Properties

Label 644.1.r.a
Level 644644
Weight 11
Character orbit 644.r
Analytic conductor 0.3210.321
Analytic rank 00
Dimension 1010
Projective image D22D_{22}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [644,1,Mod(83,644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(644, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 11, 21])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("644.83"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 644=22723 644 = 2^{2} \cdot 7 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 644.r (of order 2222, degree 1010, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-1,0,-1,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3213978681360.321397868136
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D22D_{22}
Projective field: Galois closure of Q[x]/(x22)\mathbb{Q}[x]/(x^{22} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ226q2ζ22q4ζ229q7ζ227q8+ζ223q9+(ζ2210ζ222)q11+ζ224q14+ζ222q16++(ζ225+ζ222)q99+O(q100) q + \zeta_{22}^{6} q^{2} - \zeta_{22} q^{4} - \zeta_{22}^{9} q^{7} - \zeta_{22}^{7} q^{8} + \zeta_{22}^{3} q^{9} + ( - \zeta_{22}^{10} - \zeta_{22}^{2}) q^{11} + \zeta_{22}^{4} q^{14} + \zeta_{22}^{2} q^{16} + \cdots + ( - \zeta_{22}^{5} + \zeta_{22}^{2}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10qq2q4q7q8+q9+2q11q14q16+q18+2q22q23+q25q28+2q29q32+q362q439q44q46q49+2q99+O(q100) 10 q - q^{2} - q^{4} - q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{14} - q^{16} + q^{18} + 2 q^{22} - q^{23} + q^{25} - q^{28} + 2 q^{29} - q^{32} + q^{36} - 2 q^{43} - 9 q^{44} - q^{46} - q^{49}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/644Z)×\left(\mathbb{Z}/644\mathbb{Z}\right)^\times.

nn 185185 281281 323323
χ(n)\chi(n) 1-1 ζ225\zeta_{22}^{5} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
83.1
−0.841254 0.540641i
0.654861 + 0.755750i
−0.415415 0.909632i
−0.415415 + 0.909632i
−0.841254 + 0.540641i
0.142315 + 0.989821i
0.959493 0.281733i
0.959493 + 0.281733i
0.142315 0.989821i
0.654861 0.755750i
−0.959493 0.281733i 0 0.841254 + 0.540641i 0 0 0.415415 0.909632i −0.654861 0.755750i 0.142315 0.989821i 0
111.1 0.415415 0.909632i 0 −0.654861 0.755750i 0 0 −0.142315 0.989821i −0.959493 + 0.281733i −0.841254 + 0.540641i 0
195.1 0.841254 + 0.540641i 0 0.415415 + 0.909632i 0 0 −0.654861 0.755750i −0.142315 + 0.989821i 0.959493 + 0.281733i 0
251.1 0.841254 0.540641i 0 0.415415 0.909632i 0 0 −0.654861 + 0.755750i −0.142315 0.989821i 0.959493 0.281733i 0
419.1 −0.959493 + 0.281733i 0 0.841254 0.540641i 0 0 0.415415 + 0.909632i −0.654861 + 0.755750i 0.142315 + 0.989821i 0
447.1 −0.654861 + 0.755750i 0 −0.142315 0.989821i 0 0 −0.959493 0.281733i 0.841254 + 0.540641i −0.415415 0.909632i 0
475.1 −0.142315 0.989821i 0 −0.959493 + 0.281733i 0 0 0.841254 + 0.540641i 0.415415 + 0.909632i 0.654861 0.755750i 0
503.1 −0.142315 + 0.989821i 0 −0.959493 0.281733i 0 0 0.841254 0.540641i 0.415415 0.909632i 0.654861 + 0.755750i 0
559.1 −0.654861 0.755750i 0 −0.142315 + 0.989821i 0 0 −0.959493 + 0.281733i 0.841254 0.540641i −0.415415 + 0.909632i 0
615.1 0.415415 + 0.909632i 0 −0.654861 + 0.755750i 0 0 −0.142315 + 0.989821i −0.959493 0.281733i −0.841254 0.540641i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 83.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
92.h even 22 1 inner
644.r odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 644.1.r.a 10
4.b odd 2 1 644.1.r.b yes 10
7.b odd 2 1 CM 644.1.r.a 10
23.d odd 22 1 644.1.r.b yes 10
28.d even 2 1 644.1.r.b yes 10
92.h even 22 1 inner 644.1.r.a 10
161.k even 22 1 644.1.r.b yes 10
644.r odd 22 1 inner 644.1.r.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
644.1.r.a 10 1.a even 1 1 trivial
644.1.r.a 10 7.b odd 2 1 CM
644.1.r.a 10 92.h even 22 1 inner
644.1.r.a 10 644.r odd 22 1 inner
644.1.r.b yes 10 4.b odd 2 1
644.1.r.b yes 10 23.d odd 22 1
644.1.r.b yes 10 28.d even 2 1
644.1.r.b yes 10 161.k even 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T11102T119+4T118+3T1176T116+12T115+9T1147T113+14T1126T11+1 T_{11}^{10} - 2T_{11}^{9} + 4T_{11}^{8} + 3T_{11}^{7} - 6T_{11}^{6} + 12T_{11}^{5} + 9T_{11}^{4} - 7T_{11}^{3} + 14T_{11}^{2} - 6T_{11} + 1 acting on S1new(644,[χ])S_{1}^{\mathrm{new}}(644, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
33 T10 T^{10} Copy content Toggle raw display
55 T10 T^{10} Copy content Toggle raw display
77 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
1111 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
1313 T10 T^{10} Copy content Toggle raw display
1717 T10 T^{10} Copy content Toggle raw display
1919 T10 T^{10} Copy content Toggle raw display
2323 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
2929 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3131 T10 T^{10} Copy content Toggle raw display
3737 T10+11T7++11 T^{10} + 11 T^{7} + \cdots + 11 Copy content Toggle raw display
4141 T10 T^{10} Copy content Toggle raw display
4343 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
4747 T10 T^{10} Copy content Toggle raw display
5353 T1011T7++11 T^{10} - 11 T^{7} + \cdots + 11 Copy content Toggle raw display
5959 T10 T^{10} Copy content Toggle raw display
6161 T10 T^{10} Copy content Toggle raw display
6767 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
7171 T10+11T7++11 T^{10} + 11 T^{7} + \cdots + 11 Copy content Toggle raw display
7373 T10 T^{10} Copy content Toggle raw display
7979 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
8383 T10 T^{10} Copy content Toggle raw display
8989 T10 T^{10} Copy content Toggle raw display
9797 T10 T^{10} Copy content Toggle raw display
show more
show less