gp: [N,k,chi] = [644,1,Mod(83,644)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(644, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 11, 21]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("644.83");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [10,-1,0,-1,0,0,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 644 Z ) × \left(\mathbb{Z}/644\mathbb{Z}\right)^\times ( Z / 6 4 4 Z ) × .
n n n
185 185 1 8 5
281 281 2 8 1
323 323 3 2 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
ζ 22 5 \zeta_{22}^{5} ζ 2 2 5
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 11 10 − 2 T 11 9 + 4 T 11 8 + 3 T 11 7 − 6 T 11 6 + 12 T 11 5 + 9 T 11 4 − 7 T 11 3 + 14 T 11 2 − 6 T 11 + 1 T_{11}^{10} - 2T_{11}^{9} + 4T_{11}^{8} + 3T_{11}^{7} - 6T_{11}^{6} + 12T_{11}^{5} + 9T_{11}^{4} - 7T_{11}^{3} + 14T_{11}^{2} - 6T_{11} + 1 T 1 1 1 0 − 2 T 1 1 9 + 4 T 1 1 8 + 3 T 1 1 7 − 6 T 1 1 6 + 1 2 T 1 1 5 + 9 T 1 1 4 − 7 T 1 1 3 + 1 4 T 1 1 2 − 6 T 1 1 + 1
T11^10 - 2*T11^9 + 4*T11^8 + 3*T11^7 - 6*T11^6 + 12*T11^5 + 9*T11^4 - 7*T11^3 + 14*T11^2 - 6*T11 + 1
acting on S 1 n e w ( 644 , [ χ ] ) S_{1}^{\mathrm{new}}(644, [\chi]) S 1 n e w ( 6 4 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 10 + T 9 + ⋯ + 1 T^{10} + T^{9} + \cdots + 1 T 1 0 + T 9 + ⋯ + 1
T^10 + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3 + T^2 + T + 1
3 3 3
T 10 T^{10} T 1 0
T^10
5 5 5
T 10 T^{10} T 1 0
T^10
7 7 7
T 10 + T 9 + ⋯ + 1 T^{10} + T^{9} + \cdots + 1 T 1 0 + T 9 + ⋯ + 1
T^10 + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3 + T^2 + T + 1
11 11 1 1
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 + 3*T^7 - 6*T^6 + 12*T^5 + 9*T^4 - 7*T^3 + 14*T^2 - 6*T + 1
13 13 1 3
T 10 T^{10} T 1 0
T^10
17 17 1 7
T 10 T^{10} T 1 0
T^10
19 19 1 9
T 10 T^{10} T 1 0
T^10
23 23 2 3
T 10 + T 9 + ⋯ + 1 T^{10} + T^{9} + \cdots + 1 T 1 0 + T 9 + ⋯ + 1
T^10 + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3 + T^2 + T + 1
29 29 2 9
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 - 8*T^7 + 16*T^6 - 10*T^5 + 20*T^4 - 7*T^3 + 3*T^2 + 5*T + 1
31 31 3 1
T 10 T^{10} T 1 0
T^10
37 37 3 7
T 10 + 11 T 7 + ⋯ + 11 T^{10} + 11 T^{7} + \cdots + 11 T 1 0 + 1 1 T 7 + ⋯ + 1 1
T^10 + 11*T^7 + 33*T^4 - 11*T^3 + 22*T + 11
41 41 4 1
T 10 T^{10} T 1 0
T^10
43 43 4 3
T 10 + 2 T 9 + ⋯ + 1 T^{10} + 2 T^{9} + \cdots + 1 T 1 0 + 2 T 9 + ⋯ + 1
T^10 + 2*T^9 + 4*T^8 + 8*T^7 + 5*T^6 - T^5 - 2*T^4 - 4*T^3 + 14*T^2 - 5*T + 1
47 47 4 7
T 10 T^{10} T 1 0
T^10
53 53 5 3
T 10 − 11 T 7 + ⋯ + 11 T^{10} - 11 T^{7} + \cdots + 11 T 1 0 − 1 1 T 7 + ⋯ + 1 1
T^10 - 11*T^7 + 33*T^4 + 11*T^3 - 22*T + 11
59 59 5 9
T 10 T^{10} T 1 0
T^10
61 61 6 1
T 10 T^{10} T 1 0
T^10
67 67 6 7
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 - 8*T^7 + 5*T^6 + T^5 - 2*T^4 + 4*T^3 + 14*T^2 + 5*T + 1
71 71 7 1
T 10 + 11 T 7 + ⋯ + 11 T^{10} + 11 T^{7} + \cdots + 11 T 1 0 + 1 1 T 7 + ⋯ + 1 1
T^10 + 11*T^7 + 33*T^4 - 11*T^3 + 22*T + 11
73 73 7 3
T 10 T^{10} T 1 0
T^10
79 79 7 9
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 + 3*T^7 - 6*T^6 + 12*T^5 + 9*T^4 - 7*T^3 + 14*T^2 - 6*T + 1
83 83 8 3
T 10 T^{10} T 1 0
T^10
89 89 8 9
T 10 T^{10} T 1 0
T^10
97 97 9 7
T 10 T^{10} T 1 0
T^10
show more
show less