0.678874\pi\)
\(480\) 0 0
\(481\) 1657.60 2871.04i 0.157131 0.272158i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17175.4 1.60803
\(486\) 0 0
\(487\) 18668.9 1.73710 0.868549 0.495603i \(-0.165053\pi\)
0.868549 + 0.495603i \(0.165053\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8003.11 13861.8i 0.735591 1.27408i −0.218872 0.975753i \(-0.570238\pi\)
0.954464 0.298328i \(-0.0964288\pi\)
\(492\) 0 0
\(493\) −2477.35 4290.90i −0.226317 0.391993i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −183.237 317.376i −0.0165378 0.0286444i
\(498\) 0 0
\(499\) −4930.29 + 8539.50i −0.442304 + 0.766094i −0.997860 0.0653857i \(-0.979172\pi\)
0.555556 + 0.831479i \(0.312506\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10512.0 0.931825 0.465913 0.884831i \(-0.345726\pi\)
0.465913 + 0.884831i \(0.345726\pi\)
\(504\) 0 0
\(505\) −25413.9 −2.23941
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8333.63 + 14434.3i −0.725700 + 1.25695i 0.232985 + 0.972480i \(0.425151\pi\)
−0.958685 + 0.284470i \(0.908183\pi\)
\(510\) 0 0
\(511\) −205.558 356.038i −0.0177952 0.0308223i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8730.18 + 15121.1i 0.746986 + 1.29382i
\(516\) 0 0
\(517\) 13029.3 22567.4i 1.10837 1.91976i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10923.9 0.918586 0.459293 0.888285i \(-0.348103\pi\)
0.459293 + 0.888285i \(0.348103\pi\)
\(522\) 0 0
\(523\) −17488.0 −1.46213 −0.731067 0.682305i \(-0.760978\pi\)
−0.731067 + 0.682305i \(0.760978\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18341.9 + 31769.1i −1.51610 + 2.62596i
\(528\) 0 0
\(529\) 5151.35 + 8922.41i 0.423387 + 0.733328i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4895.03 8478.43i −0.397799 0.689009i
\(534\) 0 0
\(535\) −17594.6 + 30474.8i −1.42184 + 2.46269i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 22433.3 1.79271
\(540\) 0 0
\(541\) −8724.14 −0.693309 −0.346655 0.937993i \(-0.612682\pi\)
−0.346655 + 0.937993i \(0.612682\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11864.5 20549.9i 0.932510 1.61515i
\(546\) 0 0
\(547\) 479.917 + 831.241i 0.0375133 + 0.0649749i 0.884172 0.467161i \(-0.154723\pi\)
−0.846659 + 0.532136i \(0.821390\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −555.270 961.757i −0.0429316 0.0743597i
\(552\) 0 0
\(553\) 234.541 406.237i 0.0180356 0.0312386i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14212.0 −1.08112 −0.540558 0.841307i \(-0.681787\pi\)
−0.540558 + 0.841307i \(0.681787\pi\)
\(558\) 0 0
\(559\) −11490.5 −0.869405
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3555.28 6157.93i 0.266141 0.460969i −0.701721 0.712452i \(-0.747585\pi\)
0.967862 + 0.251483i \(0.0809181\pi\)
\(564\) 0 0
\(565\) −9943.35 17222.4i −0.740389 1.28239i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2429.59 4208.17i −0.179005 0.310045i 0.762535 0.646947i \(-0.223954\pi\)
−0.941540 + 0.336901i \(0.890621\pi\)
\(570\) 0 0
\(571\) −4290.14 + 7430.74i −0.314425 + 0.544601i −0.979315 0.202341i \(-0.935145\pi\)
0.664890 + 0.746941i \(0.268478\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8869.49 −0.643276
\(576\) 0 0
\(577\) −1029.99 −0.0743136 −0.0371568 0.999309i \(-0.511830\pi\)
−0.0371568 + 0.999309i \(0.511830\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 538.255 932.286i 0.0384348 0.0665709i
\(582\) 0 0
\(583\) 3511.25 + 6081.66i 0.249436 + 0.432036i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7770.72 13459.3i −0.546391 0.946378i −0.998518 0.0544239i \(-0.982668\pi\)
0.452126 0.891954i \(-0.350666\pi\)
\(588\) 0 0
\(589\) −4111.12 + 7120.68i −0.287599 + 0.498136i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12643.5 −0.875562 −0.437781 0.899082i \(-0.644235\pi\)
−0.437781 + 0.899082i \(0.644235\pi\)
\(594\) 0 0
\(595\) −1860.31 −0.128177
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8581.46 + 14863.5i −0.585357 + 1.01387i 0.409474 + 0.912322i \(0.365712\pi\)
−0.994831 + 0.101546i \(0.967621\pi\)
\(600\) 0 0
\(601\) 2005.09 + 3472.92i 0.136089 + 0.235713i 0.926013 0.377492i \(-0.123213\pi\)
−0.789924 + 0.613205i \(0.789880\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −26934.3 46651.6i −1.80998 3.13497i
\(606\) 0 0
\(607\) −8660.58 + 15000.6i −0.579114 + 1.00305i 0.416468 + 0.909151i \(0.363268\pi\)
−0.995581 + 0.0939037i \(0.970065\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12654.1 0.837855
\(612\) 0 0
\(613\) 2474.79 0.163060 0.0815300 0.996671i \(-0.474019\pi\)
0.0815300 + 0.996671i \(0.474019\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5922.19 + 10257.5i −0.386416 + 0.669291i −0.991964 0.126517i \(-0.959620\pi\)
0.605549 + 0.795808i \(0.292954\pi\)
\(618\) 0 0
\(619\) 3924.32 + 6797.12i 0.254817 + 0.441356i 0.964846 0.262817i \(-0.0846515\pi\)
−0.710029 + 0.704173i \(0.751318\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 544.119 + 942.442i 0.0349914 + 0.0606069i
\(624\) 0 0
\(625\) −447.377 + 774.880i −0.0286322 + 0.0495924i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12961.7 −0.821649
\(630\) 0 0
\(631\) −11346.0 −0.715811 −0.357906 0.933758i \(-0.616509\pi\)
−0.357906 + 0.933758i \(0.616509\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11824.9 20481.3i 0.738985 1.27996i
\(636\) 0 0
\(637\) 5446.80 + 9434.14i 0.338791 + 0.586804i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8792.62 15229.3i −0.541791 0.938409i −0.998801 0.0489477i \(-0.984413\pi\)
0.457011 0.889461i \(-0.348920\pi\)
\(642\) 0 0
\(643\) 5322.44 9218.73i 0.326433 0.565399i −0.655368 0.755309i \(-0.727487\pi\)
0.981801 + 0.189911i \(0.0608199\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7872.89 0.478385 0.239193 0.970972i \(-0.423117\pi\)
0.239193 + 0.970972i \(0.423117\pi\)
\(648\) 0 0
\(649\) −12381.4 −0.748862
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1360.54 2356.53i 0.0815347 0.141222i −0.822375 0.568946i \(-0.807351\pi\)
0.903909 + 0.427724i \(0.140685\pi\)
\(654\) 0 0
\(655\) −17792.7 30817.8i −1.06140 1.83840i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1000.38 + 1732.71i 0.0591338 + 0.102423i 0.894077 0.447914i \(-0.147833\pi\)
−0.834943 + 0.550336i \(0.814499\pi\)
\(660\) 0 0
\(661\) 13869.0 24021.8i 0.816100 1.41353i −0.0924356 0.995719i \(-0.529465\pi\)
0.908535 0.417808i \(-0.137201\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −416.968 −0.0243148
\(666\) 0 0
\(667\) −1719.44 −0.0998153
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3244.39 + 5619.46i −0.186659 + 0.323304i
\(672\) 0 0
\(673\) 12346.5 + 21384.8i 0.707166 + 1.22485i 0.965904 + 0.258900i \(0.0833601\pi\)
−0.258738 + 0.965948i \(0.583307\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7382.36 + 12786.6i 0.419095 + 0.725893i 0.995849 0.0910246i \(-0.0290142\pi\)
−0.576754 + 0.816918i \(0.695681\pi\)
\(678\) 0 0
\(679\) 388.604 673.082i 0.0219635 0.0380420i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 571.548 0.0320200 0.0160100 0.999872i \(-0.494904\pi\)
0.0160100 + 0.999872i \(0.494904\pi\)
\(684\) 0 0
\(685\) −46424.6 −2.58948
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1705.07 + 2953.26i −0.0942784 + 0.163295i
\(690\) 0 0
\(691\) 1753.79 + 3037.66i 0.0965519 + 0.167233i 0.910255 0.414048i \(-0.135885\pi\)
−0.813703 + 0.581280i \(0.802552\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1865.56 3231.24i −0.101819 0.176357i
\(696\) 0 0
\(697\) −19138.5 + 33148.9i −1.04006 + 1.80144i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21145.2 1.13929 0.569644 0.821891i \(-0.307081\pi\)
0.569644 + 0.821891i \(0.307081\pi\)
\(702\) 0 0
\(703\) −2905.22 −0.155864
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −575.006 + 995.939i −0.0305874 + 0.0529790i
\(708\) 0 0
\(709\) 7907.61 + 13696.4i 0.418867 + 0.725499i 0.995826 0.0912745i \(-0.0290941\pi\)
−0.576959 + 0.816773i \(0.695761\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6365.20 + 11024.9i 0.334332 + 0.579080i
\(714\) 0 0
\(715\) 18953.7 32828.7i 0.991367 1.71710i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −33309.8 −1.72774 −0.863871 0.503713i \(-0.831967\pi\)
−0.863871 + 0.503713i \(0.831967\pi\)
\(720\) 0 0
\(721\) 790.104 0.0408114
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4090.17 + 7084.38i −0.209524 + 0.362906i
\(726\) 0 0
\(727\) −3518.65 6094.48i −0.179504 0.310910i 0.762207 0.647334i \(-0.224116\pi\)
−0.941711 + 0.336424i \(0.890783\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 22462.8 + 38906.7i 1.13655 + 1.96856i
\(732\) 0 0
\(733\) −6330.63 + 10965.0i −0.319000 + 0.552524i −0.980280 0.197615i \(-0.936680\pi\)
0.661280 + 0.750140i \(0.270014\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27854.4 −1.39217
\(738\) 0 0
\(739\) 32709.4 1.62819 0.814096 0.580730i \(-0.197233\pi\)
0.814096 + 0.580730i \(0.197233\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14690.6 + 25444.8i −0.725364 + 1.25637i 0.233460 + 0.972366i \(0.424995\pi\)
−0.958824 + 0.284001i \(0.908338\pi\)
\(744\) 0 0
\(745\) −1492.74 2585.49i −0.0734089 0.127148i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 796.180 + 1379.02i 0.0388408 + 0.0672743i
\(750\) 0 0
\(751\) −1112.82 + 1927.46i −0.0540712 + 0.0936540i −0.891794 0.452442i \(-0.850553\pi\)
0.837723 + 0.546096i \(0.183886\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 62307.1 3.00343
\(756\) 0 0
\(757\) 32628.1 1.56656 0.783281 0.621668i \(-0.213545\pi\)
0.783281 + 0.621668i \(0.213545\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9345.32 16186.6i 0.445161 0.771041i −0.552903 0.833246i \(-0.686480\pi\)
0.998063 + 0.0622046i \(0.0198131\pi\)
\(762\) 0 0
\(763\) −536.882 929.908i −0.0254737 0.0441218i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3006.20 5206.89i −0.141522 0.245124i
\(768\) 0 0
\(769\) −3422.83 + 5928.52i −0.160508 + 0.278008i −0.935051 0.354513i \(-0.884647\pi\)
0.774543 + 0.632521i \(0.217980\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 161.873 0.00753190 0.00376595 0.999993i \(-0.498801\pi\)
0.00376595 + 0.999993i \(0.498801\pi\)
\(774\) 0 0
\(775\) 60565.7 2.80721
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4289.69 + 7429.95i −0.197296 + 0.341727i
\(780\) 0 0
\(781\) −14598.4 25285.2i −0.668849 1.15848i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8980.43 + 15554.6i 0.408312 + 0.707218i
\(786\) 0 0
\(787\) −4979.56 + 8624.85i −0.225543 + 0.390651i −0.956482 0.291791i \(-0.905749\pi\)
0.730939 + 0.682442i \(0.239082\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −899.899 −0.0404510
\(792\) 0 0
\(793\) −3150.96 −0.141102
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2328.18 + 4032.53i −0.103473 + 0.179221i −0.913114 0.407705i \(-0.866329\pi\)
0.809640 + 0.586927i \(0.199662\pi\)
\(798\) 0 0
\(799\) −24737.4 42846.5i −1.09530 1.89712i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −16376.7 28365.3i −0.719704 1.24656i
\(804\) 0 0
\(805\) −322.793 + 559.093i −0.0141329 + 0.0244788i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −173.564 −0.00754289 −0.00377144 0.999993i \(-0.501200\pi\)
−0.00377144 + 0.999993i \(0.501200\pi\)
\(810\) 0 0
\(811\) −22674.1 −0.981744 −0.490872 0.871232i \(-0.663322\pi\)
−0.490872 + 0.871232i \(0.663322\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 25861.5 44793.5i 1.11152 1.92521i
\(816\) 0 0
\(817\) 5034.78 + 8720.49i 0.215599 + 0.373429i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20416.1 + 35361.7i 0.867877 + 1.50321i 0.864162 + 0.503214i \(0.167849\pi\)
0.00371541 + 0.999993i \(0.498817\pi\)
\(822\) 0 0
\(823\) 2440.51 4227.08i 0.103367 0.179036i −0.809703 0.586840i \(-0.800372\pi\)
0.913070 + 0.407804i \(0.133705\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22213.4 0.934022 0.467011 0.884251i \(-0.345331\pi\)
0.467011 + 0.884251i \(0.345331\pi\)
\(828\) 0 0
\(829\) 35477.2 1.48634 0.743168 0.669104i \(-0.233322\pi\)
0.743168 + 0.669104i \(0.233322\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 21295.9 36885.5i 0.885784 1.53422i
\(834\) 0 0
\(835\) 29137.5 + 50467.5i 1.20760 + 2.09162i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 11752.6 + 20356.2i 0.483607 + 0.837631i 0.999823 0.0188271i \(-0.00599320\pi\)
−0.516216 + 0.856458i \(0.672660\pi\)
\(840\) 0 0
\(841\) 11401.6 19748.1i 0.467489 0.809714i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −21528.0 −0.876433
\(846\) 0 0
\(847\) −2437.63 −0.0988876
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2249.06 + 3895.48i −0.0905954 + 0.156916i
\(852\) 0 0
\(853\) 6217.04 + 10768.2i 0.249551 + 0.432236i 0.963401 0.268063i \(-0.0863835\pi\)
−0.713850 + 0.700299i \(0.753050\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 397.933 + 689.240i 0.0158613 + 0.0274726i 0.873847 0.486201i \(-0.161618\pi\)
−0.857986 + 0.513673i \(0.828284\pi\)
\(858\) 0 0
\(859\) 4291.98 7433.92i 0.170478 0.295276i −0.768109 0.640319i \(-0.778802\pi\)
0.938587 + 0.345043i \(0.112136\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37865.4 −1.49357 −0.746787 0.665063i \(-0.768405\pi\)
−0.746787 + 0.665063i \(0.768405\pi\)
\(864\) 0 0
\(865\) 32458.3 1.27585
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18685.7 32364.6i 0.729425 1.26340i
\(870\) 0 0
\(871\) −6763.06 11714.0i −0.263097 0.455697i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 601.213 + 1041.33i 0.0232283 + 0.0402325i
\(876\) 0 0
\(877\) −2302.28 + 3987.66i −0.0886459 + 0.153539i −0.906939 0.421262i \(-0.861587\pi\)
0.818293 + 0.574801i \(0.194921\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13021.9 0.497979 0.248990 0.968506i \(-0.419901\pi\)
0.248990 + 0.968506i \(0.419901\pi\)
\(882\) 0 0
\(883\) −4301.10 −0.163923 −0.0819613 0.996636i \(-0.526118\pi\)
−0.0819613 + 0.996636i \(0.526118\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7597.89 + 13159.9i −0.287613 + 0.498160i −0.973239 0.229794i \(-0.926195\pi\)
0.685627 + 0.727953i \(0.259528\pi\)
\(888\) 0 0
\(889\) −535.091 926.804i −0.0201871 0.0349651i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5544.61 9603.55i −0.207775 0.359877i
\(894\) 0 0
\(895\) 11986.6 20761.3i 0.447672 0.775391i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11741.2 0.435587
\(900\) 0 0
\(901\) 13332.9 0.492990
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −31474.0 + 54514.5i −1.15606 + 2.00235i
\(906\) 0 0
\(907\) 2328.99 + 4033.94i 0.0852624 + 0.147679i 0.905503 0.424340i \(-0.139494\pi\)
−0.820241 + 0.572019i \(0.806160\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6446.40 + 11165.5i 0.234444 + 0.406069i 0.959111 0.283030i \(-0.0913396\pi\)
−0.724667 + 0.689099i \(0.758006\pi\)
\(912\) 0 0
\(913\) 42882.5 74274.7i 1.55444 2.69237i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1610.28 −0.0579894
\(918\) 0 0
\(919\) −36405.3 −1.30675 −0.653373 0.757036i \(-0.726647\pi\)
−0.653373 + 0.757036i \(0.726647\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7088.99 12278.5i 0.252803 0.437867i
\(924\) 0 0
\(925\) 10700.0 + 18533.0i 0.380341 + 0.658770i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2139.85 3706.33i −0.0755717 0.130894i 0.825763 0.564017i \(-0.190745\pi\)
−0.901335 + 0.433123i \(0.857412\pi\)
\(930\) 0 0
\(931\) 4773.23 8267.47i 0.168030 0.291037i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −148210. −5.18394
\(936\) 0 0
\(937\) 21006.6 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6764.54 11716.5i 0.234344 0.405896i −0.724738 0.689025i \(-0.758039\pi\)
0.959082 + 0.283129i \(0.0913724\pi\)
\(942\) 0 0
\(943\) 6641.67 + 11503.7i 0.229356 + 0.397256i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2076.57 + 3596.73i 0.0712561 + 0.123419i 0.899452 0.437019i \(-0.143966\pi\)
−0.828196 + 0.560439i \(0.810633\pi\)
\(948\) 0 0
\(949\) 7952.55 13774.2i 0.272024 0.471159i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −18387.5 −0.625005 −0.312503 0.949917i \(-0.601167\pi\)
−0.312503 + 0.949917i \(0.601167\pi\)
\(954\) 0 0
\(955\) 28926.0 0.980128
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1050.39 + 1819.32i −0.0353689 + 0.0612607i
\(960\) 0 0
\(961\) −28569.6 49483.9i −0.959000 1.66104i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6947.93 + 12034.2i 0.231774 + 0.401444i
\(966\) 0 0
\(967\) 17227.0 29838.1i 0.572889 0.992273i −0.423378 0.905953i \(-0.639156\pi\)
0.996267 0.0863204i \(-0.0275109\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2689.17 −0.0888770 −0.0444385 0.999012i \(-0.514150\pi\)
−0.0444385 + 0.999012i \(0.514150\pi\)
\(972\) 0 0
\(973\) −168.838 −0.00556288
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −74.4796 + 129.002i −0.00243891 + 0.00422431i −0.867242 0.497886i \(-0.834110\pi\)
0.864803 + 0.502111i \(0.167443\pi\)
\(978\) 0 0
\(979\) 43349.6 + 75083.8i 1.41518 + 2.45116i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16110.9 27904.9i −0.522744 0.905419i −0.999650 0.0264649i \(-0.991575\pi\)
0.476906 0.878955i \(-0.341758\pi\)
\(984\) 0 0
\(985\) −10830.4 + 18758.8i −0.350340 + 0.606807i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15590.6 0.501265
\(990\) 0 0
\(991\) 2979.37 0.0955023 0.0477512 0.998859i \(-0.484795\pi\)
0.0477512 + 0.998859i \(0.484795\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 24614.1 42632.8i 0.784240 1.35834i
\(996\) 0 0
\(997\) 16046.9 + 27794.1i 0.509740 + 0.882896i 0.999936 + 0.0112838i \(0.00359182\pi\)
−0.490196 + 0.871612i \(0.663075\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.4.i.n.433.1 4
3.2 odd 2 648.4.i.t.433.2 4
9.2 odd 6 648.4.i.t.217.2 4
9.4 even 3 648.4.a.f.1.2 yes 2
9.5 odd 6 648.4.a.c.1.1 2
9.7 even 3 inner 648.4.i.n.217.1 4
36.23 even 6 1296.4.a.m.1.1 2
36.31 odd 6 1296.4.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
648.4.a.c.1.1 2 9.5 odd 6
648.4.a.f.1.2 yes 2 9.4 even 3
648.4.i.n.217.1 4 9.7 even 3 inner
648.4.i.n.433.1 4 1.1 even 1 trivial
648.4.i.t.217.2 4 9.2 odd 6
648.4.i.t.433.2 4 3.2 odd 2
1296.4.a.m.1.1 2 36.23 even 6
1296.4.a.q.1.2 2 36.31 odd 6