Properties

Label 645.2.i.g.436.7
Level $645$
Weight $2$
Character 645.436
Analytic conductor $5.150$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [645,2,Mod(436,645)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("645.436"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(645, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 645 = 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 645.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,2,7,26,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.15035093037\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} + 14 x^{12} - 7 x^{11} + 131 x^{10} - 59 x^{9} + 627 x^{8} - 130 x^{7} + 2078 x^{6} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 436.7
Root \(1.38158 + 2.39297i\) of defining polynomial
Character \(\chi\) \(=\) 645.436
Dual form 645.2.i.g.466.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.76317 q^{2} +(0.500000 - 0.866025i) q^{3} +5.63508 q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.38158 - 2.39297i) q^{6} +(-2.31958 - 4.01763i) q^{7} +10.0443 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.38158 + 2.39297i) q^{10} -3.31850 q^{11} +(2.81754 - 4.88013i) q^{12} +(2.76988 + 4.79757i) q^{13} +(-6.40939 - 11.1014i) q^{14} +(0.500000 + 0.866025i) q^{15} +16.4840 q^{16} +(-0.104426 - 0.180871i) q^{17} +(-1.38158 - 2.39297i) q^{18} +(-2.78387 + 4.82181i) q^{19} +(-2.81754 + 4.88013i) q^{20} -4.63916 q^{21} -9.16957 q^{22} +(1.32568 - 2.29614i) q^{23} +(5.02217 - 8.69865i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(7.65364 + 13.2565i) q^{26} -1.00000 q^{27} +(-13.0710 - 22.6397i) q^{28} +(2.23071 + 3.86370i) q^{29} +(1.38158 + 2.39297i) q^{30} +(-1.37691 + 2.38487i) q^{31} +25.4593 q^{32} +(-1.65925 + 2.87391i) q^{33} +(-0.288546 - 0.499776i) q^{34} +4.63916 q^{35} +(-2.81754 - 4.88013i) q^{36} +(-3.48096 + 6.02919i) q^{37} +(-7.69230 + 13.3234i) q^{38} +5.53976 q^{39} +(-5.02217 + 8.69865i) q^{40} -5.32258 q^{41} -12.8188 q^{42} +(-4.26733 - 4.97895i) q^{43} -18.7000 q^{44} +1.00000 q^{45} +(3.66307 - 6.34462i) q^{46} +3.76509 q^{47} +(8.24200 - 14.2756i) q^{48} +(-7.26092 + 12.5763i) q^{49} +(-1.38158 - 2.39297i) q^{50} -0.208852 q^{51} +(15.6085 + 27.0347i) q^{52} +(4.30151 - 7.45043i) q^{53} -2.76317 q^{54} +(1.65925 - 2.87391i) q^{55} +(-23.2987 - 40.3545i) q^{56} +(2.78387 + 4.82181i) q^{57} +(6.16381 + 10.6760i) q^{58} +9.40323 q^{59} +(2.81754 + 4.88013i) q^{60} +(-0.465502 - 0.806273i) q^{61} +(-3.80462 + 6.58980i) q^{62} +(-2.31958 + 4.01763i) q^{63} +37.3804 q^{64} -5.53976 q^{65} +(-4.58479 + 7.94108i) q^{66} +(-1.05174 + 1.82167i) q^{67} +(-0.588448 - 1.01922i) q^{68} +(-1.32568 - 2.29614i) q^{69} +12.8188 q^{70} +(-7.09501 - 12.2889i) q^{71} +(-5.02217 - 8.69865i) q^{72} +(-0.919020 - 1.59179i) q^{73} +(-9.61846 + 16.6597i) q^{74} -1.00000 q^{75} +(-15.6873 + 27.1713i) q^{76} +(7.69754 + 13.3325i) q^{77} +15.3073 q^{78} +(-7.44443 - 12.8941i) q^{79} +(-8.24200 + 14.2756i) q^{80} +(-0.500000 + 0.866025i) q^{81} -14.7072 q^{82} +(0.283171 - 0.490467i) q^{83} -26.1421 q^{84} +0.208852 q^{85} +(-11.7913 - 13.7577i) q^{86} +4.46141 q^{87} -33.3322 q^{88} +(5.78172 - 10.0142i) q^{89} +2.76317 q^{90} +(12.8499 - 22.2567i) q^{91} +(7.47031 - 12.9390i) q^{92} +(1.37691 + 2.38487i) q^{93} +10.4036 q^{94} +(-2.78387 - 4.82181i) q^{95} +(12.7297 - 22.0484i) q^{96} +7.14019 q^{97} +(-20.0631 + 34.7503i) q^{98} +(1.65925 + 2.87391i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{2} + 7 q^{3} + 26 q^{4} - 7 q^{5} + q^{6} + q^{7} + 12 q^{8} - 7 q^{9} - q^{10} - 6 q^{11} + 13 q^{12} - 2 q^{13} + 4 q^{14} + 7 q^{15} + 50 q^{16} + 3 q^{17} - q^{18} - 21 q^{19} - 13 q^{20}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/645\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(431\) \(517\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.76317 1.95385 0.976927 0.213576i \(-0.0685110\pi\)
0.976927 + 0.213576i \(0.0685110\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 5.63508 2.81754
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 1.38158 2.39297i 0.564029 0.976927i
\(7\) −2.31958 4.01763i −0.876719 1.51852i −0.854920 0.518760i \(-0.826394\pi\)
−0.0217995 0.999762i \(-0.506940\pi\)
\(8\) 10.0443 3.55121
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.38158 + 2.39297i −0.436895 + 0.756724i
\(11\) −3.31850 −1.00057 −0.500283 0.865862i \(-0.666771\pi\)
−0.500283 + 0.865862i \(0.666771\pi\)
\(12\) 2.81754 4.88013i 0.813354 1.40877i
\(13\) 2.76988 + 4.79757i 0.768226 + 1.33061i 0.938524 + 0.345214i \(0.112194\pi\)
−0.170297 + 0.985393i \(0.554473\pi\)
\(14\) −6.40939 11.1014i −1.71298 2.96697i
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) 16.4840 4.12100
\(17\) −0.104426 0.180871i −0.0253270 0.0438676i 0.853084 0.521773i \(-0.174729\pi\)
−0.878411 + 0.477906i \(0.841396\pi\)
\(18\) −1.38158 2.39297i −0.325642 0.564029i
\(19\) −2.78387 + 4.82181i −0.638664 + 1.10620i 0.347062 + 0.937842i \(0.387179\pi\)
−0.985726 + 0.168356i \(0.946154\pi\)
\(20\) −2.81754 + 4.88013i −0.630021 + 1.09123i
\(21\) −4.63916 −1.01235
\(22\) −9.16957 −1.95496
\(23\) 1.32568 2.29614i 0.276423 0.478779i −0.694070 0.719907i \(-0.744184\pi\)
0.970493 + 0.241129i \(0.0775175\pi\)
\(24\) 5.02217 8.69865i 1.02515 1.77560i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 7.65364 + 13.2565i 1.50100 + 2.59981i
\(27\) −1.00000 −0.192450
\(28\) −13.0710 22.6397i −2.47019 4.27850i
\(29\) 2.23071 + 3.86370i 0.414232 + 0.717471i 0.995347 0.0963503i \(-0.0307169\pi\)
−0.581116 + 0.813821i \(0.697384\pi\)
\(30\) 1.38158 + 2.39297i 0.252241 + 0.436895i
\(31\) −1.37691 + 2.38487i −0.247300 + 0.428336i −0.962776 0.270301i \(-0.912877\pi\)
0.715476 + 0.698638i \(0.246210\pi\)
\(32\) 25.4593 4.50062
\(33\) −1.65925 + 2.87391i −0.288839 + 0.500283i
\(34\) −0.288546 0.499776i −0.0494852 0.0857109i
\(35\) 4.63916 0.784162
\(36\) −2.81754 4.88013i −0.469590 0.813354i
\(37\) −3.48096 + 6.02919i −0.572266 + 0.991193i 0.424067 + 0.905631i \(0.360602\pi\)
−0.996333 + 0.0855624i \(0.972731\pi\)
\(38\) −7.69230 + 13.3234i −1.24786 + 2.16135i
\(39\) 5.53976 0.887071
\(40\) −5.02217 + 8.69865i −0.794075 + 1.37538i
\(41\) −5.32258 −0.831248 −0.415624 0.909537i \(-0.636437\pi\)
−0.415624 + 0.909537i \(0.636437\pi\)
\(42\) −12.8188 −1.97798
\(43\) −4.26733 4.97895i −0.650761 0.759282i
\(44\) −18.7000 −2.81914
\(45\) 1.00000 0.149071
\(46\) 3.66307 6.34462i 0.540090 0.935464i
\(47\) 3.76509 0.549195 0.274597 0.961559i \(-0.411455\pi\)
0.274597 + 0.961559i \(0.411455\pi\)
\(48\) 8.24200 14.2756i 1.18963 2.06050i
\(49\) −7.26092 + 12.5763i −1.03727 + 1.79661i
\(50\) −1.38158 2.39297i −0.195385 0.338417i
\(51\) −0.208852 −0.0292451
\(52\) 15.6085 + 27.0347i 2.16451 + 3.74904i
\(53\) 4.30151 7.45043i 0.590858 1.02340i −0.403259 0.915086i \(-0.632123\pi\)
0.994117 0.108310i \(-0.0345440\pi\)
\(54\) −2.76317 −0.376019
\(55\) 1.65925 2.87391i 0.223733 0.387518i
\(56\) −23.2987 40.3545i −3.11341 5.39259i
\(57\) 2.78387 + 4.82181i 0.368733 + 0.638664i
\(58\) 6.16381 + 10.6760i 0.809348 + 1.40183i
\(59\) 9.40323 1.22420 0.612098 0.790782i \(-0.290326\pi\)
0.612098 + 0.790782i \(0.290326\pi\)
\(60\) 2.81754 + 4.88013i 0.363743 + 0.630021i
\(61\) −0.465502 0.806273i −0.0596014 0.103233i 0.834685 0.550727i \(-0.185650\pi\)
−0.894287 + 0.447495i \(0.852316\pi\)
\(62\) −3.80462 + 6.58980i −0.483188 + 0.836906i
\(63\) −2.31958 + 4.01763i −0.292240 + 0.506174i
\(64\) 37.3804 4.67255
\(65\) −5.53976 −0.687123
\(66\) −4.58479 + 7.94108i −0.564348 + 0.977480i
\(67\) −1.05174 + 1.82167i −0.128491 + 0.222552i −0.923092 0.384579i \(-0.874347\pi\)
0.794601 + 0.607132i \(0.207680\pi\)
\(68\) −0.588448 1.01922i −0.0713598 0.123599i
\(69\) −1.32568 2.29614i −0.159593 0.276423i
\(70\) 12.8188 1.53214
\(71\) −7.09501 12.2889i −0.842023 1.45843i −0.888182 0.459492i \(-0.848031\pi\)
0.0461588 0.998934i \(-0.485302\pi\)
\(72\) −5.02217 8.69865i −0.591868 1.02515i
\(73\) −0.919020 1.59179i −0.107563 0.186305i 0.807219 0.590252i \(-0.200971\pi\)
−0.914783 + 0.403947i \(0.867638\pi\)
\(74\) −9.61846 + 16.6597i −1.11812 + 1.93665i
\(75\) −1.00000 −0.115470
\(76\) −15.6873 + 27.1713i −1.79946 + 3.11676i
\(77\) 7.69754 + 13.3325i 0.877216 + 1.51938i
\(78\) 15.3073 1.73321
\(79\) −7.44443 12.8941i −0.837564 1.45070i −0.891926 0.452182i \(-0.850646\pi\)
0.0543615 0.998521i \(-0.482688\pi\)
\(80\) −8.24200 + 14.2756i −0.921483 + 1.59606i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −14.7072 −1.62414
\(83\) 0.283171 0.490467i 0.0310821 0.0538357i −0.850066 0.526676i \(-0.823438\pi\)
0.881148 + 0.472841i \(0.156771\pi\)
\(84\) −26.1421 −2.85233
\(85\) 0.208852 0.0226531
\(86\) −11.7913 13.7577i −1.27149 1.48353i
\(87\) 4.46141 0.478314
\(88\) −33.3322 −3.55322
\(89\) 5.78172 10.0142i 0.612861 1.06151i −0.377895 0.925849i \(-0.623352\pi\)
0.990756 0.135658i \(-0.0433147\pi\)
\(90\) 2.76317 0.291263
\(91\) 12.8499 22.2567i 1.34704 2.33314i
\(92\) 7.47031 12.9390i 0.778834 1.34898i
\(93\) 1.37691 + 2.38487i 0.142779 + 0.247300i
\(94\) 10.4036 1.07305
\(95\) −2.78387 4.82181i −0.285619 0.494707i
\(96\) 12.7297 22.0484i 1.29922 2.25031i
\(97\) 7.14019 0.724976 0.362488 0.931988i \(-0.381927\pi\)
0.362488 + 0.931988i \(0.381927\pi\)
\(98\) −20.0631 + 34.7503i −2.02668 + 3.51031i
\(99\) 1.65925 + 2.87391i 0.166761 + 0.288839i
\(100\) −2.81754 4.88013i −0.281754 0.488013i
\(101\) −3.73591 6.47079i −0.371737 0.643868i 0.618096 0.786103i \(-0.287904\pi\)
−0.989833 + 0.142235i \(0.954571\pi\)
\(102\) −0.577092 −0.0571406
\(103\) −1.63274 2.82800i −0.160879 0.278651i 0.774305 0.632812i \(-0.218100\pi\)
−0.935184 + 0.354162i \(0.884766\pi\)
\(104\) 27.8216 + 48.1884i 2.72813 + 4.72526i
\(105\) 2.31958 4.01763i 0.226368 0.392081i
\(106\) 11.8858 20.5868i 1.15445 1.99957i
\(107\) −9.21460 −0.890809 −0.445404 0.895329i \(-0.646940\pi\)
−0.445404 + 0.895329i \(0.646940\pi\)
\(108\) −5.63508 −0.542236
\(109\) −2.61769 + 4.53397i −0.250729 + 0.434275i −0.963727 0.266891i \(-0.914004\pi\)
0.712998 + 0.701166i \(0.247337\pi\)
\(110\) 4.58479 7.94108i 0.437142 0.757153i
\(111\) 3.48096 + 6.02919i 0.330398 + 0.572266i
\(112\) −38.2360 66.2266i −3.61296 6.25783i
\(113\) −7.23323 −0.680445 −0.340223 0.940345i \(-0.610502\pi\)
−0.340223 + 0.940345i \(0.610502\pi\)
\(114\) 7.69230 + 13.3234i 0.720450 + 1.24786i
\(115\) 1.32568 + 2.29614i 0.123620 + 0.214116i
\(116\) 12.5702 + 21.7723i 1.16712 + 2.02150i
\(117\) 2.76988 4.79757i 0.256075 0.443536i
\(118\) 25.9827 2.39190
\(119\) −0.484448 + 0.839089i −0.0444093 + 0.0769192i
\(120\) 5.02217 + 8.69865i 0.458459 + 0.794075i
\(121\) 0.0124625 0.00113295
\(122\) −1.28626 2.22787i −0.116452 0.201702i
\(123\) −2.66129 + 4.60949i −0.239961 + 0.415624i
\(124\) −7.75899 + 13.4390i −0.696778 + 1.20685i
\(125\) 1.00000 0.0894427
\(126\) −6.40939 + 11.1014i −0.570994 + 0.988990i
\(127\) 2.73664 0.242838 0.121419 0.992601i \(-0.461256\pi\)
0.121419 + 0.992601i \(0.461256\pi\)
\(128\) 52.3695 4.62885
\(129\) −6.44556 + 1.20614i −0.567500 + 0.106195i
\(130\) −15.3073 −1.34254
\(131\) 10.4394 0.912094 0.456047 0.889956i \(-0.349265\pi\)
0.456047 + 0.889956i \(0.349265\pi\)
\(132\) −9.35002 + 16.1947i −0.813815 + 1.40957i
\(133\) 25.8297 2.23972
\(134\) −2.90614 + 5.03357i −0.251052 + 0.434835i
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) −1.04889 1.81673i −0.0899414 0.155783i
\(137\) 17.4328 1.48938 0.744691 0.667409i \(-0.232597\pi\)
0.744691 + 0.667409i \(0.232597\pi\)
\(138\) −3.66307 6.34462i −0.311821 0.540090i
\(139\) −7.37645 + 12.7764i −0.625662 + 1.08368i 0.362750 + 0.931886i \(0.381838\pi\)
−0.988412 + 0.151792i \(0.951496\pi\)
\(140\) 26.1421 2.20941
\(141\) 1.88254 3.26066i 0.158539 0.274597i
\(142\) −19.6047 33.9563i −1.64519 2.84955i
\(143\) −9.19185 15.9208i −0.768661 1.33136i
\(144\) −8.24200 14.2756i −0.686833 1.18963i
\(145\) −4.46141 −0.370500
\(146\) −2.53940 4.39838i −0.210163 0.364012i
\(147\) 7.26092 + 12.5763i 0.598870 + 1.03727i
\(148\) −19.6155 + 33.9750i −1.61238 + 2.79273i
\(149\) −3.26852 + 5.66124i −0.267768 + 0.463787i −0.968285 0.249848i \(-0.919619\pi\)
0.700517 + 0.713635i \(0.252953\pi\)
\(150\) −2.76317 −0.225612
\(151\) −6.55686 −0.533590 −0.266795 0.963753i \(-0.585965\pi\)
−0.266795 + 0.963753i \(0.585965\pi\)
\(152\) −27.9621 + 48.4318i −2.26803 + 3.92834i
\(153\) −0.104426 + 0.180871i −0.00844233 + 0.0146225i
\(154\) 21.2696 + 36.8400i 1.71395 + 2.96865i
\(155\) −1.37691 2.38487i −0.110596 0.191558i
\(156\) 31.2170 2.49936
\(157\) 10.8797 + 18.8442i 0.868297 + 1.50393i 0.863736 + 0.503945i \(0.168119\pi\)
0.00456126 + 0.999990i \(0.498548\pi\)
\(158\) −20.5702 35.6286i −1.63648 2.83446i
\(159\) −4.30151 7.45043i −0.341132 0.590858i
\(160\) −12.7297 + 22.0484i −1.00637 + 1.74308i
\(161\) −12.3001 −0.969382
\(162\) −1.38158 + 2.39297i −0.108547 + 0.188010i
\(163\) 5.31322 + 9.20276i 0.416163 + 0.720816i 0.995550 0.0942371i \(-0.0300412\pi\)
−0.579387 + 0.815053i \(0.696708\pi\)
\(164\) −29.9932 −2.34208
\(165\) −1.65925 2.87391i −0.129173 0.223733i
\(166\) 0.782448 1.35524i 0.0607298 0.105187i
\(167\) −6.19420 + 10.7287i −0.479321 + 0.830209i −0.999719 0.0237153i \(-0.992450\pi\)
0.520397 + 0.853924i \(0.325784\pi\)
\(168\) −46.5973 −3.59506
\(169\) −8.84447 + 15.3191i −0.680344 + 1.17839i
\(170\) 0.577092 0.0442609
\(171\) 5.56774 0.425776
\(172\) −24.0467 28.0568i −1.83355 2.13931i
\(173\) −2.14222 −0.162870 −0.0814348 0.996679i \(-0.525950\pi\)
−0.0814348 + 0.996679i \(0.525950\pi\)
\(174\) 12.3276 0.934555
\(175\) −2.31958 + 4.01763i −0.175344 + 0.303704i
\(176\) −54.7022 −4.12333
\(177\) 4.70161 8.14343i 0.353395 0.612098i
\(178\) 15.9758 27.6710i 1.19744 2.07403i
\(179\) −0.246715 0.427323i −0.0184403 0.0319396i 0.856658 0.515885i \(-0.172537\pi\)
−0.875098 + 0.483945i \(0.839203\pi\)
\(180\) 5.63508 0.420014
\(181\) 7.93779 + 13.7487i 0.590011 + 1.02193i 0.994230 + 0.107267i \(0.0342100\pi\)
−0.404219 + 0.914662i \(0.632457\pi\)
\(182\) 35.5065 61.4990i 2.63191 4.55861i
\(183\) −0.931004 −0.0688218
\(184\) 13.3156 23.0632i 0.981636 1.70024i
\(185\) −3.48096 6.02919i −0.255925 0.443275i
\(186\) 3.80462 + 6.58980i 0.278969 + 0.483188i
\(187\) 0.346537 + 0.600220i 0.0253413 + 0.0438925i
\(188\) 21.2166 1.54738
\(189\) 2.31958 + 4.01763i 0.168725 + 0.292240i
\(190\) −7.69230 13.3234i −0.558058 0.966585i
\(191\) 5.28258 9.14970i 0.382234 0.662049i −0.609147 0.793057i \(-0.708488\pi\)
0.991381 + 0.131008i \(0.0418214\pi\)
\(192\) 18.6902 32.3723i 1.34885 2.33627i
\(193\) 10.4128 0.749533 0.374767 0.927119i \(-0.377723\pi\)
0.374767 + 0.927119i \(0.377723\pi\)
\(194\) 19.7295 1.41650
\(195\) −2.76988 + 4.79757i −0.198355 + 0.343561i
\(196\) −40.9159 + 70.8683i −2.92256 + 5.06202i
\(197\) 1.79741 + 3.11321i 0.128060 + 0.221807i 0.922925 0.384980i \(-0.125792\pi\)
−0.794865 + 0.606787i \(0.792458\pi\)
\(198\) 4.58479 + 7.94108i 0.325827 + 0.564348i
\(199\) 7.54089 0.534559 0.267280 0.963619i \(-0.413875\pi\)
0.267280 + 0.963619i \(0.413875\pi\)
\(200\) −5.02217 8.69865i −0.355121 0.615087i
\(201\) 1.05174 + 1.82167i 0.0741841 + 0.128491i
\(202\) −10.3229 17.8799i −0.726320 1.25802i
\(203\) 10.3486 17.9243i 0.726330 1.25804i
\(204\) −1.17690 −0.0823992
\(205\) 2.66129 4.60949i 0.185873 0.321941i
\(206\) −4.51154 7.81422i −0.314334 0.544443i
\(207\) −2.65136 −0.184282
\(208\) 45.6587 + 79.0832i 3.16586 + 5.48343i
\(209\) 9.23829 16.0012i 0.639026 1.10682i
\(210\) 6.40939 11.1014i 0.442290 0.766068i
\(211\) 19.6601 1.35346 0.676728 0.736233i \(-0.263397\pi\)
0.676728 + 0.736233i \(0.263397\pi\)
\(212\) 24.2394 41.9838i 1.66477 2.88346i
\(213\) −14.1900 −0.972284
\(214\) −25.4615 −1.74051
\(215\) 6.44556 1.20614i 0.439583 0.0822581i
\(216\) −10.0443 −0.683431
\(217\) 12.7754 0.867251
\(218\) −7.23310 + 12.5281i −0.489888 + 0.848510i
\(219\) −1.83804 −0.124203
\(220\) 9.35002 16.1947i 0.630378 1.09185i
\(221\) 0.578494 1.00198i 0.0389137 0.0674005i
\(222\) 9.61846 + 16.6597i 0.645549 + 1.11812i
\(223\) −9.42891 −0.631407 −0.315703 0.948858i \(-0.602240\pi\)
−0.315703 + 0.948858i \(0.602240\pi\)
\(224\) −59.0550 102.286i −3.94578 6.83429i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) −19.9866 −1.32949
\(227\) 2.47181 4.28131i 0.164060 0.284160i −0.772261 0.635305i \(-0.780874\pi\)
0.936321 + 0.351145i \(0.114208\pi\)
\(228\) 15.6873 + 27.1713i 1.03892 + 1.79946i
\(229\) −12.5974 21.8193i −0.832457 1.44186i −0.896084 0.443884i \(-0.853600\pi\)
0.0636271 0.997974i \(-0.479733\pi\)
\(230\) 3.66307 + 6.34462i 0.241536 + 0.418352i
\(231\) 15.3951 1.01292
\(232\) 22.4060 + 38.8083i 1.47102 + 2.54789i
\(233\) −10.2607 17.7720i −0.672199 1.16428i −0.977279 0.211956i \(-0.932017\pi\)
0.305081 0.952327i \(-0.401317\pi\)
\(234\) 7.65364 13.2565i 0.500334 0.866604i
\(235\) −1.88254 + 3.26066i −0.122804 + 0.212702i
\(236\) 52.9880 3.44922
\(237\) −14.8889 −0.967136
\(238\) −1.33861 + 2.31854i −0.0867693 + 0.150289i
\(239\) 1.82749 3.16530i 0.118210 0.204746i −0.800848 0.598868i \(-0.795618\pi\)
0.919059 + 0.394121i \(0.128951\pi\)
\(240\) 8.24200 + 14.2756i 0.532019 + 0.921483i
\(241\) −2.56217 4.43781i −0.165044 0.285864i 0.771627 0.636075i \(-0.219443\pi\)
−0.936671 + 0.350211i \(0.886110\pi\)
\(242\) 0.0344359 0.00221362
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −2.62314 4.54342i −0.167929 0.290862i
\(245\) −7.26092 12.5763i −0.463883 0.803469i
\(246\) −7.35359 + 12.7368i −0.468848 + 0.812068i
\(247\) −30.8440 −1.96255
\(248\) −13.8301 + 23.9545i −0.878214 + 1.52111i
\(249\) −0.283171 0.490467i −0.0179452 0.0310821i
\(250\) 2.76317 0.174758
\(251\) 1.41123 + 2.44432i 0.0890761 + 0.154284i 0.907121 0.420870i \(-0.138275\pi\)
−0.818045 + 0.575155i \(0.804942\pi\)
\(252\) −13.0710 + 22.6397i −0.823398 + 1.42617i
\(253\) −4.39927 + 7.61976i −0.276580 + 0.479050i
\(254\) 7.56180 0.474469
\(255\) 0.104426 0.180871i 0.00653940 0.0113266i
\(256\) 69.9448 4.37155
\(257\) −11.1304 −0.694297 −0.347148 0.937810i \(-0.612850\pi\)
−0.347148 + 0.937810i \(0.612850\pi\)
\(258\) −17.8101 + 3.33277i −1.10881 + 0.207489i
\(259\) 32.2974 2.00687
\(260\) −31.2170 −1.93600
\(261\) 2.23071 3.86370i 0.138077 0.239157i
\(262\) 28.8458 1.78210
\(263\) 1.67244 2.89675i 0.103127 0.178621i −0.809844 0.586645i \(-0.800448\pi\)
0.912971 + 0.408023i \(0.133782\pi\)
\(264\) −16.6661 + 28.8665i −1.02573 + 1.77661i
\(265\) 4.30151 + 7.45043i 0.264240 + 0.457677i
\(266\) 71.3716 4.37608
\(267\) −5.78172 10.0142i −0.353835 0.612861i
\(268\) −5.92665 + 10.2653i −0.362028 + 0.627050i
\(269\) −5.36854 −0.327326 −0.163663 0.986516i \(-0.552331\pi\)
−0.163663 + 0.986516i \(0.552331\pi\)
\(270\) 1.38158 2.39297i 0.0840804 0.145632i
\(271\) −7.06271 12.2330i −0.429029 0.743100i 0.567758 0.823195i \(-0.307811\pi\)
−0.996787 + 0.0800955i \(0.974477\pi\)
\(272\) −1.72135 2.98147i −0.104372 0.180778i
\(273\) −12.8499 22.2567i −0.777713 1.34704i
\(274\) 48.1696 2.91003
\(275\) 1.65925 + 2.87391i 0.100057 + 0.173303i
\(276\) −7.47031 12.9390i −0.449660 0.778834i
\(277\) 10.6428 18.4339i 0.639467 1.10759i −0.346083 0.938204i \(-0.612489\pi\)
0.985550 0.169385i \(-0.0541781\pi\)
\(278\) −20.3823 + 35.3033i −1.22245 + 2.11735i
\(279\) 2.75382 0.164867
\(280\) 46.5973 2.78472
\(281\) 14.0844 24.3949i 0.840204 1.45528i −0.0495171 0.998773i \(-0.515768\pi\)
0.889722 0.456504i \(-0.150898\pi\)
\(282\) 5.20178 9.00975i 0.309762 0.536523i
\(283\) 5.05848 + 8.76154i 0.300695 + 0.520819i 0.976294 0.216450i \(-0.0694480\pi\)
−0.675598 + 0.737270i \(0.736115\pi\)
\(284\) −39.9810 69.2491i −2.37243 4.10918i
\(285\) −5.56774 −0.329805
\(286\) −25.3986 43.9917i −1.50185 2.60128i
\(287\) 12.3462 + 21.3842i 0.728771 + 1.26227i
\(288\) −12.7297 22.0484i −0.750103 1.29922i
\(289\) 8.47819 14.6847i 0.498717 0.863803i
\(290\) −12.3276 −0.723903
\(291\) 3.57009 6.18359i 0.209283 0.362488i
\(292\) −5.17875 8.96986i −0.303064 0.524922i
\(293\) 10.7551 0.628320 0.314160 0.949370i \(-0.398277\pi\)
0.314160 + 0.949370i \(0.398277\pi\)
\(294\) 20.0631 + 34.7503i 1.17010 + 2.02668i
\(295\) −4.70161 + 8.14343i −0.273739 + 0.474129i
\(296\) −34.9639 + 60.5592i −2.03223 + 3.51993i
\(297\) 3.31850 0.192559
\(298\) −9.03146 + 15.6429i −0.523178 + 0.906171i
\(299\) 14.6879 0.849422
\(300\) −5.63508 −0.325342
\(301\) −10.1052 + 28.6936i −0.582452 + 1.65387i
\(302\) −18.1177 −1.04256
\(303\) −7.47183 −0.429245
\(304\) −45.8893 + 79.4826i −2.63193 + 4.55864i
\(305\) 0.931004 0.0533091
\(306\) −0.288546 + 0.499776i −0.0164951 + 0.0285703i
\(307\) −10.6164 + 18.3882i −0.605912 + 1.04947i 0.385994 + 0.922501i \(0.373858\pi\)
−0.991907 + 0.126970i \(0.959475\pi\)
\(308\) 43.3763 + 75.1299i 2.47159 + 4.28092i
\(309\) −3.26549 −0.185767
\(310\) −3.80462 6.58980i −0.216088 0.374276i
\(311\) 1.62611 2.81650i 0.0922082 0.159709i −0.816232 0.577724i \(-0.803941\pi\)
0.908440 + 0.418015i \(0.137274\pi\)
\(312\) 55.6432 3.15018
\(313\) −1.11131 + 1.92484i −0.0628148 + 0.108798i −0.895723 0.444613i \(-0.853341\pi\)
0.832908 + 0.553412i \(0.186674\pi\)
\(314\) 30.0625 + 52.0698i 1.69652 + 2.93847i
\(315\) −2.31958 4.01763i −0.130694 0.226368i
\(316\) −41.9500 72.6595i −2.35987 4.08742i
\(317\) −16.5682 −0.930565 −0.465283 0.885162i \(-0.654047\pi\)
−0.465283 + 0.885162i \(0.654047\pi\)
\(318\) −11.8858 20.5868i −0.666522 1.15445i
\(319\) −7.40261 12.8217i −0.414467 0.717877i
\(320\) −18.6902 + 32.3723i −1.04481 + 1.80967i
\(321\) −4.60730 + 7.98008i −0.257154 + 0.445404i
\(322\) −33.9872 −1.89403
\(323\) 1.16283 0.0647017
\(324\) −2.81754 + 4.88013i −0.156530 + 0.271118i
\(325\) 2.76988 4.79757i 0.153645 0.266121i
\(326\) 14.6813 + 25.4287i 0.813122 + 1.40837i
\(327\) 2.61769 + 4.53397i 0.144758 + 0.250729i
\(328\) −53.4618 −2.95193
\(329\) −8.73343 15.1267i −0.481489 0.833964i
\(330\) −4.58479 7.94108i −0.252384 0.437142i
\(331\) −15.6633 27.1297i −0.860934 1.49118i −0.871029 0.491232i \(-0.836547\pi\)
0.0100950 0.999949i \(-0.496787\pi\)
\(332\) 1.59569 2.76382i 0.0875750 0.151684i
\(333\) 6.96191 0.381510
\(334\) −17.1156 + 29.6451i −0.936523 + 1.62211i
\(335\) −1.05174 1.82167i −0.0574628 0.0995284i
\(336\) −76.4719 −4.17189
\(337\) 12.9633 + 22.4531i 0.706157 + 1.22310i 0.966272 + 0.257522i \(0.0829061\pi\)
−0.260115 + 0.965578i \(0.583761\pi\)
\(338\) −24.4387 + 42.3291i −1.32929 + 2.30240i
\(339\) −3.61662 + 6.26416i −0.196428 + 0.340223i
\(340\) 1.17690 0.0638262
\(341\) 4.56927 7.91421i 0.247440 0.428579i
\(342\) 15.3846 0.831904
\(343\) 34.8950 1.88415
\(344\) −42.8625 50.0102i −2.31099 2.69637i
\(345\) 2.65136 0.142744
\(346\) −5.91929 −0.318223
\(347\) 8.05021 13.9434i 0.432158 0.748520i −0.564901 0.825159i \(-0.691086\pi\)
0.997059 + 0.0766392i \(0.0244189\pi\)
\(348\) 25.1404 1.34767
\(349\) −8.71474 + 15.0944i −0.466489 + 0.807983i −0.999267 0.0382717i \(-0.987815\pi\)
0.532778 + 0.846255i \(0.321148\pi\)
\(350\) −6.40939 + 11.1014i −0.342596 + 0.593394i
\(351\) −2.76988 4.79757i −0.147845 0.256075i
\(352\) −84.4869 −4.50317
\(353\) 9.30912 + 16.1239i 0.495474 + 0.858187i 0.999986 0.00521803i \(-0.00166096\pi\)
−0.504512 + 0.863405i \(0.668328\pi\)
\(354\) 12.9913 22.5017i 0.690482 1.19595i
\(355\) 14.1900 0.753128
\(356\) 32.5805 56.4310i 1.72676 2.99084i
\(357\) 0.484448 + 0.839089i 0.0256397 + 0.0444093i
\(358\) −0.681714 1.18076i −0.0360297 0.0624053i
\(359\) 14.5804 + 25.2540i 0.769523 + 1.33285i 0.937822 + 0.347117i \(0.112839\pi\)
−0.168299 + 0.985736i \(0.553827\pi\)
\(360\) 10.0443 0.529383
\(361\) −5.99988 10.3921i −0.315783 0.546952i
\(362\) 21.9334 + 37.9898i 1.15279 + 1.99670i
\(363\) 0.00623124 0.0107928i 0.000327055 0.000566477i
\(364\) 72.4104 125.418i 3.79534 6.57371i
\(365\) 1.83804 0.0962074
\(366\) −2.57252 −0.134468
\(367\) −11.9502 + 20.6984i −0.623796 + 1.08045i 0.364976 + 0.931017i \(0.381077\pi\)
−0.988772 + 0.149429i \(0.952256\pi\)
\(368\) 21.8525 37.8496i 1.13914 1.97305i
\(369\) 2.66129 + 4.60949i 0.138541 + 0.239961i
\(370\) −9.61846 16.6597i −0.500040 0.866094i
\(371\) −39.9108 −2.07207
\(372\) 7.75899 + 13.4390i 0.402285 + 0.696778i
\(373\) 10.6984 + 18.5302i 0.553944 + 0.959459i 0.997985 + 0.0634525i \(0.0202111\pi\)
−0.444041 + 0.896006i \(0.646456\pi\)
\(374\) 0.957540 + 1.65851i 0.0495132 + 0.0857594i
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) 37.8178 1.95030
\(377\) −12.3576 + 21.4040i −0.636448 + 1.10236i
\(378\) 6.40939 + 11.1014i 0.329663 + 0.570994i
\(379\) 12.7098 0.652856 0.326428 0.945222i \(-0.394155\pi\)
0.326428 + 0.945222i \(0.394155\pi\)
\(380\) −15.6873 27.1713i −0.804744 1.39386i
\(381\) 1.36832 2.37000i 0.0701012 0.121419i
\(382\) 14.5967 25.2821i 0.746830 1.29355i
\(383\) 21.6615 1.10685 0.553426 0.832898i \(-0.313320\pi\)
0.553426 + 0.832898i \(0.313320\pi\)
\(384\) 26.1847 45.3533i 1.33623 2.31443i
\(385\) −15.3951 −0.784606
\(386\) 28.7724 1.46448
\(387\) −2.17823 + 6.18509i −0.110726 + 0.314406i
\(388\) 40.2356 2.04265
\(389\) −28.0782 −1.42362 −0.711811 0.702371i \(-0.752125\pi\)
−0.711811 + 0.702371i \(0.752125\pi\)
\(390\) −7.65364 + 13.2565i −0.387557 + 0.671268i
\(391\) −0.553740 −0.0280039
\(392\) −72.9311 + 126.320i −3.68358 + 6.38014i
\(393\) 5.21970 9.04078i 0.263299 0.456047i
\(394\) 4.96655 + 8.60232i 0.250211 + 0.433378i
\(395\) 14.8889 0.749140
\(396\) 9.35002 + 16.1947i 0.469856 + 0.813815i
\(397\) −13.2339 + 22.9218i −0.664191 + 1.15041i 0.315313 + 0.948988i \(0.397890\pi\)
−0.979504 + 0.201424i \(0.935443\pi\)
\(398\) 20.8367 1.04445
\(399\) 12.9148 22.3691i 0.646550 1.11986i
\(400\) −8.24200 14.2756i −0.412100 0.713778i
\(401\) 6.26581 + 10.8527i 0.312900 + 0.541958i 0.978989 0.203914i \(-0.0653662\pi\)
−0.666089 + 0.745872i \(0.732033\pi\)
\(402\) 2.90614 + 5.03357i 0.144945 + 0.251052i
\(403\) −15.2555 −0.759930
\(404\) −21.0522 36.4634i −1.04739 1.81412i
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 28.5949 49.5279i 1.41914 2.45803i
\(407\) 11.5516 20.0079i 0.572590 0.991754i
\(408\) −2.09778 −0.103855
\(409\) −11.9224 −0.589524 −0.294762 0.955571i \(-0.595240\pi\)
−0.294762 + 0.955571i \(0.595240\pi\)
\(410\) 7.35359 12.7368i 0.363168 0.629025i
\(411\) 8.71639 15.0972i 0.429948 0.744691i
\(412\) −9.20065 15.9360i −0.453284 0.785110i
\(413\) −21.8116 37.7787i −1.07328 1.85897i
\(414\) −7.32614 −0.360060
\(415\) 0.283171 + 0.490467i 0.0139003 + 0.0240761i
\(416\) 70.5193 + 122.143i 3.45749 + 5.98855i
\(417\) 7.37645 + 12.7764i 0.361226 + 0.625662i
\(418\) 25.5269 44.2139i 1.24856 2.16257i
\(419\) −27.0791 −1.32290 −0.661451 0.749988i \(-0.730059\pi\)
−0.661451 + 0.749988i \(0.730059\pi\)
\(420\) 13.0710 22.6397i 0.637801 1.10470i
\(421\) 16.1708 + 28.0087i 0.788117 + 1.36506i 0.927119 + 0.374766i \(0.122277\pi\)
−0.139002 + 0.990292i \(0.544390\pi\)
\(422\) 54.3241 2.64445
\(423\) −1.88254 3.26066i −0.0915324 0.158539i
\(424\) 43.2058 74.8347i 2.09826 3.63429i
\(425\) −0.104426 + 0.180871i −0.00506540 + 0.00877352i
\(426\) −39.2094 −1.89970
\(427\) −2.15954 + 3.74043i −0.104507 + 0.181012i
\(428\) −51.9250 −2.50989
\(429\) −18.3837 −0.887574
\(430\) 17.8101 3.33277i 0.858881 0.160720i
\(431\) 10.0881 0.485929 0.242964 0.970035i \(-0.421880\pi\)
0.242964 + 0.970035i \(0.421880\pi\)
\(432\) −16.4840 −0.793087
\(433\) 12.9054 22.3528i 0.620195 1.07421i −0.369254 0.929328i \(-0.620387\pi\)
0.989449 0.144881i \(-0.0462798\pi\)
\(434\) 35.3005 1.69448
\(435\) −2.23071 + 3.86370i −0.106954 + 0.185250i
\(436\) −14.7509 + 25.5493i −0.706439 + 1.22359i
\(437\) 7.38104 + 12.7843i 0.353083 + 0.611558i
\(438\) −5.07881 −0.242675
\(439\) −3.26761 5.65966i −0.155954 0.270121i 0.777452 0.628943i \(-0.216512\pi\)
−0.933406 + 0.358822i \(0.883179\pi\)
\(440\) 16.6661 28.8665i 0.794524 1.37616i
\(441\) 14.5218 0.691516
\(442\) 1.59847 2.76864i 0.0760317 0.131691i
\(443\) 8.43011 + 14.6014i 0.400527 + 0.693732i 0.993789 0.111276i \(-0.0354939\pi\)
−0.593263 + 0.805009i \(0.702161\pi\)
\(444\) 19.6155 + 33.9750i 0.930909 + 1.61238i
\(445\) 5.78172 + 10.0142i 0.274080 + 0.474720i
\(446\) −26.0536 −1.23368
\(447\) 3.26852 + 5.66124i 0.154596 + 0.267768i
\(448\) −86.7068 150.181i −4.09651 7.09537i
\(449\) 14.1731 24.5485i 0.668870 1.15852i −0.309351 0.950948i \(-0.600112\pi\)
0.978221 0.207568i \(-0.0665549\pi\)
\(450\) −1.38158 + 2.39297i −0.0651284 + 0.112806i
\(451\) 17.6630 0.831718
\(452\) −40.7599 −1.91718
\(453\) −3.27843 + 5.67841i −0.154034 + 0.266795i
\(454\) 6.83003 11.8300i 0.320549 0.555208i
\(455\) 12.8499 + 22.2567i 0.602414 + 1.04341i
\(456\) 27.9621 + 48.4318i 1.30945 + 2.26803i
\(457\) −22.9260 −1.07243 −0.536216 0.844081i \(-0.680147\pi\)
−0.536216 + 0.844081i \(0.680147\pi\)
\(458\) −34.8086 60.2903i −1.62650 2.81718i
\(459\) 0.104426 + 0.180871i 0.00487418 + 0.00844233i
\(460\) 7.47031 + 12.9390i 0.348305 + 0.603282i
\(461\) −6.08009 + 10.5310i −0.283178 + 0.490478i −0.972166 0.234294i \(-0.924722\pi\)
0.688988 + 0.724773i \(0.258055\pi\)
\(462\) 42.5391 1.97910
\(463\) −7.17779 + 12.4323i −0.333580 + 0.577778i −0.983211 0.182472i \(-0.941590\pi\)
0.649631 + 0.760250i \(0.274924\pi\)
\(464\) 36.7710 + 63.6892i 1.70705 + 2.95670i
\(465\) −2.75382 −0.127705
\(466\) −28.3519 49.1070i −1.31338 2.27484i
\(467\) 12.8094 22.1865i 0.592749 1.02667i −0.401112 0.916029i \(-0.631376\pi\)
0.993860 0.110641i \(-0.0352905\pi\)
\(468\) 15.6085 27.0347i 0.721503 1.24968i
\(469\) 9.75840 0.450601
\(470\) −5.20178 + 9.00975i −0.239940 + 0.415589i
\(471\) 21.7595 1.00262
\(472\) 94.4492 4.34738
\(473\) 14.1611 + 16.5226i 0.651130 + 0.759712i
\(474\) −41.1404 −1.88964
\(475\) 5.56774 0.255466
\(476\) −2.72991 + 4.72834i −0.125125 + 0.216723i
\(477\) −8.60302 −0.393905
\(478\) 5.04965 8.74626i 0.230966 0.400045i
\(479\) −14.5444 + 25.1917i −0.664552 + 1.15104i 0.314854 + 0.949140i \(0.398044\pi\)
−0.979407 + 0.201898i \(0.935289\pi\)
\(480\) 12.7297 + 22.0484i 0.581027 + 1.00637i
\(481\) −38.5673 −1.75852
\(482\) −7.07970 12.2624i −0.322471 0.558537i
\(483\) −6.15004 + 10.6522i −0.279836 + 0.484691i
\(484\) 0.0702271 0.00319214
\(485\) −3.57009 + 6.18359i −0.162110 + 0.280782i
\(486\) 1.38158 + 2.39297i 0.0626699 + 0.108547i
\(487\) 5.50653 + 9.53759i 0.249525 + 0.432190i 0.963394 0.268089i \(-0.0863923\pi\)
−0.713869 + 0.700279i \(0.753059\pi\)
\(488\) −4.67566 8.09848i −0.211657 0.366601i
\(489\) 10.6264 0.480544
\(490\) −20.0631 34.7503i −0.906359 1.56986i
\(491\) −8.34502 14.4540i −0.376606 0.652300i 0.613960 0.789337i \(-0.289575\pi\)
−0.990566 + 0.137037i \(0.956242\pi\)
\(492\) −14.9966 + 25.9749i −0.676099 + 1.17104i
\(493\) 0.465887 0.806940i 0.0209825 0.0363427i
\(494\) −85.2269 −3.83454
\(495\) −3.31850 −0.149156
\(496\) −22.6969 + 39.3123i −1.01912 + 1.76517i
\(497\) −32.9149 + 57.0103i −1.47644 + 2.55726i
\(498\) −0.782448 1.35524i −0.0350624 0.0607298i
\(499\) 6.96018 + 12.0554i 0.311580 + 0.539673i 0.978705 0.205273i \(-0.0658084\pi\)
−0.667124 + 0.744946i \(0.732475\pi\)
\(500\) 5.63508 0.252009
\(501\) 6.19420 + 10.7287i 0.276736 + 0.479321i
\(502\) 3.89946 + 6.75407i 0.174042 + 0.301449i
\(503\) 9.77787 + 16.9358i 0.435974 + 0.755129i 0.997375 0.0724154i \(-0.0230707\pi\)
−0.561401 + 0.827544i \(0.689737\pi\)
\(504\) −23.2987 + 40.3545i −1.03780 + 1.79753i
\(505\) 7.47183 0.332492
\(506\) −12.1559 + 21.0547i −0.540396 + 0.935993i
\(507\) 8.84447 + 15.3191i 0.392797 + 0.680344i
\(508\) 15.4212 0.684206
\(509\) −5.12739 8.88090i −0.227268 0.393639i 0.729730 0.683736i \(-0.239646\pi\)
−0.956997 + 0.290097i \(0.906313\pi\)
\(510\) 0.288546 0.499776i 0.0127770 0.0221305i
\(511\) −4.26348 + 7.38457i −0.188605 + 0.326674i
\(512\) 88.5300 3.91251
\(513\) 2.78387 4.82181i 0.122911 0.212888i
\(514\) −30.7552 −1.35655
\(515\) 3.26549 0.143895
\(516\) −36.3213 + 6.79671i −1.59895 + 0.299208i
\(517\) −12.4945 −0.549506
\(518\) 89.2432 3.92112
\(519\) −1.07111 + 1.85521i −0.0470164 + 0.0814348i
\(520\) −55.6432 −2.44012
\(521\) 17.4153 30.1642i 0.762978 1.32152i −0.178331 0.983971i \(-0.557070\pi\)
0.941309 0.337546i \(-0.109597\pi\)
\(522\) 6.16381 10.6760i 0.269783 0.467277i
\(523\) −1.76882 3.06369i −0.0773452 0.133966i 0.824758 0.565485i \(-0.191311\pi\)
−0.902104 + 0.431519i \(0.857978\pi\)
\(524\) 58.8268 2.56986
\(525\) 2.31958 + 4.01763i 0.101235 + 0.175344i
\(526\) 4.62123 8.00421i 0.201495 0.349000i
\(527\) 0.575139 0.0250535
\(528\) −27.3511 + 47.3735i −1.19030 + 2.06167i
\(529\) 7.98515 + 13.8307i 0.347181 + 0.601334i
\(530\) 11.8858 + 20.5868i 0.516286 + 0.894233i
\(531\) −4.70161 8.14343i −0.204033 0.353395i
\(532\) 145.552 6.31049
\(533\) −14.7429 25.5355i −0.638586 1.10606i
\(534\) −15.9758 27.6710i −0.691342 1.19744i
\(535\) 4.60730 7.98008i 0.199191 0.345009i
\(536\) −10.5640 + 18.2975i −0.456297 + 0.790330i
\(537\) −0.493430 −0.0212931
\(538\) −14.8342 −0.639546
\(539\) 24.0954 41.7344i 1.03786 1.79763i
\(540\) 2.81754 4.88013i 0.121248 0.210007i
\(541\) −15.3864 26.6500i −0.661512 1.14577i −0.980218 0.197919i \(-0.936582\pi\)
0.318706 0.947854i \(-0.396752\pi\)
\(542\) −19.5154 33.8017i −0.838259 1.45191i
\(543\) 15.8756 0.681286
\(544\) −2.65861 4.60485i −0.113987 0.197431i
\(545\) −2.61769 4.53397i −0.112129 0.194214i
\(546\) −35.5065 61.4990i −1.51954 2.63191i
\(547\) 16.8790 29.2353i 0.721695 1.25001i −0.238625 0.971112i \(-0.576697\pi\)
0.960320 0.278901i \(-0.0899701\pi\)
\(548\) 98.2351 4.19640
\(549\) −0.465502 + 0.806273i −0.0198671 + 0.0344109i
\(550\) 4.58479 + 7.94108i 0.195496 + 0.338609i
\(551\) −24.8400 −1.05822
\(552\) −13.3156 23.0632i −0.566748 0.981636i
\(553\) −34.5359 + 59.8180i −1.46862 + 2.54372i
\(554\) 29.4079 50.9360i 1.24942 2.16407i
\(555\) −6.96191 −0.295517
\(556\) −41.5669 + 71.9960i −1.76283 + 3.05331i
\(557\) −20.6870 −0.876534 −0.438267 0.898845i \(-0.644408\pi\)
−0.438267 + 0.898845i \(0.644408\pi\)
\(558\) 7.60925 0.322125
\(559\) 12.0669 34.2639i 0.510374 1.44921i
\(560\) 76.4719 3.23153
\(561\) 0.693075 0.0292616
\(562\) 38.9175 67.4071i 1.64164 2.84340i
\(563\) −28.8886 −1.21751 −0.608755 0.793358i \(-0.708331\pi\)
−0.608755 + 0.793358i \(0.708331\pi\)
\(564\) 10.6083 18.3741i 0.446690 0.773689i
\(565\) 3.61662 6.26416i 0.152152 0.263535i
\(566\) 13.9774 + 24.2096i 0.587514 + 1.01760i
\(567\) 4.63916 0.194827
\(568\) −71.2647 123.434i −2.99020 5.17918i
\(569\) −8.03629 + 13.9193i −0.336899 + 0.583526i −0.983848 0.179007i \(-0.942711\pi\)
0.646949 + 0.762533i \(0.276045\pi\)
\(570\) −15.3846 −0.644390
\(571\) 17.5817 30.4523i 0.735769 1.27439i −0.218616 0.975811i \(-0.570154\pi\)
0.954385 0.298579i \(-0.0965126\pi\)
\(572\) −51.7969 89.7148i −2.16574 3.75116i
\(573\) −5.28258 9.14970i −0.220683 0.382234i
\(574\) 34.1145 + 59.0880i 1.42391 + 2.46629i
\(575\) −2.65136 −0.110569
\(576\) −18.6902 32.3723i −0.778758 1.34885i
\(577\) 4.97441 + 8.61592i 0.207087 + 0.358686i 0.950796 0.309818i \(-0.100268\pi\)
−0.743709 + 0.668504i \(0.766935\pi\)
\(578\) 23.4266 40.5761i 0.974420 1.68774i
\(579\) 5.20642 9.01779i 0.216372 0.374767i
\(580\) −25.1404 −1.04390
\(581\) −2.62735 −0.109001
\(582\) 9.86476 17.0863i 0.408908 0.708249i
\(583\) −14.2746 + 24.7243i −0.591193 + 1.02398i
\(584\) −9.23094 15.9885i −0.381979 0.661607i
\(585\) 2.76988 + 4.79757i 0.114520 + 0.198355i
\(586\) 29.7182 1.22765
\(587\) −11.1648 19.3381i −0.460822 0.798168i 0.538180 0.842830i \(-0.319112\pi\)
−0.999002 + 0.0446623i \(0.985779\pi\)
\(588\) 40.9159 + 70.8683i 1.68734 + 2.92256i
\(589\) −7.66627 13.2784i −0.315883 0.547126i
\(590\) −12.9913 + 22.5017i −0.534845 + 0.926378i
\(591\) 3.59483 0.147871
\(592\) −57.3801 + 99.3852i −2.35831 + 4.08471i
\(593\) 4.63209 + 8.02301i 0.190217 + 0.329466i 0.945322 0.326138i \(-0.105747\pi\)
−0.755105 + 0.655604i \(0.772414\pi\)
\(594\) 9.16957 0.376232
\(595\) −0.484448 0.839089i −0.0198604 0.0343993i
\(596\) −18.4184 + 31.9016i −0.754446 + 1.30674i
\(597\) 3.77044 6.53060i 0.154314 0.267280i
\(598\) 40.5851 1.65965
\(599\) −15.4316 + 26.7283i −0.630519 + 1.09209i 0.356927 + 0.934132i \(0.383824\pi\)
−0.987446 + 0.157958i \(0.949509\pi\)
\(600\) −10.0443 −0.410058
\(601\) −9.10987 −0.371599 −0.185800 0.982588i \(-0.559488\pi\)
−0.185800 + 0.982588i \(0.559488\pi\)
\(602\) −27.9222 + 79.2852i −1.13803 + 3.23143i
\(603\) 2.10348 0.0856604
\(604\) −36.9485 −1.50341
\(605\) −0.00623124 + 0.0107928i −0.000253336 + 0.000438791i
\(606\) −20.6459 −0.838682
\(607\) 4.14030 7.17121i 0.168050 0.291071i −0.769684 0.638425i \(-0.779586\pi\)
0.937734 + 0.347354i \(0.112920\pi\)
\(608\) −70.8755 + 122.760i −2.87438 + 4.97858i
\(609\) −10.3486 17.9243i −0.419347 0.726330i
\(610\) 2.57252 0.104158
\(611\) 10.4288 + 18.0633i 0.421906 + 0.730762i
\(612\) −0.588448 + 1.01922i −0.0237866 + 0.0411996i
\(613\) 5.42292 0.219030 0.109515 0.993985i \(-0.465070\pi\)
0.109515 + 0.993985i \(0.465070\pi\)
\(614\) −29.3350 + 50.8097i −1.18386 + 2.05051i
\(615\) −2.66129 4.60949i −0.107314 0.185873i
\(616\) 77.3167 + 133.916i 3.11518 + 5.39564i
\(617\) 22.3628 + 38.7336i 0.900294 + 1.55935i 0.827113 + 0.562035i \(0.189982\pi\)
0.0731804 + 0.997319i \(0.476685\pi\)
\(618\) −9.02309 −0.362962
\(619\) 19.9469 + 34.5490i 0.801732 + 1.38864i 0.918475 + 0.395479i \(0.129421\pi\)
−0.116743 + 0.993162i \(0.537245\pi\)
\(620\) −7.75899 13.4390i −0.311609 0.539722i
\(621\) −1.32568 + 2.29614i −0.0531977 + 0.0921410i
\(622\) 4.49321 7.78246i 0.180161 0.312048i
\(623\) −53.6447 −2.14923
\(624\) 91.3174 3.65562
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −3.07073 + 5.31866i −0.122731 + 0.212576i
\(627\) −9.23829 16.0012i −0.368942 0.639026i
\(628\) 61.3082 + 106.189i 2.44646 + 4.23740i
\(629\) 1.45401 0.0579750
\(630\) −6.40939 11.1014i −0.255356 0.442290i
\(631\) −14.8578 25.7344i −0.591479 1.02447i −0.994033 0.109075i \(-0.965211\pi\)
0.402555 0.915396i \(-0.368122\pi\)
\(632\) −74.7744 129.513i −2.97437 5.15175i
\(633\) 9.83004 17.0261i 0.390709 0.676728i
\(634\) −45.7808 −1.81819
\(635\) −1.36832 + 2.37000i −0.0543002 + 0.0940507i
\(636\) −24.2394 41.9838i −0.961154 1.66477i
\(637\) −80.4474 −3.18744
\(638\) −20.4546 35.4285i −0.809807 1.40263i
\(639\) −7.09501 + 12.2889i −0.280674 + 0.486142i
\(640\) −26.1847 + 45.3533i −1.03504 + 1.79275i
\(641\) −18.2684 −0.721557 −0.360778 0.932652i \(-0.617489\pi\)
−0.360778 + 0.932652i \(0.617489\pi\)
\(642\) −12.7307 + 22.0503i −0.502442 + 0.870255i
\(643\) 25.1791 0.992968 0.496484 0.868046i \(-0.334624\pi\)
0.496484 + 0.868046i \(0.334624\pi\)
\(644\) −69.3120 −2.73127
\(645\) 2.17823 6.18509i 0.0857677 0.243538i
\(646\) 3.21310 0.126418
\(647\) −1.84756 −0.0726352 −0.0363176 0.999340i \(-0.511563\pi\)
−0.0363176 + 0.999340i \(0.511563\pi\)
\(648\) −5.02217 + 8.69865i −0.197289 + 0.341715i
\(649\) −31.2046 −1.22489
\(650\) 7.65364 13.2565i 0.300200 0.519962i
\(651\) 6.38770 11.0638i 0.250354 0.433625i
\(652\) 29.9404 + 51.8583i 1.17256 + 2.03093i
\(653\) 20.4691 0.801017 0.400509 0.916293i \(-0.368833\pi\)
0.400509 + 0.916293i \(0.368833\pi\)
\(654\) 7.23310 + 12.5281i 0.282837 + 0.489888i
\(655\) −5.21970 + 9.04078i −0.203950 + 0.353252i
\(656\) −87.7374 −3.42557
\(657\) −0.919020 + 1.59179i −0.0358544 + 0.0621016i
\(658\) −24.1319 41.7977i −0.940760 1.62944i
\(659\) 13.1974 + 22.8585i 0.514097 + 0.890441i 0.999866 + 0.0163545i \(0.00520604\pi\)
−0.485770 + 0.874087i \(0.661461\pi\)
\(660\) −9.35002 16.1947i −0.363949 0.630378i
\(661\) −47.6467 −1.85324 −0.926620 0.375999i \(-0.877300\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(662\) −43.2803 74.9637i −1.68214 2.91355i
\(663\) −0.578494 1.00198i −0.0224668 0.0389137i
\(664\) 2.84427 4.92641i 0.110379 0.191182i
\(665\) −12.9148 + 22.3691i −0.500816 + 0.867438i
\(666\) 19.2369 0.745415
\(667\) 11.8288 0.458013
\(668\) −34.9048 + 60.4569i −1.35051 + 2.33915i
\(669\) −4.71446 + 8.16568i −0.182271 + 0.315703i
\(670\) −2.90614 5.03357i −0.112274 0.194464i
\(671\) 1.54477 + 2.67562i 0.0596352 + 0.103291i
\(672\) −118.110 −4.55619
\(673\) 3.51530 + 6.08868i 0.135505 + 0.234701i 0.925790 0.378038i \(-0.123401\pi\)
−0.790285 + 0.612739i \(0.790068\pi\)
\(674\) 35.8198 + 62.0417i 1.37973 + 2.38976i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) −49.8393 + 86.3242i −1.91690 + 3.32016i
\(677\) 5.13066 0.197187 0.0985936 0.995128i \(-0.468566\pi\)
0.0985936 + 0.995128i \(0.468566\pi\)
\(678\) −9.99331 + 17.3089i −0.383791 + 0.664745i
\(679\) −16.5623 28.6867i −0.635601 1.10089i
\(680\) 2.09778 0.0804460
\(681\) −2.47181 4.28131i −0.0947201 0.164060i
\(682\) 12.6257 21.8683i 0.483461 0.837380i
\(683\) −13.1490 + 22.7748i −0.503134 + 0.871454i 0.496859 + 0.867831i \(0.334487\pi\)
−0.999993 + 0.00362283i \(0.998847\pi\)
\(684\) 31.3747 1.19964
\(685\) −8.71639 + 15.0972i −0.333036 + 0.576835i
\(686\) 96.4206 3.68136
\(687\) −25.1947 −0.961239
\(688\) −70.3426 82.0729i −2.68179 3.12900i
\(689\) 47.6587 1.81565
\(690\) 7.32614 0.278901
\(691\) 0.715519 1.23932i 0.0272196 0.0471458i −0.852095 0.523388i \(-0.824668\pi\)
0.879314 + 0.476242i \(0.158001\pi\)
\(692\) −12.0716 −0.458892
\(693\) 7.69754 13.3325i 0.292405 0.506461i
\(694\) 22.2441 38.5279i 0.844373 1.46250i
\(695\) −7.37645 12.7764i −0.279805 0.484636i
\(696\) 44.8119 1.69859
\(697\) 0.555815 + 0.962700i 0.0210530 + 0.0364649i
\(698\) −24.0803 + 41.7083i −0.911452 + 1.57868i
\(699\) −20.5213 −0.776188
\(700\) −13.0710 + 22.6397i −0.494039 + 0.855700i
\(701\) 21.6684 + 37.5308i 0.818405 + 1.41752i 0.906857 + 0.421438i \(0.138475\pi\)
−0.0884522 + 0.996080i \(0.528192\pi\)
\(702\) −7.65364 13.2565i −0.288868 0.500334i
\(703\) −19.3811 33.5690i −0.730971 1.26608i
\(704\) −124.047 −4.67519
\(705\) 1.88254 + 3.26066i 0.0709007 + 0.122804i
\(706\) 25.7226 + 44.5529i 0.968084 + 1.67677i
\(707\) −17.3315 + 30.0191i −0.651818 + 1.12898i
\(708\) 26.4940 45.8889i 0.995705 1.72461i
\(709\) −27.5623 −1.03512 −0.517562 0.855646i \(-0.673160\pi\)
−0.517562 + 0.855646i \(0.673160\pi\)
\(710\) 39.2094 1.47150
\(711\) −7.44443 + 12.8941i −0.279188 + 0.483568i
\(712\) 58.0735 100.586i 2.17640 3.76963i
\(713\) 3.65068 + 6.32316i 0.136719 + 0.236804i
\(714\) 1.33861 + 2.31854i 0.0500963 + 0.0867693i
\(715\) 18.3837 0.687512
\(716\) −1.39026 2.40800i −0.0519564 0.0899911i
\(717\) −1.82749 3.16530i −0.0682488 0.118210i
\(718\) 40.2880 + 69.7809i 1.50353 + 2.60420i
\(719\) −6.18499 + 10.7127i −0.230661 + 0.399517i −0.958003 0.286759i \(-0.907422\pi\)
0.727342 + 0.686275i \(0.240756\pi\)
\(720\) 16.4840 0.614322
\(721\) −7.57457 + 13.1195i −0.282092 + 0.488597i
\(722\) −16.5787 28.7151i −0.616994 1.06866i
\(723\) −5.12434 −0.190576
\(724\) 44.7301 + 77.4748i 1.66238 + 2.87933i
\(725\) 2.23071 3.86370i 0.0828464 0.143494i
\(726\) 0.0172180 0.0298224i 0.000639018 0.00110681i
\(727\) −20.7346 −0.769005 −0.384503 0.923124i \(-0.625627\pi\)
−0.384503 + 0.923124i \(0.625627\pi\)
\(728\) 129.069 223.554i 4.78361 8.28546i
\(729\) 1.00000 0.0370370
\(730\) 5.07881 0.187975
\(731\) −0.454927 + 1.29177i −0.0168261 + 0.0477777i
\(732\) −5.24628 −0.193908
\(733\) −33.4470 −1.23539 −0.617697 0.786416i \(-0.711934\pi\)
−0.617697 + 0.786416i \(0.711934\pi\)
\(734\) −33.0204 + 57.1930i −1.21881 + 2.11103i
\(735\) −14.5218 −0.535646
\(736\) 33.7509 58.4583i 1.24407 2.15480i
\(737\) 3.49021 6.04522i 0.128563 0.222678i
\(738\) 7.35359 + 12.7368i 0.270689 + 0.468848i
\(739\) 21.3809 0.786509 0.393255 0.919430i \(-0.371349\pi\)
0.393255 + 0.919430i \(0.371349\pi\)
\(740\) −19.6155 33.9750i −0.721079 1.24895i
\(741\) −15.4220 + 26.7116i −0.566540 + 0.981277i
\(742\) −110.280 −4.04851
\(743\) −14.5351 + 25.1754i −0.533239 + 0.923598i 0.466007 + 0.884781i \(0.345692\pi\)
−0.999246 + 0.0388166i \(0.987641\pi\)
\(744\) 13.8301 + 23.9545i 0.507037 + 0.878214i
\(745\) −3.26852 5.66124i −0.119749 0.207412i
\(746\) 29.5615 + 51.2021i 1.08232 + 1.87464i
\(747\) −0.566342 −0.0207214
\(748\) 1.95277 + 3.38229i 0.0714002 + 0.123669i
\(749\) 21.3740 + 37.0209i 0.780989 + 1.35271i
\(750\) 1.38158 2.39297i 0.0504483 0.0873790i
\(751\) 12.3934 21.4660i 0.452242 0.783306i −0.546283 0.837601i \(-0.683958\pi\)
0.998525 + 0.0542949i \(0.0172911\pi\)
\(752\) 62.0637 2.26323
\(753\) 2.82246 0.102856
\(754\) −34.1460 + 59.1427i −1.24353 + 2.15385i
\(755\) 3.27843 5.67841i 0.119314 0.206658i
\(756\) 13.0710 + 22.6397i 0.475389 + 0.823398i
\(757\) −9.28162 16.0762i −0.337346 0.584301i 0.646586 0.762841i \(-0.276196\pi\)
−0.983933 + 0.178540i \(0.942863\pi\)
\(758\) 35.1192 1.27559
\(759\) 4.39927 + 7.61976i 0.159683 + 0.276580i
\(760\) −27.9621 48.4318i −1.01429 1.75681i
\(761\) −18.9175 32.7661i −0.685760 1.18777i −0.973197 0.229971i \(-0.926137\pi\)
0.287438 0.957799i \(-0.407197\pi\)
\(762\) 3.78090 6.54871i 0.136968 0.237235i
\(763\) 24.2878 0.879276
\(764\) 29.7678 51.5593i 1.07696 1.86535i
\(765\) −0.104426 0.180871i −0.00377552 0.00653940i
\(766\) 59.8544 2.16263
\(767\) 26.0458 + 45.1127i 0.940460 + 1.62892i
\(768\) 34.9724 60.5739i 1.26196 2.18577i
\(769\) 5.22370 9.04772i 0.188372 0.326269i −0.756336 0.654183i \(-0.773012\pi\)
0.944707 + 0.327914i \(0.106346\pi\)
\(770\) −42.5391 −1.53300
\(771\) −5.56521 + 9.63923i −0.200426 + 0.347148i
\(772\) 58.6773 2.11184
\(773\) −41.4286 −1.49008 −0.745042 0.667017i \(-0.767571\pi\)
−0.745042 + 0.667017i \(0.767571\pi\)
\(774\) −6.01881 + 17.0904i −0.216342 + 0.614303i
\(775\) 2.75382 0.0989200
\(776\) 71.7185 2.57454
\(777\) 16.1487 27.9704i 0.579332 1.00343i
\(778\) −77.5847 −2.78155
\(779\) 14.8174 25.6645i 0.530888 0.919525i
\(780\) −15.6085 + 27.0347i −0.558874 + 0.967998i
\(781\) 23.5448 + 40.7808i 0.842500 + 1.45925i
\(782\) −1.53008 −0.0547154
\(783\) −2.23071 3.86370i −0.0797190 0.138077i
\(784\) −119.689 + 207.307i −4.27460 + 7.40383i
\(785\) −21.7595 −0.776628
\(786\) 14.4229 24.9812i 0.514447 0.891049i
\(787\) 16.6117 + 28.7723i 0.592143 + 1.02562i 0.993943 + 0.109894i \(0.0350513\pi\)
−0.401800 + 0.915727i \(0.631615\pi\)
\(788\) 10.1286 + 17.5432i 0.360815 + 0.624951i
\(789\) −1.67244 2.89675i −0.0595405 0.103127i
\(790\) 41.1404 1.46371
\(791\) 16.7781 + 29.0605i 0.596560 + 1.03327i
\(792\) 16.6661 + 28.8665i 0.592203 + 1.02573i
\(793\) 2.57877 4.46656i 0.0915748 0.158612i
\(794\) −36.5675 + 63.3367i −1.29773 + 2.24774i
\(795\) 8.60302 0.305118
\(796\) 42.4935 1.50614
\(797\) 10.7393 18.6010i 0.380405 0.658880i −0.610716 0.791850i \(-0.709118\pi\)
0.991120 + 0.132970i \(0.0424514\pi\)
\(798\) 35.6858 61.8096i 1.26326 2.18804i
\(799\) −0.393172 0.680995i −0.0139094 0.0240919i
\(800\) −12.7297 22.0484i −0.450062 0.779530i
\(801\) −11.5634 −0.408574
\(802\) 17.3135 + 29.9878i 0.611360 + 1.05891i
\(803\) 3.04977 + 5.28236i 0.107624 + 0.186410i
\(804\) 5.92665 + 10.2653i 0.209017 + 0.362028i
\(805\) 6.15004 10.6522i 0.216760 0.375440i
\(806\) −42.1534 −1.48479
\(807\) −2.68427 + 4.64929i −0.0944907 + 0.163663i
\(808\) −37.5248 64.9948i −1.32012 2.28651i
\(809\) −18.0124 −0.633281 −0.316640 0.948546i \(-0.602555\pi\)
−0.316640 + 0.948546i \(0.602555\pi\)
\(810\) −1.38158 2.39297i −0.0485439 0.0840804i
\(811\) −15.6321 + 27.0755i −0.548916 + 0.950751i 0.449433 + 0.893314i \(0.351626\pi\)
−0.998349 + 0.0574368i \(0.981707\pi\)
\(812\) 58.3153 101.005i 2.04647 3.54458i
\(813\) −14.1254 −0.495400
\(814\) 31.9189 55.2851i 1.11876 1.93774i
\(815\) −10.6264 −0.372228
\(816\) −3.44271 −0.120519
\(817\) 35.8872 6.71548i 1.25553 0.234945i
\(818\) −32.9435 −1.15184
\(819\) −25.6998 −0.898025
\(820\) 14.9966 25.9749i 0.523704 0.907082i
\(821\) 2.43935 0.0851341 0.0425670 0.999094i \(-0.486446\pi\)
0.0425670 + 0.999094i \(0.486446\pi\)
\(822\) 24.0848 41.7161i 0.840054 1.45502i
\(823\) 10.0202 17.3555i 0.349282 0.604975i −0.636840 0.770996i \(-0.719759\pi\)
0.986122 + 0.166021i \(0.0530920\pi\)
\(824\) −16.3998 28.4054i −0.571315 0.989547i
\(825\) 3.31850 0.115535
\(826\) −60.2689 104.389i −2.09702 3.63215i
\(827\) 9.37878 16.2445i 0.326132 0.564878i −0.655609 0.755101i \(-0.727588\pi\)
0.981741 + 0.190223i \(0.0609212\pi\)
\(828\) −14.9406 −0.519222
\(829\) 20.4329 35.3908i 0.709663 1.22917i −0.255320 0.966857i \(-0.582181\pi\)
0.964982 0.262315i \(-0.0844860\pi\)
\(830\) 0.782448 + 1.35524i 0.0271592 + 0.0470411i
\(831\) −10.6428 18.4339i −0.369196 0.639467i
\(832\) 103.539 + 179.335i 3.58957 + 6.21732i
\(833\) 3.03291 0.105084
\(834\) 20.3823 + 35.3033i 0.705783 + 1.22245i
\(835\) −6.19420 10.7287i −0.214359 0.371281i
\(836\) 52.0585 90.1680i 1.80048 3.11852i
\(837\) 1.37691 2.38487i 0.0475929 0.0824333i
\(838\) −74.8241 −2.58476
\(839\) −23.1150 −0.798017 −0.399008 0.916947i \(-0.630646\pi\)
−0.399008 + 0.916947i \(0.630646\pi\)
\(840\) 23.2987 40.3545i 0.803880 1.39236i
\(841\) 4.54789 7.87718i 0.156824 0.271627i
\(842\) 44.6826 + 77.3926i 1.53986 + 2.66712i
\(843\) −14.0844 24.3949i −0.485092 0.840204i
\(844\) 110.786 3.81342
\(845\) −8.84447 15.3191i −0.304259 0.526992i
\(846\) −5.20178 9.00975i −0.178841 0.309762i
\(847\) −0.0289078 0.0500697i −0.000993282 0.00172041i
\(848\) 70.9061 122.813i 2.43492 4.21741i
\(849\) 10.1170 0.347213
\(850\) −0.288546 + 0.499776i −0.00989704 + 0.0171422i
\(851\) 9.22926 + 15.9855i 0.316375 + 0.547977i
\(852\) −79.9620 −2.73945
\(853\) −1.32434 2.29382i −0.0453444 0.0785388i 0.842462 0.538755i \(-0.181105\pi\)
−0.887807 + 0.460216i \(0.847772\pi\)
\(854\) −5.96716 + 10.3354i −0.204192 + 0.353671i
\(855\) −2.78387 + 4.82181i −0.0952064 + 0.164902i
\(856\) −92.5545 −3.16345
\(857\) 27.8123 48.1722i 0.950048 1.64553i 0.204736 0.978817i \(-0.434367\pi\)
0.745313 0.666715i \(-0.232300\pi\)
\(858\) −50.7972 −1.73419
\(859\) 41.4033 1.41266 0.706332 0.707881i \(-0.250349\pi\)
0.706332 + 0.707881i \(0.250349\pi\)
\(860\) 36.3213 6.79671i 1.23854 0.231766i
\(861\) 24.6923 0.841512
\(862\) 27.8752 0.949433
\(863\) −17.2859 + 29.9401i −0.588420 + 1.01917i 0.406019 + 0.913864i \(0.366917\pi\)
−0.994440 + 0.105309i \(0.966417\pi\)
\(864\) −25.4593 −0.866144
\(865\) 1.07111 1.85521i 0.0364187 0.0630791i
\(866\) 35.6598 61.7646i 1.21177 2.09885i
\(867\) −8.47819 14.6847i −0.287934 0.498717i
\(868\) 71.9904 2.44352
\(869\) 24.7044 + 42.7892i 0.838038 + 1.45153i
\(870\) −6.16381 + 10.6760i −0.208973 + 0.361952i
\(871\) −11.6528 −0.394840
\(872\) −26.2929 + 45.5407i −0.890391 + 1.54220i
\(873\) −3.57009 6.18359i −0.120829 0.209283i
\(874\) 20.3950 + 35.3252i 0.689872 + 1.19489i
\(875\) −2.31958 4.01763i −0.0784162 0.135821i
\(876\) −10.3575 −0.349948
\(877\) 1.66679 + 2.88697i 0.0562835 + 0.0974859i 0.892794 0.450464i \(-0.148742\pi\)
−0.836511 + 0.547950i \(0.815408\pi\)
\(878\) −9.02893 15.6386i −0.304712 0.527776i
\(879\) 5.37756 9.31420i 0.181380 0.314160i
\(880\) 27.3511 47.3735i 0.922005 1.59696i
\(881\) 43.1690 1.45440 0.727200 0.686425i \(-0.240821\pi\)
0.727200 + 0.686425i \(0.240821\pi\)
\(882\) 40.1262 1.35112
\(883\) −3.61662 + 6.26417i −0.121709 + 0.210806i −0.920442 0.390880i \(-0.872171\pi\)
0.798733 + 0.601686i \(0.205504\pi\)
\(884\) 3.25986 5.64625i 0.109641 0.189904i
\(885\) 4.70161 + 8.14343i 0.158043 + 0.273739i
\(886\) 23.2938 + 40.3460i 0.782570 + 1.35545i
\(887\) 35.4015 1.18867 0.594333 0.804219i \(-0.297416\pi\)
0.594333 + 0.804219i \(0.297416\pi\)
\(888\) 34.9639 + 60.5592i 1.17331 + 2.03223i
\(889\) −6.34787 10.9948i −0.212901 0.368755i
\(890\) 15.9758 + 27.6710i 0.535512 + 0.927533i
\(891\) 1.65925 2.87391i 0.0555870 0.0962795i
\(892\) −53.1327 −1.77901
\(893\) −10.4815 + 18.1545i −0.350751 + 0.607518i
\(894\) 9.03146 + 15.6429i 0.302057 + 0.523178i
\(895\) 0.493430 0.0164935
\(896\) −121.475 210.401i −4.05820 7.02901i
\(897\) 7.34394 12.7201i 0.245207 0.424711i
\(898\) 39.1626 67.8316i 1.30687 2.26357i
\(899\) −12.2859 −0.409758
\(900\) −2.81754 + 4.88013i −0.0939181 + 0.162671i
\(901\) −1.79676 −0.0598586
\(902\) 48.8058 1.62506
\(903\) 19.7968 + 23.0981i 0.658797 + 0.768658i
\(904\) −72.6530 −2.41640
\(905\) −15.8756 −0.527722
\(906\) −9.05885 + 15.6904i −0.300960 + 0.521278i
\(907\) −12.9840 −0.431125 −0.215563 0.976490i \(-0.569159\pi\)
−0.215563 + 0.976490i \(0.569159\pi\)
\(908\) 13.9289 24.1255i 0.462246 0.800634i
\(909\) −3.73591 + 6.47079i −0.123912 + 0.214623i
\(910\) 35.5065 + 61.4990i 1.17703 + 2.03867i
\(911\) 27.2421 0.902570 0.451285 0.892380i \(-0.350966\pi\)
0.451285 + 0.892380i \(0.350966\pi\)
\(912\) 45.8893 + 79.4826i 1.51955 + 2.63193i
\(913\) −0.939704 + 1.62761i −0.0310997 + 0.0538662i
\(914\) −63.3483 −2.09538
\(915\) 0.465502 0.806273i 0.0153890 0.0266546i
\(916\) −70.9872 122.953i −2.34548 4.06249i
\(917\) −24.2150 41.9416i −0.799650 1.38504i
\(918\) 0.288546 + 0.499776i 0.00952343 + 0.0164951i
\(919\) −29.0403 −0.957951 −0.478976 0.877828i \(-0.658992\pi\)
−0.478976 + 0.877828i \(0.658992\pi\)
\(920\) 13.3156 + 23.0632i 0.439001 + 0.760372i
\(921\) 10.6164 + 18.3882i 0.349824 + 0.605912i
\(922\) −16.8003 + 29.0990i −0.553288 + 0.958323i
\(923\) 39.3047 68.0777i 1.29373 2.24080i
\(924\) 86.7525 2.85395
\(925\) 6.96191 0.228906
\(926\) −19.8334 + 34.3525i −0.651767 + 1.12889i
\(927\) −1.63274 + 2.82800i −0.0536264 + 0.0928836i
\(928\) 56.7923 + 98.3672i 1.86430 + 3.22906i
\(929\) −19.6954 34.1134i −0.646184 1.11922i −0.984027 0.178021i \(-0.943030\pi\)
0.337843 0.941203i \(-0.390303\pi\)
\(930\) −7.60925 −0.249517
\(931\) −40.4269 70.0215i −1.32494 2.29486i
\(932\) −57.8197 100.147i −1.89395 3.28041i
\(933\) −1.62611 2.81650i −0.0532364 0.0922082i
\(934\) 35.3945 61.3051i 1.15814 2.00596i
\(935\) −0.693075 −0.0226660
\(936\) 27.8216 48.1884i 0.909378 1.57509i
\(937\) 6.30165 + 10.9148i 0.205866 + 0.356570i 0.950408 0.311005i \(-0.100666\pi\)
−0.744542 + 0.667575i \(0.767332\pi\)
\(938\) 26.9641 0.880408
\(939\) 1.11131 + 1.92484i 0.0362662 + 0.0628148i
\(940\) −10.6083 + 18.3741i −0.346004 + 0.599297i
\(941\) −5.95419 + 10.3130i −0.194101 + 0.336193i −0.946605 0.322394i \(-0.895512\pi\)
0.752504 + 0.658587i \(0.228846\pi\)
\(942\) 60.1250 1.95898
\(943\) −7.05603 + 12.2214i −0.229776 + 0.397984i
\(944\) 155.003 5.04491
\(945\) −4.63916 −0.150912
\(946\) 39.1296 + 45.6548i 1.27221 + 1.48437i
\(947\) 50.3857 1.63732 0.818658 0.574282i \(-0.194719\pi\)
0.818658 + 0.574282i \(0.194719\pi\)
\(948\) −83.9000 −2.72495
\(949\) 5.09115 8.81813i 0.165266 0.286249i
\(950\) 15.3846 0.499142
\(951\) −8.28412 + 14.3485i −0.268631 + 0.465283i
\(952\) −4.86596 + 8.42809i −0.157707 + 0.273156i
\(953\) −23.1851 40.1578i −0.751040 1.30084i −0.947319 0.320292i \(-0.896219\pi\)
0.196279 0.980548i \(-0.437114\pi\)
\(954\) −23.7716 −0.769633
\(955\) 5.28258 + 9.14970i 0.170940 + 0.296077i
\(956\) 10.2981 17.8368i 0.333063 0.576882i
\(957\) −14.8052 −0.478585
\(958\) −40.1887 + 69.6088i −1.29844 + 2.24896i
\(959\) −40.4367 70.0385i −1.30577 2.26166i
\(960\) 18.6902 + 32.3723i 0.603223 + 1.04481i
\(961\) 11.7082 + 20.2793i 0.377685 + 0.654170i
\(962\) −106.568 −3.43589
\(963\) 4.60730 + 7.98008i 0.148468 + 0.257154i
\(964\) −14.4380 25.0074i −0.465018 0.805434i
\(965\) −5.20642 + 9.01779i −0.167601 + 0.290293i
\(966\) −16.9936 + 29.4337i −0.546759 + 0.947015i
\(967\) −18.7056 −0.601532 −0.300766 0.953698i \(-0.597242\pi\)
−0.300766 + 0.953698i \(0.597242\pi\)
\(968\) 0.125177 0.00402335
\(969\) 0.581416 1.00704i 0.0186778 0.0323509i
\(970\) −9.86476 + 17.0863i −0.316738 + 0.548607i
\(971\) −21.5850 37.3863i −0.692696 1.19978i −0.970951 0.239277i \(-0.923089\pi\)
0.278255 0.960507i \(-0.410244\pi\)
\(972\) 2.81754 + 4.88013i 0.0903727 + 0.156530i
\(973\) 68.4411 2.19412
\(974\) 15.2155 + 26.3539i 0.487535 + 0.844435i
\(975\) −2.76988 4.79757i −0.0887071 0.153645i
\(976\) −7.67333 13.2906i −0.245617 0.425422i
\(977\) −15.4498 + 26.7598i −0.494281 + 0.856121i −0.999978 0.00659063i \(-0.997902\pi\)
0.505697 + 0.862711i \(0.331235\pi\)
\(978\) 29.3626 0.938912
\(979\) −19.1866 + 33.2323i −0.613208 + 1.06211i
\(980\) −40.9159 70.8683i −1.30701 2.26381i
\(981\) 5.23537 0.167153
\(982\) −23.0587 39.9388i −0.735832 1.27450i
\(983\) −4.80947 + 8.33025i −0.153398 + 0.265694i −0.932475 0.361235i \(-0.882355\pi\)
0.779076 + 0.626929i \(0.215688\pi\)
\(984\) −26.7309 + 46.2993i −0.852150 + 1.47597i
\(985\) −3.59483 −0.114541
\(986\) 1.28732 2.22971i 0.0409967 0.0710084i
\(987\) −17.4669 −0.555976
\(988\) −173.808 −5.52958
\(989\) −17.0895 + 3.19791i −0.543414 + 0.101688i
\(990\) −9.16957 −0.291428
\(991\) 30.2145 0.959796 0.479898 0.877324i \(-0.340674\pi\)
0.479898 + 0.877324i \(0.340674\pi\)
\(992\) −35.0552 + 60.7173i −1.11300 + 1.92778i
\(993\) −31.3266 −0.994121
\(994\) −90.9493 + 157.529i −2.88474 + 4.99651i
\(995\) −3.77044 + 6.53060i −0.119531 + 0.207034i
\(996\) −1.59569 2.76382i −0.0505614 0.0875750i
\(997\) −18.4041 −0.582864 −0.291432 0.956592i \(-0.594132\pi\)
−0.291432 + 0.956592i \(0.594132\pi\)
\(998\) 19.2321 + 33.3110i 0.608782 + 1.05444i
\(999\) 3.48096 6.02919i 0.110133 0.190755i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 645.2.i.g.436.7 14
43.36 even 3 inner 645.2.i.g.466.7 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
645.2.i.g.436.7 14 1.1 even 1 trivial
645.2.i.g.466.7 yes 14 43.36 even 3 inner