Defining parameters
| Level: | \( N \) | \(=\) | \( 648 = 2^{3} \cdot 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 648.g (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(324\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(648, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 240 | 0 | 240 |
| Cusp forms | 192 | 0 | 192 |
| Eisenstein series | 48 | 0 | 48 |
Decomposition of \(S_{3}^{\mathrm{old}}(648, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(648, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 2}\)