Properties

Label 645.2.a.i
Level $645$
Weight $2$
Character orbit 645.a
Self dual yes
Analytic conductor $5.150$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [645,2,Mod(1,645)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("645.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(645, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 645 = 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 645.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.15035093037\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - q^{3} + ( - \beta_{2} - \beta_1 + 1) q^{4} + q^{5} - \beta_{2} q^{6} + (\beta_1 - 3) q^{7} - 2 q^{8} + q^{9} + \beta_{2} q^{10} + ( - \beta_{2} + 2 \beta_1 - 1) q^{11} + (\beta_{2} + \beta_1 - 1) q^{12}+ \cdots + ( - \beta_{2} + 2 \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 2 q^{4} + 3 q^{5} - 8 q^{7} - 6 q^{8} + 3 q^{9} - q^{11} - 2 q^{12} - 3 q^{13} - 2 q^{14} - 3 q^{15} - 4 q^{16} - 3 q^{17} - 6 q^{19} + 2 q^{20} + 8 q^{21} - 12 q^{22} - 9 q^{23} + 6 q^{24}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
2.17009
−1.48119
−2.21432 −1.00000 2.90321 1.00000 2.21432 −2.68889 −2.00000 1.00000 −2.21432
1.2 0.539189 −1.00000 −1.70928 1.00000 −0.539189 −0.829914 −2.00000 1.00000 0.539189
1.3 1.67513 −1.00000 0.806063 1.00000 −1.67513 −4.48119 −2.00000 1.00000 1.67513
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(43\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 645.2.a.i 3
3.b odd 2 1 1935.2.a.p 3
5.b even 2 1 3225.2.a.r 3
15.d odd 2 1 9675.2.a.bs 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
645.2.a.i 3 1.a even 1 1 trivial
1935.2.a.p 3 3.b odd 2 1
3225.2.a.r 3 5.b even 2 1
9675.2.a.bs 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(645))\):

\( T_{2}^{3} - 4T_{2} + 2 \) Copy content Toggle raw display
\( T_{7}^{3} + 8T_{7}^{2} + 18T_{7} + 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 4T + 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 8 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$11$ \( T^{3} + T^{2} + \cdots + 29 \) Copy content Toggle raw display
$13$ \( T^{3} + 3T^{2} - T - 1 \) Copy content Toggle raw display
$17$ \( T^{3} + 3 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$19$ \( T^{3} + 6 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$23$ \( T^{3} + 9T^{2} - T - 5 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$31$ \( T^{3} + 7 T^{2} + \cdots - 475 \) Copy content Toggle raw display
$37$ \( T^{3} + 6 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$41$ \( T^{3} - 3 T^{2} + \cdots + 155 \) Copy content Toggle raw display
$43$ \( (T - 1)^{3} \) Copy content Toggle raw display
$47$ \( T^{3} + 12 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$53$ \( T^{3} - 3 T^{2} + \cdots - 305 \) Copy content Toggle raw display
$59$ \( (T + 4)^{3} \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots + 248 \) Copy content Toggle raw display
$67$ \( T^{3} + 27 T^{2} + \cdots + 361 \) Copy content Toggle raw display
$71$ \( T^{3} - 12 T^{2} + \cdots + 50 \) Copy content Toggle raw display
$73$ \( T^{3} + 28 T^{2} + \cdots + 320 \) Copy content Toggle raw display
$79$ \( T^{3} + 8 T^{2} + \cdots - 740 \) Copy content Toggle raw display
$83$ \( T^{3} + 33 T^{2} + \cdots + 1075 \) Copy content Toggle raw display
$89$ \( T^{3} - 6 T^{2} + \cdots + 54 \) Copy content Toggle raw display
$97$ \( T^{3} + 15 T^{2} + \cdots - 281 \) Copy content Toggle raw display
show more
show less