Properties

Label 6475.2.a.o.1.4
Level $6475$
Weight $2$
Character 6475.1
Self dual yes
Analytic conductor $51.703$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6475,2,Mod(1,6475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6475.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6475 = 5^{2} \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6475.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7031353088\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.84776\) of defining polynomial
Character \(\chi\) \(=\) 6475.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84776 q^{2} +1.76537 q^{3} +1.41421 q^{4} +3.26197 q^{6} -1.00000 q^{7} -1.08239 q^{8} +0.116520 q^{9} -0.414214 q^{11} +2.49661 q^{12} -0.198912 q^{13} -1.84776 q^{14} -4.82843 q^{16} +2.08239 q^{17} +0.215301 q^{18} -5.26197 q^{19} -1.76537 q^{21} -0.765367 q^{22} -6.46088 q^{23} -1.91082 q^{24} -0.367542 q^{26} -5.09040 q^{27} -1.41421 q^{28} +4.14545 q^{29} +2.52395 q^{31} -6.75699 q^{32} -0.731239 q^{33} +3.84776 q^{34} +0.164784 q^{36} -1.00000 q^{37} -9.72286 q^{38} -0.351153 q^{39} +0.993212 q^{41} -3.26197 q^{42} -2.31703 q^{43} -0.585786 q^{44} -11.9382 q^{46} +1.90281 q^{47} -8.52395 q^{48} +1.00000 q^{49} +3.67619 q^{51} -0.281305 q^{52} -11.1519 q^{53} -9.40583 q^{54} +1.08239 q^{56} -9.28931 q^{57} +7.65980 q^{58} -4.55967 q^{59} -5.78470 q^{61} +4.66364 q^{62} -0.116520 q^{63} -2.82843 q^{64} -1.35115 q^{66} +9.59154 q^{67} +2.94495 q^{68} -11.4058 q^{69} -12.1712 q^{71} -0.126121 q^{72} +4.70231 q^{73} -1.84776 q^{74} -7.44155 q^{76} +0.414214 q^{77} -0.648847 q^{78} -2.65338 q^{79} -9.33598 q^{81} +1.83522 q^{82} -12.9764 q^{83} -2.49661 q^{84} -4.28130 q^{86} +7.31824 q^{87} +0.448342 q^{88} -8.99321 q^{89} +0.198912 q^{91} -9.13707 q^{92} +4.45569 q^{93} +3.51594 q^{94} -11.9286 q^{96} -2.04373 q^{97} +1.84776 q^{98} -0.0482642 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{7} + 4 q^{11} + 4 q^{13} - 8 q^{16} + 4 q^{17} - 8 q^{19} - 4 q^{21} - 8 q^{23} + 8 q^{24} - 8 q^{26} + 4 q^{27} + 4 q^{29} - 16 q^{31} + 4 q^{33} + 8 q^{34} - 8 q^{36} - 4 q^{37} - 8 q^{38}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84776 1.30656 0.653281 0.757115i \(-0.273392\pi\)
0.653281 + 0.757115i \(0.273392\pi\)
\(3\) 1.76537 1.01924 0.509618 0.860401i \(-0.329787\pi\)
0.509618 + 0.860401i \(0.329787\pi\)
\(4\) 1.41421 0.707107
\(5\) 0 0
\(6\) 3.26197 1.33169
\(7\) −1.00000 −0.377964
\(8\) −1.08239 −0.382683
\(9\) 0.116520 0.0388401
\(10\) 0 0
\(11\) −0.414214 −0.124890 −0.0624450 0.998048i \(-0.519890\pi\)
−0.0624450 + 0.998048i \(0.519890\pi\)
\(12\) 2.49661 0.720708
\(13\) −0.198912 −0.0551684 −0.0275842 0.999619i \(-0.508781\pi\)
−0.0275842 + 0.999619i \(0.508781\pi\)
\(14\) −1.84776 −0.493834
\(15\) 0 0
\(16\) −4.82843 −1.20711
\(17\) 2.08239 0.505054 0.252527 0.967590i \(-0.418738\pi\)
0.252527 + 0.967590i \(0.418738\pi\)
\(18\) 0.215301 0.0507470
\(19\) −5.26197 −1.20718 −0.603590 0.797295i \(-0.706263\pi\)
−0.603590 + 0.797295i \(0.706263\pi\)
\(20\) 0 0
\(21\) −1.76537 −0.385235
\(22\) −0.765367 −0.163177
\(23\) −6.46088 −1.34719 −0.673594 0.739102i \(-0.735250\pi\)
−0.673594 + 0.739102i \(0.735250\pi\)
\(24\) −1.91082 −0.390044
\(25\) 0 0
\(26\) −0.367542 −0.0720809
\(27\) −5.09040 −0.979648
\(28\) −1.41421 −0.267261
\(29\) 4.14545 0.769791 0.384896 0.922960i \(-0.374237\pi\)
0.384896 + 0.922960i \(0.374237\pi\)
\(30\) 0 0
\(31\) 2.52395 0.453314 0.226657 0.973975i \(-0.427220\pi\)
0.226657 + 0.973975i \(0.427220\pi\)
\(32\) −6.75699 −1.19448
\(33\) −0.731239 −0.127292
\(34\) 3.84776 0.659885
\(35\) 0 0
\(36\) 0.164784 0.0274641
\(37\) −1.00000 −0.164399
\(38\) −9.72286 −1.57726
\(39\) −0.351153 −0.0562295
\(40\) 0 0
\(41\) 0.993212 0.155114 0.0775568 0.996988i \(-0.475288\pi\)
0.0775568 + 0.996988i \(0.475288\pi\)
\(42\) −3.26197 −0.503333
\(43\) −2.31703 −0.353343 −0.176672 0.984270i \(-0.556533\pi\)
−0.176672 + 0.984270i \(0.556533\pi\)
\(44\) −0.585786 −0.0883106
\(45\) 0 0
\(46\) −11.9382 −1.76019
\(47\) 1.90281 0.277554 0.138777 0.990324i \(-0.455683\pi\)
0.138777 + 0.990324i \(0.455683\pi\)
\(48\) −8.52395 −1.23033
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.67619 0.514769
\(52\) −0.281305 −0.0390099
\(53\) −11.1519 −1.53183 −0.765913 0.642944i \(-0.777713\pi\)
−0.765913 + 0.642944i \(0.777713\pi\)
\(54\) −9.40583 −1.27997
\(55\) 0 0
\(56\) 1.08239 0.144641
\(57\) −9.28931 −1.23040
\(58\) 7.65980 1.00578
\(59\) −4.55967 −0.593618 −0.296809 0.954937i \(-0.595922\pi\)
−0.296809 + 0.954937i \(0.595922\pi\)
\(60\) 0 0
\(61\) −5.78470 −0.740655 −0.370327 0.928901i \(-0.620754\pi\)
−0.370327 + 0.928901i \(0.620754\pi\)
\(62\) 4.66364 0.592283
\(63\) −0.116520 −0.0146802
\(64\) −2.82843 −0.353553
\(65\) 0 0
\(66\) −1.35115 −0.166315
\(67\) 9.59154 1.17179 0.585897 0.810386i \(-0.300742\pi\)
0.585897 + 0.810386i \(0.300742\pi\)
\(68\) 2.94495 0.357127
\(69\) −11.4058 −1.37310
\(70\) 0 0
\(71\) −12.1712 −1.44446 −0.722228 0.691655i \(-0.756882\pi\)
−0.722228 + 0.691655i \(0.756882\pi\)
\(72\) −0.126121 −0.0148634
\(73\) 4.70231 0.550363 0.275182 0.961392i \(-0.411262\pi\)
0.275182 + 0.961392i \(0.411262\pi\)
\(74\) −1.84776 −0.214798
\(75\) 0 0
\(76\) −7.44155 −0.853605
\(77\) 0.414214 0.0472040
\(78\) −0.648847 −0.0734674
\(79\) −2.65338 −0.298529 −0.149264 0.988797i \(-0.547691\pi\)
−0.149264 + 0.988797i \(0.547691\pi\)
\(80\) 0 0
\(81\) −9.33598 −1.03733
\(82\) 1.83522 0.202666
\(83\) −12.9764 −1.42435 −0.712175 0.702002i \(-0.752290\pi\)
−0.712175 + 0.702002i \(0.752290\pi\)
\(84\) −2.49661 −0.272402
\(85\) 0 0
\(86\) −4.28130 −0.461665
\(87\) 7.31824 0.784598
\(88\) 0.448342 0.0477934
\(89\) −8.99321 −0.953279 −0.476639 0.879099i \(-0.658145\pi\)
−0.476639 + 0.879099i \(0.658145\pi\)
\(90\) 0 0
\(91\) 0.198912 0.0208517
\(92\) −9.13707 −0.952606
\(93\) 4.45569 0.462033
\(94\) 3.51594 0.362641
\(95\) 0 0
\(96\) −11.9286 −1.21745
\(97\) −2.04373 −0.207509 −0.103755 0.994603i \(-0.533086\pi\)
−0.103755 + 0.994603i \(0.533086\pi\)
\(98\) 1.84776 0.186652
\(99\) −0.0482642 −0.00485074
\(100\) 0 0
\(101\) 9.39104 0.934443 0.467222 0.884140i \(-0.345255\pi\)
0.467222 + 0.884140i \(0.345255\pi\)
\(102\) 6.79271 0.672578
\(103\) 15.6678 1.54379 0.771897 0.635747i \(-0.219308\pi\)
0.771897 + 0.635747i \(0.219308\pi\)
\(104\) 0.215301 0.0211120
\(105\) 0 0
\(106\) −20.6060 −2.00143
\(107\) −15.7263 −1.52032 −0.760161 0.649735i \(-0.774880\pi\)
−0.760161 + 0.649735i \(0.774880\pi\)
\(108\) −7.19891 −0.692716
\(109\) −10.9411 −1.04797 −0.523984 0.851728i \(-0.675555\pi\)
−0.523984 + 0.851728i \(0.675555\pi\)
\(110\) 0 0
\(111\) −1.76537 −0.167561
\(112\) 4.82843 0.456243
\(113\) −4.03347 −0.379437 −0.189718 0.981839i \(-0.560757\pi\)
−0.189718 + 0.981839i \(0.560757\pi\)
\(114\) −17.1644 −1.60759
\(115\) 0 0
\(116\) 5.86256 0.544325
\(117\) −0.0231773 −0.00214274
\(118\) −8.42516 −0.775599
\(119\) −2.08239 −0.190893
\(120\) 0 0
\(121\) −10.8284 −0.984402
\(122\) −10.6887 −0.967712
\(123\) 1.75338 0.158097
\(124\) 3.56940 0.320541
\(125\) 0 0
\(126\) −0.215301 −0.0191806
\(127\) 16.5905 1.47217 0.736083 0.676891i \(-0.236673\pi\)
0.736083 + 0.676891i \(0.236673\pi\)
\(128\) 8.28772 0.732538
\(129\) −4.09040 −0.360140
\(130\) 0 0
\(131\) −6.53874 −0.571292 −0.285646 0.958335i \(-0.592208\pi\)
−0.285646 + 0.958335i \(0.592208\pi\)
\(132\) −1.03413 −0.0900093
\(133\) 5.26197 0.456271
\(134\) 17.7229 1.53102
\(135\) 0 0
\(136\) −2.25397 −0.193276
\(137\) 18.6690 1.59500 0.797501 0.603317i \(-0.206155\pi\)
0.797501 + 0.603317i \(0.206155\pi\)
\(138\) −21.0752 −1.79404
\(139\) 3.41543 0.289693 0.144847 0.989454i \(-0.453731\pi\)
0.144847 + 0.989454i \(0.453731\pi\)
\(140\) 0 0
\(141\) 3.35916 0.282892
\(142\) −22.4894 −1.88727
\(143\) 0.0823922 0.00688998
\(144\) −0.562609 −0.0468841
\(145\) 0 0
\(146\) 8.68873 0.719084
\(147\) 1.76537 0.145605
\(148\) −1.41421 −0.116248
\(149\) −13.2359 −1.08432 −0.542162 0.840274i \(-0.682394\pi\)
−0.542162 + 0.840274i \(0.682394\pi\)
\(150\) 0 0
\(151\) 0.680032 0.0553402 0.0276701 0.999617i \(-0.491191\pi\)
0.0276701 + 0.999617i \(0.491191\pi\)
\(152\) 5.69552 0.461968
\(153\) 0.242641 0.0196163
\(154\) 0.765367 0.0616750
\(155\) 0 0
\(156\) −0.496606 −0.0397603
\(157\) 9.35462 0.746580 0.373290 0.927715i \(-0.378230\pi\)
0.373290 + 0.927715i \(0.378230\pi\)
\(158\) −4.90281 −0.390047
\(159\) −19.6871 −1.56129
\(160\) 0 0
\(161\) 6.46088 0.509189
\(162\) −17.2506 −1.35534
\(163\) −22.2532 −1.74301 −0.871503 0.490390i \(-0.836854\pi\)
−0.871503 + 0.490390i \(0.836854\pi\)
\(164\) 1.40461 0.109682
\(165\) 0 0
\(166\) −23.9774 −1.86100
\(167\) 17.9008 1.38521 0.692604 0.721318i \(-0.256463\pi\)
0.692604 + 0.721318i \(0.256463\pi\)
\(168\) 1.91082 0.147423
\(169\) −12.9604 −0.996956
\(170\) 0 0
\(171\) −0.613126 −0.0468869
\(172\) −3.27677 −0.249851
\(173\) 11.5429 0.877591 0.438795 0.898587i \(-0.355405\pi\)
0.438795 + 0.898587i \(0.355405\pi\)
\(174\) 13.5224 1.02513
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) −8.04948 −0.605036
\(178\) −16.6173 −1.24552
\(179\) 20.1695 1.50754 0.753769 0.657140i \(-0.228234\pi\)
0.753769 + 0.657140i \(0.228234\pi\)
\(180\) 0 0
\(181\) −5.05280 −0.375572 −0.187786 0.982210i \(-0.560131\pi\)
−0.187786 + 0.982210i \(0.560131\pi\)
\(182\) 0.367542 0.0272440
\(183\) −10.2121 −0.754901
\(184\) 6.99321 0.515546
\(185\) 0 0
\(186\) 8.23304 0.603676
\(187\) −0.862555 −0.0630763
\(188\) 2.69098 0.196260
\(189\) 5.09040 0.370272
\(190\) 0 0
\(191\) 6.51594 0.471477 0.235738 0.971817i \(-0.424249\pi\)
0.235738 + 0.971817i \(0.424249\pi\)
\(192\) −4.99321 −0.360354
\(193\) 18.8538 1.35713 0.678563 0.734542i \(-0.262603\pi\)
0.678563 + 0.734542i \(0.262603\pi\)
\(194\) −3.77632 −0.271124
\(195\) 0 0
\(196\) 1.41421 0.101015
\(197\) 7.69968 0.548580 0.274290 0.961647i \(-0.411557\pi\)
0.274290 + 0.961647i \(0.411557\pi\)
\(198\) −0.0891807 −0.00633779
\(199\) 6.34731 0.449949 0.224974 0.974365i \(-0.427770\pi\)
0.224974 + 0.974365i \(0.427770\pi\)
\(200\) 0 0
\(201\) 16.9326 1.19433
\(202\) 17.3524 1.22091
\(203\) −4.14545 −0.290954
\(204\) 5.19891 0.363997
\(205\) 0 0
\(206\) 28.9503 2.01706
\(207\) −0.752823 −0.0523248
\(208\) 0.960434 0.0665941
\(209\) 2.17958 0.150765
\(210\) 0 0
\(211\) 24.1863 1.66505 0.832527 0.553984i \(-0.186893\pi\)
0.832527 + 0.553984i \(0.186893\pi\)
\(212\) −15.7711 −1.08317
\(213\) −21.4866 −1.47224
\(214\) −29.0585 −1.98640
\(215\) 0 0
\(216\) 5.50981 0.374895
\(217\) −2.52395 −0.171337
\(218\) −20.2165 −1.36924
\(219\) 8.30130 0.560950
\(220\) 0 0
\(221\) −0.414214 −0.0278630
\(222\) −3.26197 −0.218929
\(223\) 3.12318 0.209143 0.104572 0.994517i \(-0.466653\pi\)
0.104572 + 0.994517i \(0.466653\pi\)
\(224\) 6.75699 0.451470
\(225\) 0 0
\(226\) −7.45288 −0.495758
\(227\) 9.87125 0.655178 0.327589 0.944820i \(-0.393764\pi\)
0.327589 + 0.944820i \(0.393764\pi\)
\(228\) −13.1371 −0.870024
\(229\) −21.2475 −1.40407 −0.702036 0.712142i \(-0.747725\pi\)
−0.702036 + 0.712142i \(0.747725\pi\)
\(230\) 0 0
\(231\) 0.731239 0.0481120
\(232\) −4.48701 −0.294586
\(233\) −8.59661 −0.563182 −0.281591 0.959534i \(-0.590862\pi\)
−0.281591 + 0.959534i \(0.590862\pi\)
\(234\) −0.0428261 −0.00279963
\(235\) 0 0
\(236\) −6.44834 −0.419751
\(237\) −4.68419 −0.304271
\(238\) −3.84776 −0.249413
\(239\) −0.680722 −0.0440323 −0.0220161 0.999758i \(-0.507009\pi\)
−0.0220161 + 0.999758i \(0.507009\pi\)
\(240\) 0 0
\(241\) −11.9626 −0.770576 −0.385288 0.922796i \(-0.625898\pi\)
−0.385288 + 0.922796i \(0.625898\pi\)
\(242\) −20.0083 −1.28618
\(243\) −1.21024 −0.0776367
\(244\) −8.18080 −0.523722
\(245\) 0 0
\(246\) 3.23983 0.206564
\(247\) 1.04667 0.0665981
\(248\) −2.73190 −0.173476
\(249\) −22.9082 −1.45175
\(250\) 0 0
\(251\) −7.94041 −0.501194 −0.250597 0.968091i \(-0.580627\pi\)
−0.250597 + 0.968091i \(0.580627\pi\)
\(252\) −0.164784 −0.0103804
\(253\) 2.67619 0.168250
\(254\) 30.6552 1.92348
\(255\) 0 0
\(256\) 20.9706 1.31066
\(257\) 15.9246 0.993348 0.496674 0.867937i \(-0.334554\pi\)
0.496674 + 0.867937i \(0.334554\pi\)
\(258\) −7.55807 −0.470545
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) 0.483029 0.0298987
\(262\) −12.0820 −0.746430
\(263\) 1.54847 0.0954829 0.0477415 0.998860i \(-0.484798\pi\)
0.0477415 + 0.998860i \(0.484798\pi\)
\(264\) 0.791487 0.0487127
\(265\) 0 0
\(266\) 9.72286 0.596147
\(267\) −15.8763 −0.971615
\(268\) 13.5645 0.828583
\(269\) −20.3003 −1.23773 −0.618864 0.785498i \(-0.712407\pi\)
−0.618864 + 0.785498i \(0.712407\pi\)
\(270\) 0 0
\(271\) 14.1076 0.856978 0.428489 0.903547i \(-0.359046\pi\)
0.428489 + 0.903547i \(0.359046\pi\)
\(272\) −10.0547 −0.609654
\(273\) 0.351153 0.0212528
\(274\) 34.4959 2.08397
\(275\) 0 0
\(276\) −16.1303 −0.970929
\(277\) −12.7814 −0.767959 −0.383979 0.923342i \(-0.625447\pi\)
−0.383979 + 0.923342i \(0.625447\pi\)
\(278\) 6.31090 0.378502
\(279\) 0.294091 0.0176067
\(280\) 0 0
\(281\) 6.81273 0.406413 0.203207 0.979136i \(-0.434864\pi\)
0.203207 + 0.979136i \(0.434864\pi\)
\(282\) 6.20692 0.369617
\(283\) −6.92440 −0.411613 −0.205806 0.978593i \(-0.565982\pi\)
−0.205806 + 0.978593i \(0.565982\pi\)
\(284\) −17.2127 −1.02138
\(285\) 0 0
\(286\) 0.152241 0.00900220
\(287\) −0.993212 −0.0586274
\(288\) −0.787325 −0.0463936
\(289\) −12.6636 −0.744920
\(290\) 0 0
\(291\) −3.60793 −0.211501
\(292\) 6.65007 0.389166
\(293\) −20.6134 −1.20425 −0.602125 0.798402i \(-0.705679\pi\)
−0.602125 + 0.798402i \(0.705679\pi\)
\(294\) 3.26197 0.190242
\(295\) 0 0
\(296\) 1.08239 0.0629128
\(297\) 2.10851 0.122348
\(298\) −24.4567 −1.41674
\(299\) 1.28515 0.0743221
\(300\) 0 0
\(301\) 2.31703 0.133551
\(302\) 1.25653 0.0723054
\(303\) 16.5786 0.952417
\(304\) 25.4071 1.45719
\(305\) 0 0
\(306\) 0.448342 0.0256300
\(307\) 22.7655 1.29930 0.649648 0.760235i \(-0.274916\pi\)
0.649648 + 0.760235i \(0.274916\pi\)
\(308\) 0.585786 0.0333783
\(309\) 27.6594 1.57349
\(310\) 0 0
\(311\) 21.6519 1.22777 0.613885 0.789396i \(-0.289606\pi\)
0.613885 + 0.789396i \(0.289606\pi\)
\(312\) 0.380086 0.0215181
\(313\) 0.182897 0.0103380 0.00516898 0.999987i \(-0.498355\pi\)
0.00516898 + 0.999987i \(0.498355\pi\)
\(314\) 17.2851 0.975454
\(315\) 0 0
\(316\) −3.75245 −0.211092
\(317\) 11.7056 0.657455 0.328727 0.944425i \(-0.393380\pi\)
0.328727 + 0.944425i \(0.393380\pi\)
\(318\) −36.3771 −2.03993
\(319\) −1.71710 −0.0961393
\(320\) 0 0
\(321\) −27.7627 −1.54957
\(322\) 11.9382 0.665288
\(323\) −10.9575 −0.609691
\(324\) −13.2031 −0.733504
\(325\) 0 0
\(326\) −41.1186 −2.27735
\(327\) −19.3151 −1.06813
\(328\) −1.07504 −0.0593594
\(329\) −1.90281 −0.104905
\(330\) 0 0
\(331\) −15.5004 −0.851979 −0.425989 0.904728i \(-0.640074\pi\)
−0.425989 + 0.904728i \(0.640074\pi\)
\(332\) −18.3515 −1.00717
\(333\) −0.116520 −0.00638527
\(334\) 33.0764 1.80986
\(335\) 0 0
\(336\) 8.52395 0.465019
\(337\) −13.4856 −0.734607 −0.367304 0.930101i \(-0.619719\pi\)
−0.367304 + 0.930101i \(0.619719\pi\)
\(338\) −23.9478 −1.30259
\(339\) −7.12055 −0.386735
\(340\) 0 0
\(341\) −1.04545 −0.0566144
\(342\) −1.13291 −0.0612607
\(343\) −1.00000 −0.0539949
\(344\) 2.50793 0.135219
\(345\) 0 0
\(346\) 21.3285 1.14663
\(347\) 4.91270 0.263727 0.131864 0.991268i \(-0.457904\pi\)
0.131864 + 0.991268i \(0.457904\pi\)
\(348\) 10.3496 0.554795
\(349\) −15.9495 −0.853756 −0.426878 0.904309i \(-0.640387\pi\)
−0.426878 + 0.904309i \(0.640387\pi\)
\(350\) 0 0
\(351\) 1.01254 0.0540456
\(352\) 2.79884 0.149178
\(353\) −17.5545 −0.934330 −0.467165 0.884170i \(-0.654725\pi\)
−0.467165 + 0.884170i \(0.654725\pi\)
\(354\) −14.8735 −0.790518
\(355\) 0 0
\(356\) −12.7183 −0.674070
\(357\) −3.67619 −0.194564
\(358\) 37.2683 1.96969
\(359\) −16.8258 −0.888030 −0.444015 0.896019i \(-0.646446\pi\)
−0.444015 + 0.896019i \(0.646446\pi\)
\(360\) 0 0
\(361\) 8.68836 0.457282
\(362\) −9.33636 −0.490708
\(363\) −19.1161 −1.00334
\(364\) 0.281305 0.0147444
\(365\) 0 0
\(366\) −18.8695 −0.986326
\(367\) 20.5248 1.07139 0.535693 0.844413i \(-0.320051\pi\)
0.535693 + 0.844413i \(0.320051\pi\)
\(368\) 31.1959 1.62620
\(369\) 0.115729 0.00602462
\(370\) 0 0
\(371\) 11.1519 0.578976
\(372\) 6.30130 0.326707
\(373\) −22.6629 −1.17344 −0.586720 0.809790i \(-0.699581\pi\)
−0.586720 + 0.809790i \(0.699581\pi\)
\(374\) −1.59379 −0.0824131
\(375\) 0 0
\(376\) −2.05959 −0.106215
\(377\) −0.824582 −0.0424681
\(378\) 9.40583 0.483784
\(379\) 23.1508 1.18918 0.594589 0.804030i \(-0.297315\pi\)
0.594589 + 0.804030i \(0.297315\pi\)
\(380\) 0 0
\(381\) 29.2883 1.50048
\(382\) 12.0399 0.616014
\(383\) 2.01920 0.103176 0.0515882 0.998668i \(-0.483572\pi\)
0.0515882 + 0.998668i \(0.483572\pi\)
\(384\) 14.6309 0.746628
\(385\) 0 0
\(386\) 34.8373 1.77317
\(387\) −0.269980 −0.0137239
\(388\) −2.89027 −0.146731
\(389\) −26.0868 −1.32266 −0.661328 0.750097i \(-0.730007\pi\)
−0.661328 + 0.750097i \(0.730007\pi\)
\(390\) 0 0
\(391\) −13.4541 −0.680403
\(392\) −1.08239 −0.0546691
\(393\) −11.5433 −0.582281
\(394\) 14.2272 0.716754
\(395\) 0 0
\(396\) −0.0682559 −0.00342999
\(397\) −5.01307 −0.251599 −0.125799 0.992056i \(-0.540150\pi\)
−0.125799 + 0.992056i \(0.540150\pi\)
\(398\) 11.7283 0.587886
\(399\) 9.28931 0.465047
\(400\) 0 0
\(401\) 31.9153 1.59377 0.796887 0.604128i \(-0.206479\pi\)
0.796887 + 0.604128i \(0.206479\pi\)
\(402\) 31.2873 1.56047
\(403\) −0.502044 −0.0250086
\(404\) 13.2809 0.660751
\(405\) 0 0
\(406\) −7.65980 −0.380149
\(407\) 0.414214 0.0205318
\(408\) −3.97908 −0.196994
\(409\) −26.9514 −1.33266 −0.666330 0.745657i \(-0.732136\pi\)
−0.666330 + 0.745657i \(0.732136\pi\)
\(410\) 0 0
\(411\) 32.9577 1.62568
\(412\) 22.1576 1.09163
\(413\) 4.55967 0.224366
\(414\) −1.39104 −0.0683657
\(415\) 0 0
\(416\) 1.34405 0.0658974
\(417\) 6.02949 0.295265
\(418\) 4.02734 0.196984
\(419\) 20.1965 0.986665 0.493332 0.869841i \(-0.335779\pi\)
0.493332 + 0.869841i \(0.335779\pi\)
\(420\) 0 0
\(421\) −9.26704 −0.451648 −0.225824 0.974168i \(-0.572507\pi\)
−0.225824 + 0.974168i \(0.572507\pi\)
\(422\) 44.6905 2.17550
\(423\) 0.221716 0.0107802
\(424\) 12.0707 0.586205
\(425\) 0 0
\(426\) −39.7021 −1.92357
\(427\) 5.78470 0.279941
\(428\) −22.2404 −1.07503
\(429\) 0.145452 0.00702251
\(430\) 0 0
\(431\) 15.4764 0.745471 0.372735 0.927938i \(-0.378420\pi\)
0.372735 + 0.927938i \(0.378420\pi\)
\(432\) 24.5786 1.18254
\(433\) 0.308987 0.0148490 0.00742448 0.999972i \(-0.497637\pi\)
0.00742448 + 0.999972i \(0.497637\pi\)
\(434\) −4.66364 −0.223862
\(435\) 0 0
\(436\) −15.4731 −0.741025
\(437\) 33.9970 1.62630
\(438\) 15.3388 0.732916
\(439\) −19.9847 −0.953818 −0.476909 0.878953i \(-0.658243\pi\)
−0.476909 + 0.878953i \(0.658243\pi\)
\(440\) 0 0
\(441\) 0.116520 0.00554858
\(442\) −0.765367 −0.0364048
\(443\) 14.2788 0.678407 0.339203 0.940713i \(-0.389843\pi\)
0.339203 + 0.940713i \(0.389843\pi\)
\(444\) −2.49661 −0.118484
\(445\) 0 0
\(446\) 5.77088 0.273259
\(447\) −23.3661 −1.10518
\(448\) 2.82843 0.133631
\(449\) 37.6732 1.77791 0.888954 0.457997i \(-0.151433\pi\)
0.888954 + 0.457997i \(0.151433\pi\)
\(450\) 0 0
\(451\) −0.411402 −0.0193721
\(452\) −5.70419 −0.268302
\(453\) 1.20051 0.0564047
\(454\) 18.2397 0.856031
\(455\) 0 0
\(456\) 10.0547 0.470853
\(457\) 4.82426 0.225670 0.112835 0.993614i \(-0.464007\pi\)
0.112835 + 0.993614i \(0.464007\pi\)
\(458\) −39.2602 −1.83451
\(459\) −10.6002 −0.494775
\(460\) 0 0
\(461\) −41.5553 −1.93542 −0.967712 0.252058i \(-0.918892\pi\)
−0.967712 + 0.252058i \(0.918892\pi\)
\(462\) 1.35115 0.0628613
\(463\) 16.0916 0.747841 0.373920 0.927461i \(-0.378013\pi\)
0.373920 + 0.927461i \(0.378013\pi\)
\(464\) −20.0160 −0.929220
\(465\) 0 0
\(466\) −15.8845 −0.735833
\(467\) −2.25115 −0.104171 −0.0520855 0.998643i \(-0.516587\pi\)
−0.0520855 + 0.998643i \(0.516587\pi\)
\(468\) −0.0327777 −0.00151515
\(469\) −9.59154 −0.442896
\(470\) 0 0
\(471\) 16.5143 0.760941
\(472\) 4.93535 0.227168
\(473\) 0.959743 0.0441290
\(474\) −8.65526 −0.397549
\(475\) 0 0
\(476\) −2.94495 −0.134981
\(477\) −1.29942 −0.0594962
\(478\) −1.25781 −0.0575309
\(479\) 12.2252 0.558583 0.279292 0.960206i \(-0.409900\pi\)
0.279292 + 0.960206i \(0.409900\pi\)
\(480\) 0 0
\(481\) 0.198912 0.00906962
\(482\) −22.1039 −1.00681
\(483\) 11.4058 0.518983
\(484\) −15.3137 −0.696078
\(485\) 0 0
\(486\) −2.23623 −0.101437
\(487\) 1.24052 0.0562133 0.0281066 0.999605i \(-0.491052\pi\)
0.0281066 + 0.999605i \(0.491052\pi\)
\(488\) 6.26131 0.283436
\(489\) −39.2851 −1.77653
\(490\) 0 0
\(491\) −17.9023 −0.807920 −0.403960 0.914777i \(-0.632366\pi\)
−0.403960 + 0.914777i \(0.632366\pi\)
\(492\) 2.47966 0.111792
\(493\) 8.63246 0.388786
\(494\) 1.93400 0.0870146
\(495\) 0 0
\(496\) −12.1867 −0.547198
\(497\) 12.1712 0.545953
\(498\) −42.3288 −1.89680
\(499\) 35.0891 1.57080 0.785402 0.618985i \(-0.212456\pi\)
0.785402 + 0.618985i \(0.212456\pi\)
\(500\) 0 0
\(501\) 31.6016 1.41185
\(502\) −14.6720 −0.654842
\(503\) −6.95192 −0.309971 −0.154985 0.987917i \(-0.549533\pi\)
−0.154985 + 0.987917i \(0.549533\pi\)
\(504\) 0.126121 0.00561785
\(505\) 0 0
\(506\) 4.94495 0.219830
\(507\) −22.8799 −1.01613
\(508\) 23.4625 1.04098
\(509\) 13.1674 0.583633 0.291816 0.956474i \(-0.405740\pi\)
0.291816 + 0.956474i \(0.405740\pi\)
\(510\) 0 0
\(511\) −4.70231 −0.208018
\(512\) 22.1731 0.979922
\(513\) 26.7855 1.18261
\(514\) 29.4248 1.29787
\(515\) 0 0
\(516\) −5.78470 −0.254657
\(517\) −0.788170 −0.0346637
\(518\) 1.84776 0.0811859
\(519\) 20.3775 0.894471
\(520\) 0 0
\(521\) −22.2689 −0.975620 −0.487810 0.872950i \(-0.662204\pi\)
−0.487810 + 0.872950i \(0.662204\pi\)
\(522\) 0.892521 0.0390646
\(523\) 10.8143 0.472877 0.236439 0.971646i \(-0.424020\pi\)
0.236439 + 0.971646i \(0.424020\pi\)
\(524\) −9.24718 −0.403965
\(525\) 0 0
\(526\) 2.86120 0.124754
\(527\) 5.25584 0.228948
\(528\) 3.53073 0.153655
\(529\) 18.7430 0.814915
\(530\) 0 0
\(531\) −0.531293 −0.0230562
\(532\) 7.44155 0.322632
\(533\) −0.197562 −0.00855736
\(534\) −29.3356 −1.26948
\(535\) 0 0
\(536\) −10.3818 −0.448426
\(537\) 35.6065 1.53653
\(538\) −37.5100 −1.61717
\(539\) −0.414214 −0.0178414
\(540\) 0 0
\(541\) −16.6011 −0.713739 −0.356869 0.934154i \(-0.616156\pi\)
−0.356869 + 0.934154i \(0.616156\pi\)
\(542\) 26.0675 1.11970
\(543\) −8.92005 −0.382796
\(544\) −14.0707 −0.603276
\(545\) 0 0
\(546\) 0.648847 0.0277681
\(547\) −5.22528 −0.223417 −0.111708 0.993741i \(-0.535632\pi\)
−0.111708 + 0.993741i \(0.535632\pi\)
\(548\) 26.4020 1.12784
\(549\) −0.674034 −0.0287671
\(550\) 0 0
\(551\) −21.8133 −0.929276
\(552\) 12.3456 0.525463
\(553\) 2.65338 0.112833
\(554\) −23.6169 −1.00339
\(555\) 0 0
\(556\) 4.83015 0.204844
\(557\) −9.68125 −0.410208 −0.205104 0.978740i \(-0.565753\pi\)
−0.205104 + 0.978740i \(0.565753\pi\)
\(558\) 0.543408 0.0230043
\(559\) 0.460885 0.0194934
\(560\) 0 0
\(561\) −1.52273 −0.0642895
\(562\) 12.5883 0.531005
\(563\) 5.46195 0.230194 0.115097 0.993354i \(-0.463282\pi\)
0.115097 + 0.993354i \(0.463282\pi\)
\(564\) 4.75057 0.200035
\(565\) 0 0
\(566\) −12.7946 −0.537798
\(567\) 9.33598 0.392074
\(568\) 13.1740 0.552769
\(569\) 5.98005 0.250697 0.125348 0.992113i \(-0.459995\pi\)
0.125348 + 0.992113i \(0.459995\pi\)
\(570\) 0 0
\(571\) −18.8658 −0.789510 −0.394755 0.918786i \(-0.629170\pi\)
−0.394755 + 0.918786i \(0.629170\pi\)
\(572\) 0.116520 0.00487195
\(573\) 11.5030 0.480546
\(574\) −1.83522 −0.0766004
\(575\) 0 0
\(576\) −0.329569 −0.0137320
\(577\) 24.1571 1.00567 0.502836 0.864382i \(-0.332290\pi\)
0.502836 + 0.864382i \(0.332290\pi\)
\(578\) −23.3994 −0.973285
\(579\) 33.2839 1.38323
\(580\) 0 0
\(581\) 12.9764 0.538354
\(582\) −6.66659 −0.276339
\(583\) 4.61925 0.191310
\(584\) −5.08974 −0.210615
\(585\) 0 0
\(586\) −38.0887 −1.57343
\(587\) 13.1407 0.542375 0.271187 0.962527i \(-0.412584\pi\)
0.271187 + 0.962527i \(0.412584\pi\)
\(588\) 2.49661 0.102958
\(589\) −13.2809 −0.547231
\(590\) 0 0
\(591\) 13.5928 0.559131
\(592\) 4.82843 0.198447
\(593\) −40.8998 −1.67955 −0.839776 0.542932i \(-0.817314\pi\)
−0.839776 + 0.542932i \(0.817314\pi\)
\(594\) 3.89602 0.159856
\(595\) 0 0
\(596\) −18.7183 −0.766732
\(597\) 11.2053 0.458604
\(598\) 2.37465 0.0971066
\(599\) −6.72830 −0.274911 −0.137455 0.990508i \(-0.543892\pi\)
−0.137455 + 0.990508i \(0.543892\pi\)
\(600\) 0 0
\(601\) −43.7070 −1.78285 −0.891423 0.453171i \(-0.850293\pi\)
−0.891423 + 0.453171i \(0.850293\pi\)
\(602\) 4.28130 0.174493
\(603\) 1.11761 0.0455125
\(604\) 0.961710 0.0391314
\(605\) 0 0
\(606\) 30.6333 1.24439
\(607\) −22.8071 −0.925713 −0.462856 0.886433i \(-0.653175\pi\)
−0.462856 + 0.886433i \(0.653175\pi\)
\(608\) 35.5551 1.44195
\(609\) −7.31824 −0.296550
\(610\) 0 0
\(611\) −0.378493 −0.0153122
\(612\) 0.343146 0.0138708
\(613\) −5.12400 −0.206956 −0.103478 0.994632i \(-0.532997\pi\)
−0.103478 + 0.994632i \(0.532997\pi\)
\(614\) 42.0652 1.69761
\(615\) 0 0
\(616\) −0.448342 −0.0180642
\(617\) 41.6263 1.67581 0.837905 0.545816i \(-0.183780\pi\)
0.837905 + 0.545816i \(0.183780\pi\)
\(618\) 51.1080 2.05586
\(619\) −13.3462 −0.536429 −0.268215 0.963359i \(-0.586434\pi\)
−0.268215 + 0.963359i \(0.586434\pi\)
\(620\) 0 0
\(621\) 32.8885 1.31977
\(622\) 40.0076 1.60416
\(623\) 8.99321 0.360305
\(624\) 1.69552 0.0678750
\(625\) 0 0
\(626\) 0.337950 0.0135072
\(627\) 3.84776 0.153665
\(628\) 13.2294 0.527912
\(629\) −2.08239 −0.0830304
\(630\) 0 0
\(631\) −10.4477 −0.415916 −0.207958 0.978138i \(-0.566682\pi\)
−0.207958 + 0.978138i \(0.566682\pi\)
\(632\) 2.87200 0.114242
\(633\) 42.6977 1.69708
\(634\) 21.6292 0.859006
\(635\) 0 0
\(636\) −27.8418 −1.10400
\(637\) −0.198912 −0.00788119
\(638\) −3.17279 −0.125612
\(639\) −1.41819 −0.0561027
\(640\) 0 0
\(641\) −3.55635 −0.140467 −0.0702337 0.997531i \(-0.522374\pi\)
−0.0702337 + 0.997531i \(0.522374\pi\)
\(642\) −51.2989 −2.02460
\(643\) −4.69915 −0.185316 −0.0926582 0.995698i \(-0.529536\pi\)
−0.0926582 + 0.995698i \(0.529536\pi\)
\(644\) 9.13707 0.360051
\(645\) 0 0
\(646\) −20.2468 −0.796600
\(647\) −22.2176 −0.873462 −0.436731 0.899592i \(-0.643864\pi\)
−0.436731 + 0.899592i \(0.643864\pi\)
\(648\) 10.1052 0.396970
\(649\) 1.88868 0.0741370
\(650\) 0 0
\(651\) −4.45569 −0.174632
\(652\) −31.4708 −1.23249
\(653\) −4.07345 −0.159406 −0.0797032 0.996819i \(-0.525397\pi\)
−0.0797032 + 0.996819i \(0.525397\pi\)
\(654\) −35.6896 −1.39557
\(655\) 0 0
\(656\) −4.79565 −0.187239
\(657\) 0.547914 0.0213761
\(658\) −3.51594 −0.137066
\(659\) −34.8942 −1.35929 −0.679643 0.733543i \(-0.737865\pi\)
−0.679643 + 0.733543i \(0.737865\pi\)
\(660\) 0 0
\(661\) 12.5624 0.488623 0.244311 0.969697i \(-0.421438\pi\)
0.244311 + 0.969697i \(0.421438\pi\)
\(662\) −28.6410 −1.11316
\(663\) −0.731239 −0.0283990
\(664\) 14.0456 0.545075
\(665\) 0 0
\(666\) −0.215301 −0.00834275
\(667\) −26.7833 −1.03705
\(668\) 25.3156 0.979491
\(669\) 5.51355 0.213166
\(670\) 0 0
\(671\) 2.39610 0.0925004
\(672\) 11.9286 0.460154
\(673\) 44.0942 1.69971 0.849854 0.527019i \(-0.176690\pi\)
0.849854 + 0.527019i \(0.176690\pi\)
\(674\) −24.9181 −0.959811
\(675\) 0 0
\(676\) −18.3288 −0.704955
\(677\) 10.3304 0.397030 0.198515 0.980098i \(-0.436388\pi\)
0.198515 + 0.980098i \(0.436388\pi\)
\(678\) −13.1571 −0.505294
\(679\) 2.04373 0.0784311
\(680\) 0 0
\(681\) 17.4264 0.667780
\(682\) −1.93174 −0.0739703
\(683\) 5.89509 0.225569 0.112785 0.993619i \(-0.464023\pi\)
0.112785 + 0.993619i \(0.464023\pi\)
\(684\) −0.867091 −0.0331541
\(685\) 0 0
\(686\) −1.84776 −0.0705478
\(687\) −37.5096 −1.43108
\(688\) 11.1876 0.426523
\(689\) 2.21824 0.0845084
\(690\) 0 0
\(691\) 3.46311 0.131743 0.0658714 0.997828i \(-0.479017\pi\)
0.0658714 + 0.997828i \(0.479017\pi\)
\(692\) 16.3241 0.620550
\(693\) 0.0482642 0.00183341
\(694\) 9.07748 0.344577
\(695\) 0 0
\(696\) −7.92121 −0.300253
\(697\) 2.06826 0.0783408
\(698\) −29.4708 −1.11549
\(699\) −15.1762 −0.574015
\(700\) 0 0
\(701\) −3.16375 −0.119493 −0.0597466 0.998214i \(-0.519029\pi\)
−0.0597466 + 0.998214i \(0.519029\pi\)
\(702\) 1.87094 0.0706139
\(703\) 5.26197 0.198459
\(704\) 1.17157 0.0441553
\(705\) 0 0
\(706\) −32.4364 −1.22076
\(707\) −9.39104 −0.353186
\(708\) −11.3837 −0.427825
\(709\) −26.6608 −1.00127 −0.500633 0.865660i \(-0.666899\pi\)
−0.500633 + 0.865660i \(0.666899\pi\)
\(710\) 0 0
\(711\) −0.309173 −0.0115949
\(712\) 9.73418 0.364804
\(713\) −16.3069 −0.610699
\(714\) −6.79271 −0.254211
\(715\) 0 0
\(716\) 28.5239 1.06599
\(717\) −1.20172 −0.0448792
\(718\) −31.0900 −1.16027
\(719\) −10.8419 −0.404336 −0.202168 0.979351i \(-0.564799\pi\)
−0.202168 + 0.979351i \(0.564799\pi\)
\(720\) 0 0
\(721\) −15.6678 −0.583500
\(722\) 16.0540 0.597468
\(723\) −21.1183 −0.785398
\(724\) −7.14574 −0.265569
\(725\) 0 0
\(726\) −35.3220 −1.31092
\(727\) −23.9509 −0.888291 −0.444146 0.895955i \(-0.646493\pi\)
−0.444146 + 0.895955i \(0.646493\pi\)
\(728\) −0.215301 −0.00797959
\(729\) 25.8714 0.958201
\(730\) 0 0
\(731\) −4.82496 −0.178457
\(732\) −14.4421 −0.533796
\(733\) 29.5011 1.08965 0.544823 0.838551i \(-0.316597\pi\)
0.544823 + 0.838551i \(0.316597\pi\)
\(734\) 37.9249 1.39983
\(735\) 0 0
\(736\) 43.6561 1.60919
\(737\) −3.97295 −0.146345
\(738\) 0.213840 0.00787155
\(739\) 17.0411 0.626867 0.313434 0.949610i \(-0.398521\pi\)
0.313434 + 0.949610i \(0.398521\pi\)
\(740\) 0 0
\(741\) 1.84776 0.0678791
\(742\) 20.6060 0.756469
\(743\) 32.4643 1.19100 0.595499 0.803356i \(-0.296954\pi\)
0.595499 + 0.803356i \(0.296954\pi\)
\(744\) −4.82280 −0.176813
\(745\) 0 0
\(746\) −41.8756 −1.53317
\(747\) −1.51202 −0.0553218
\(748\) −1.21984 −0.0446017
\(749\) 15.7263 0.574628
\(750\) 0 0
\(751\) 47.8901 1.74753 0.873767 0.486344i \(-0.161670\pi\)
0.873767 + 0.486344i \(0.161670\pi\)
\(752\) −9.18759 −0.335037
\(753\) −14.0177 −0.510835
\(754\) −1.52363 −0.0554873
\(755\) 0 0
\(756\) 7.19891 0.261822
\(757\) −47.6767 −1.73284 −0.866419 0.499317i \(-0.833584\pi\)
−0.866419 + 0.499317i \(0.833584\pi\)
\(758\) 42.7772 1.55374
\(759\) 4.72445 0.171487
\(760\) 0 0
\(761\) 1.12550 0.0407995 0.0203997 0.999792i \(-0.493506\pi\)
0.0203997 + 0.999792i \(0.493506\pi\)
\(762\) 54.1177 1.96048
\(763\) 10.9411 0.396094
\(764\) 9.21493 0.333384
\(765\) 0 0
\(766\) 3.73100 0.134806
\(767\) 0.906974 0.0327489
\(768\) 37.0207 1.33587
\(769\) 21.2849 0.767551 0.383776 0.923426i \(-0.374624\pi\)
0.383776 + 0.923426i \(0.374624\pi\)
\(770\) 0 0
\(771\) 28.1127 1.01246
\(772\) 26.6633 0.959633
\(773\) −3.29021 −0.118341 −0.0591704 0.998248i \(-0.518846\pi\)
−0.0591704 + 0.998248i \(0.518846\pi\)
\(774\) −0.498858 −0.0179311
\(775\) 0 0
\(776\) 2.21212 0.0794103
\(777\) 1.76537 0.0633322
\(778\) −48.2022 −1.72813
\(779\) −5.22625 −0.187250
\(780\) 0 0
\(781\) 5.04148 0.180398
\(782\) −24.8599 −0.888989
\(783\) −21.1020 −0.754124
\(784\) −4.82843 −0.172444
\(785\) 0 0
\(786\) −21.3292 −0.760787
\(787\) −34.5376 −1.23113 −0.615567 0.788085i \(-0.711073\pi\)
−0.615567 + 0.788085i \(0.711073\pi\)
\(788\) 10.8890 0.387904
\(789\) 2.73362 0.0973195
\(790\) 0 0
\(791\) 4.03347 0.143414
\(792\) 0.0522408 0.00185630
\(793\) 1.15065 0.0408607
\(794\) −9.26295 −0.328730
\(795\) 0 0
\(796\) 8.97645 0.318162
\(797\) −30.6642 −1.08618 −0.543091 0.839674i \(-0.682746\pi\)
−0.543091 + 0.839674i \(0.682746\pi\)
\(798\) 17.1644 0.607614
\(799\) 3.96240 0.140180
\(800\) 0 0
\(801\) −1.04789 −0.0370254
\(802\) 58.9718 2.08237
\(803\) −1.94776 −0.0687349
\(804\) 23.9463 0.844521
\(805\) 0 0
\(806\) −0.927656 −0.0326753
\(807\) −35.8374 −1.26154
\(808\) −10.1648 −0.357596
\(809\) −18.5638 −0.652668 −0.326334 0.945254i \(-0.605813\pi\)
−0.326334 + 0.945254i \(0.605813\pi\)
\(810\) 0 0
\(811\) 30.0999 1.05695 0.528476 0.848948i \(-0.322764\pi\)
0.528476 + 0.848948i \(0.322764\pi\)
\(812\) −5.86256 −0.205735
\(813\) 24.9051 0.873462
\(814\) 0.765367 0.0268261
\(815\) 0 0
\(816\) −17.7502 −0.621381
\(817\) 12.1921 0.426548
\(818\) −49.7996 −1.74120
\(819\) 0.0231773 0.000809880 0
\(820\) 0 0
\(821\) 14.8822 0.519392 0.259696 0.965690i \(-0.416378\pi\)
0.259696 + 0.965690i \(0.416378\pi\)
\(822\) 60.8978 2.12406
\(823\) −6.60960 −0.230396 −0.115198 0.993343i \(-0.536750\pi\)
−0.115198 + 0.993343i \(0.536750\pi\)
\(824\) −16.9587 −0.590785
\(825\) 0 0
\(826\) 8.42516 0.293149
\(827\) 5.44052 0.189185 0.0945927 0.995516i \(-0.469845\pi\)
0.0945927 + 0.995516i \(0.469845\pi\)
\(828\) −1.06465 −0.0369993
\(829\) 5.98364 0.207820 0.103910 0.994587i \(-0.466865\pi\)
0.103910 + 0.994587i \(0.466865\pi\)
\(830\) 0 0
\(831\) −22.5638 −0.782731
\(832\) 0.562609 0.0195050
\(833\) 2.08239 0.0721506
\(834\) 11.1410 0.385783
\(835\) 0 0
\(836\) 3.08239 0.106607
\(837\) −12.8479 −0.444088
\(838\) 37.3183 1.28914
\(839\) −47.5405 −1.64128 −0.820641 0.571445i \(-0.806383\pi\)
−0.820641 + 0.571445i \(0.806383\pi\)
\(840\) 0 0
\(841\) −11.8152 −0.407422
\(842\) −17.1233 −0.590106
\(843\) 12.0270 0.414231
\(844\) 34.2046 1.17737
\(845\) 0 0
\(846\) 0.409678 0.0140850
\(847\) 10.8284 0.372069
\(848\) 53.8460 1.84908
\(849\) −12.2241 −0.419530
\(850\) 0 0
\(851\) 6.46088 0.221476
\(852\) −30.3867 −1.04103
\(853\) −25.8590 −0.885396 −0.442698 0.896671i \(-0.645979\pi\)
−0.442698 + 0.896671i \(0.645979\pi\)
\(854\) 10.6887 0.365761
\(855\) 0 0
\(856\) 17.0221 0.581802
\(857\) −5.82423 −0.198952 −0.0994760 0.995040i \(-0.531717\pi\)
−0.0994760 + 0.995040i \(0.531717\pi\)
\(858\) 0.268761 0.00917535
\(859\) −2.64641 −0.0902943 −0.0451471 0.998980i \(-0.514376\pi\)
−0.0451471 + 0.998980i \(0.514376\pi\)
\(860\) 0 0
\(861\) −1.75338 −0.0597551
\(862\) 28.5966 0.974004
\(863\) −11.5147 −0.391966 −0.195983 0.980607i \(-0.562790\pi\)
−0.195983 + 0.980607i \(0.562790\pi\)
\(864\) 34.3958 1.17017
\(865\) 0 0
\(866\) 0.570934 0.0194011
\(867\) −22.3560 −0.759249
\(868\) −3.56940 −0.121153
\(869\) 1.09907 0.0372833
\(870\) 0 0
\(871\) −1.90788 −0.0646459
\(872\) 11.8426 0.401040
\(873\) −0.238136 −0.00805967
\(874\) 62.8183 2.12486
\(875\) 0 0
\(876\) 11.7398 0.396651
\(877\) −30.1953 −1.01962 −0.509811 0.860287i \(-0.670285\pi\)
−0.509811 + 0.860287i \(0.670285\pi\)
\(878\) −36.9269 −1.24622
\(879\) −36.3903 −1.22741
\(880\) 0 0
\(881\) −13.9519 −0.470051 −0.235026 0.971989i \(-0.575517\pi\)
−0.235026 + 0.971989i \(0.575517\pi\)
\(882\) 0.215301 0.00724957
\(883\) 24.5461 0.826043 0.413022 0.910721i \(-0.364473\pi\)
0.413022 + 0.910721i \(0.364473\pi\)
\(884\) −0.585786 −0.0197021
\(885\) 0 0
\(886\) 26.3838 0.886381
\(887\) −43.2240 −1.45132 −0.725660 0.688054i \(-0.758465\pi\)
−0.725660 + 0.688054i \(0.758465\pi\)
\(888\) 1.91082 0.0641229
\(889\) −16.5905 −0.556427
\(890\) 0 0
\(891\) 3.86709 0.129552
\(892\) 4.41684 0.147887
\(893\) −10.0125 −0.335057
\(894\) −43.1750 −1.44399
\(895\) 0 0
\(896\) −8.28772 −0.276873
\(897\) 2.26876 0.0757517
\(898\) 69.6110 2.32295
\(899\) 10.4629 0.348957
\(900\) 0 0
\(901\) −23.2226 −0.773656
\(902\) −0.760171 −0.0253109
\(903\) 4.09040 0.136120
\(904\) 4.36579 0.145204
\(905\) 0 0
\(906\) 2.21824 0.0736962
\(907\) −32.0014 −1.06259 −0.531295 0.847187i \(-0.678294\pi\)
−0.531295 + 0.847187i \(0.678294\pi\)
\(908\) 13.9601 0.463281
\(909\) 1.09425 0.0362938
\(910\) 0 0
\(911\) −2.75773 −0.0913678 −0.0456839 0.998956i \(-0.514547\pi\)
−0.0456839 + 0.998956i \(0.514547\pi\)
\(912\) 44.8528 1.48522
\(913\) 5.37502 0.177887
\(914\) 8.91408 0.294852
\(915\) 0 0
\(916\) −30.0484 −0.992829
\(917\) 6.53874 0.215928
\(918\) −19.5866 −0.646455
\(919\) 21.2411 0.700679 0.350339 0.936623i \(-0.386066\pi\)
0.350339 + 0.936623i \(0.386066\pi\)
\(920\) 0 0
\(921\) 40.1895 1.32429
\(922\) −76.7842 −2.52875
\(923\) 2.42100 0.0796883
\(924\) 1.03413 0.0340203
\(925\) 0 0
\(926\) 29.7334 0.977101
\(927\) 1.82562 0.0599611
\(928\) −28.0108 −0.919498
\(929\) 3.64328 0.119532 0.0597660 0.998212i \(-0.480965\pi\)
0.0597660 + 0.998212i \(0.480965\pi\)
\(930\) 0 0
\(931\) −5.26197 −0.172454
\(932\) −12.1574 −0.398230
\(933\) 38.2236 1.25139
\(934\) −4.15959 −0.136106
\(935\) 0 0
\(936\) 0.0250869 0.000819992 0
\(937\) 52.0124 1.69917 0.849585 0.527452i \(-0.176853\pi\)
0.849585 + 0.527452i \(0.176853\pi\)
\(938\) −17.7229 −0.578672
\(939\) 0.322881 0.0105368
\(940\) 0 0
\(941\) −52.6276 −1.71561 −0.857806 0.513973i \(-0.828173\pi\)
−0.857806 + 0.513973i \(0.828173\pi\)
\(942\) 30.5145 0.994217
\(943\) −6.41703 −0.208967
\(944\) 22.0160 0.716560
\(945\) 0 0
\(946\) 1.77337 0.0576574
\(947\) −37.8509 −1.22999 −0.614994 0.788532i \(-0.710842\pi\)
−0.614994 + 0.788532i \(0.710842\pi\)
\(948\) −6.62445 −0.215152
\(949\) −0.935347 −0.0303626
\(950\) 0 0
\(951\) 20.6648 0.670101
\(952\) 2.25397 0.0730514
\(953\) 61.0724 1.97833 0.989164 0.146812i \(-0.0469012\pi\)
0.989164 + 0.146812i \(0.0469012\pi\)
\(954\) −2.40101 −0.0777356
\(955\) 0 0
\(956\) −0.962686 −0.0311355
\(957\) −3.03132 −0.0979885
\(958\) 22.5892 0.729824
\(959\) −18.6690 −0.602854
\(960\) 0 0
\(961\) −24.6297 −0.794506
\(962\) 0.367542 0.0118500
\(963\) −1.83243 −0.0590494
\(964\) −16.9176 −0.544879
\(965\) 0 0
\(966\) 21.0752 0.678084
\(967\) −42.6201 −1.37057 −0.685286 0.728275i \(-0.740323\pi\)
−0.685286 + 0.728275i \(0.740323\pi\)
\(968\) 11.7206 0.376715
\(969\) −19.3440 −0.621419
\(970\) 0 0
\(971\) −31.3911 −1.00739 −0.503694 0.863882i \(-0.668026\pi\)
−0.503694 + 0.863882i \(0.668026\pi\)
\(972\) −1.71153 −0.0548975
\(973\) −3.41543 −0.109494
\(974\) 2.29218 0.0734462
\(975\) 0 0
\(976\) 27.9310 0.894049
\(977\) −34.8934 −1.11634 −0.558170 0.829727i \(-0.688496\pi\)
−0.558170 + 0.829727i \(0.688496\pi\)
\(978\) −72.5894 −2.32115
\(979\) 3.72511 0.119055
\(980\) 0 0
\(981\) −1.27486 −0.0407031
\(982\) −33.0791 −1.05560
\(983\) −20.6622 −0.659023 −0.329511 0.944152i \(-0.606884\pi\)
−0.329511 + 0.944152i \(0.606884\pi\)
\(984\) −1.89785 −0.0605012
\(985\) 0 0
\(986\) 15.9507 0.507974
\(987\) −3.35916 −0.106923
\(988\) 1.48022 0.0470920
\(989\) 14.9700 0.476019
\(990\) 0 0
\(991\) −1.62877 −0.0517395 −0.0258697 0.999665i \(-0.508236\pi\)
−0.0258697 + 0.999665i \(0.508236\pi\)
\(992\) −17.0543 −0.541473
\(993\) −27.3639 −0.868367
\(994\) 22.4894 0.713322
\(995\) 0 0
\(996\) −32.3971 −1.02654
\(997\) 41.2487 1.30636 0.653180 0.757203i \(-0.273435\pi\)
0.653180 + 0.757203i \(0.273435\pi\)
\(998\) 64.8362 2.05236
\(999\) 5.09040 0.161053
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6475.2.a.o.1.4 4
5.4 even 2 1295.2.a.d.1.1 4
35.34 odd 2 9065.2.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.d.1.1 4 5.4 even 2
6475.2.a.o.1.4 4 1.1 even 1 trivial
9065.2.a.g.1.1 4 35.34 odd 2