Properties

Label 645.2.u.a
Level $645$
Weight $2$
Character orbit 645.u
Analytic conductor $5.150$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [645,2,Mod(16,645)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("645.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(645, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 645 = 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 645.u (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.15035093037\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{14}^{5} + \zeta_{14}^{4} + \cdots - \zeta_{14}) q^{2} - \zeta_{14}^{4} q^{3} + ( - \zeta_{14}^{5} + 1) q^{4} + \zeta_{14}^{2} q^{5} + (\zeta_{14}^{4} - \zeta_{14}^{3}) q^{6} + (\zeta_{14}^{4} - \zeta_{14}^{3} + 2) q^{7} + \cdots + (2 \zeta_{14}^{4} + \zeta_{14}^{3} + \cdots + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 5 q^{2} + q^{3} + 5 q^{4} - q^{5} - 2 q^{6} + 10 q^{7} - 7 q^{8} - q^{9} + 2 q^{10} - 8 q^{11} + 2 q^{12} - 5 q^{13} - 6 q^{14} + q^{15} + 11 q^{16} - 4 q^{17} - 5 q^{18} - 7 q^{19} + 5 q^{20}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/645\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(431\) \(517\)
\(\chi(n)\) \(-\zeta_{14}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1
0.900969 + 0.433884i
0.900969 0.433884i
0.222521 + 0.974928i
−0.623490 0.781831i
0.222521 0.974928i
−0.623490 + 0.781831i
−0.0990311 0.433884i 0.222521 0.974928i 1.62349 0.781831i 0.623490 + 0.781831i −0.445042 1.55496 −1.05496 1.32288i −0.900969 0.433884i 0.277479 0.347948i
121.1 −0.0990311 + 0.433884i 0.222521 + 0.974928i 1.62349 + 0.781831i 0.623490 0.781831i −0.445042 1.55496 −1.05496 + 1.32288i −0.900969 + 0.433884i 0.277479 + 0.347948i
226.1 −0.777479 0.974928i −0.623490 + 0.781831i 0.0990311 0.433884i −0.900969 + 0.433884i 1.24698 3.24698 −2.74698 + 1.32288i −0.222521 0.974928i 1.12349 + 0.541044i
256.1 −1.62349 + 0.781831i 0.900969 + 0.433884i 0.777479 0.974928i −0.222521 + 0.974928i −1.80194 0.198062 0.301938 1.32288i 0.623490 + 0.781831i −0.400969 1.75676i
391.1 −0.777479 + 0.974928i −0.623490 0.781831i 0.0990311 + 0.433884i −0.900969 0.433884i 1.24698 3.24698 −2.74698 1.32288i −0.222521 + 0.974928i 1.12349 0.541044i
451.1 −1.62349 0.781831i 0.900969 0.433884i 0.777479 + 0.974928i −0.222521 0.974928i −1.80194 0.198062 0.301938 + 1.32288i 0.623490 0.781831i −0.400969 + 1.75676i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
43.e even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 645.2.u.a 6
43.e even 7 1 inner 645.2.u.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
645.2.u.a 6 1.a even 1 1 trivial
645.2.u.a 6 43.e even 7 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 5T_{2}^{5} + 11T_{2}^{4} + 13T_{2}^{3} + 9T_{2}^{2} + 3T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(645, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} + T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{3} - 5 T^{2} + 6 T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 8 T^{5} + \cdots + 1849 \) Copy content Toggle raw display
$13$ \( T^{6} + 5 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( T^{6} + 4 T^{5} + \cdots + 841 \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{5} + \cdots + 8281 \) Copy content Toggle raw display
$23$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{6} + 13 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$31$ \( T^{6} - 15 T^{5} + \cdots + 9409 \) Copy content Toggle raw display
$37$ \( (T - 1)^{6} \) Copy content Toggle raw display
$41$ \( T^{6} - 8 T^{5} + \cdots + 57121 \) Copy content Toggle raw display
$43$ \( T^{6} - 15 T^{5} + \cdots + 79507 \) Copy content Toggle raw display
$47$ \( T^{6} + 7 T^{5} + \cdots + 49 \) Copy content Toggle raw display
$53$ \( T^{6} - 4 T^{5} + \cdots + 121801 \) Copy content Toggle raw display
$59$ \( T^{6} - 14 T^{5} + \cdots + 82369 \) Copy content Toggle raw display
$61$ \( T^{6} + 8 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{6} + 5 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$71$ \( T^{6} + 32 T^{5} + \cdots + 4096 \) Copy content Toggle raw display
$73$ \( T^{6} - 3 T^{5} + \cdots + 413449 \) Copy content Toggle raw display
$79$ \( (T^{3} + 4 T^{2} - 32 T - 64)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 8 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$89$ \( T^{6} + 19 T^{5} + \cdots + 528529 \) Copy content Toggle raw display
$97$ \( T^{6} - 8 T^{5} + \cdots + 142129 \) Copy content Toggle raw display
show more
show less