Properties

Label 64.22.e.a.17.39
Level $64$
Weight $22$
Character 64.17
Analytic conductor $178.866$
Analytic rank $0$
Dimension $82$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [64,22,Mod(17,64)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("64.17"); S:= CuspForms(chi, 22); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(64, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 22, names="a")
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 64.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(178.865500344\)
Analytic rank: \(0\)
Dimension: \(82\)
Relative dimension: \(41\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.39
Character \(\chi\) \(=\) 64.17
Dual form 64.22.e.a.49.39

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(127691. + 127691. i) q^{3} +(6.46851e6 - 6.46851e6i) q^{5} +1.09329e9i q^{7} +2.21494e10i q^{9} +(-9.04627e10 + 9.04627e10i) q^{11} +(6.65615e10 + 6.65615e10i) q^{13} +1.65194e12 q^{15} -1.23211e13 q^{17} +(2.96854e13 + 2.96854e13i) q^{19} +(-1.39603e14 + 1.39603e14i) q^{21} +1.97243e14i q^{23} +3.93154e14i q^{25} +(-1.49258e15 + 1.49258e15i) q^{27} +(-9.11213e14 - 9.11213e14i) q^{29} +4.52120e15 q^{31} -2.31025e16 q^{33} +(7.07199e15 + 7.07199e15i) q^{35} +(2.37522e16 - 2.37522e16i) q^{37} +1.69985e16i q^{39} -4.95700e16i q^{41} +(5.80467e16 - 5.80467e16i) q^{43} +(1.43274e17 + 1.43274e17i) q^{45} -1.35072e17 q^{47} -6.36747e17 q^{49} +(-1.57329e18 - 1.57329e18i) q^{51} +(1.22723e18 - 1.22723e18i) q^{53} +1.17032e18i q^{55} +7.58110e18i q^{57} +(2.88659e18 - 2.88659e18i) q^{59} +(-2.51678e18 - 2.51678e18i) q^{61} -2.42158e19 q^{63} +8.61108e17 q^{65} +(-1.76441e18 - 1.76441e18i) q^{67} +(-2.51861e19 + 2.51861e19i) q^{69} +6.89277e18i q^{71} +2.30134e19i q^{73} +(-5.02020e19 + 5.02020e19i) q^{75} +(-9.89024e19 - 9.89024e19i) q^{77} -5.60462e18 q^{79} -1.49486e20 q^{81} +(5.63613e18 + 5.63613e18i) q^{83} +(-7.96993e19 + 7.96993e19i) q^{85} -2.32706e20i q^{87} -1.52218e20i q^{89} +(-7.27713e19 + 7.27713e19i) q^{91} +(5.77314e20 + 5.77314e20i) q^{93} +3.84041e20 q^{95} -2.96525e20 q^{97} +(-2.00369e21 - 2.00369e21i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 82 q + 2 q^{3} - 2 q^{5} - 67333320738 q^{11} - 2 q^{13} - 4613203124996 q^{15} - 4 q^{17} + 46007763621434 q^{19} + 20920706404 q^{21} - 11\!\cdots\!20 q^{27} - 24\!\cdots\!02 q^{29} + 98\!\cdots\!16 q^{31}+ \cdots - 27\!\cdots\!38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/64\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(63\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 127691. + 127691.i 1.24849 + 1.24849i 0.956386 + 0.292105i \(0.0943556\pi\)
0.292105 + 0.956386i \(0.405644\pi\)
\(4\) 0 0
\(5\) 6.46851e6 6.46851e6i 0.296223 0.296223i −0.543309 0.839533i \(-0.682829\pi\)
0.839533 + 0.543309i \(0.182829\pi\)
\(6\) 0 0
\(7\) 1.09329e9i 1.46288i 0.681907 + 0.731438i \(0.261151\pi\)
−0.681907 + 0.731438i \(0.738849\pi\)
\(8\) 0 0
\(9\) 2.21494e10i 2.11746i
\(10\) 0 0
\(11\) −9.04627e10 + 9.04627e10i −1.05159 + 1.05159i −0.0529954 + 0.998595i \(0.516877\pi\)
−0.998595 + 0.0529954i \(0.983123\pi\)
\(12\) 0 0
\(13\) 6.65615e10 + 6.65615e10i 0.133911 + 0.133911i 0.770885 0.636974i \(-0.219814\pi\)
−0.636974 + 0.770885i \(0.719814\pi\)
\(14\) 0 0
\(15\) 1.65194e12 0.739665
\(16\) 0 0
\(17\) −1.23211e13 −1.48230 −0.741151 0.671339i \(-0.765720\pi\)
−0.741151 + 0.671339i \(0.765720\pi\)
\(18\) 0 0
\(19\) 2.96854e13 + 2.96854e13i 1.11079 + 1.11079i 0.993044 + 0.117743i \(0.0375659\pi\)
0.117743 + 0.993044i \(0.462434\pi\)
\(20\) 0 0
\(21\) −1.39603e14 + 1.39603e14i −1.82639 + 1.82639i
\(22\) 0 0
\(23\) 1.97243e14i 0.992796i 0.868095 + 0.496398i \(0.165344\pi\)
−0.868095 + 0.496398i \(0.834656\pi\)
\(24\) 0 0
\(25\) 3.93154e14i 0.824503i
\(26\) 0 0
\(27\) −1.49258e15 + 1.49258e15i −1.39514 + 1.39514i
\(28\) 0 0
\(29\) −9.11213e14 9.11213e14i −0.402199 0.402199i 0.476808 0.879007i \(-0.341794\pi\)
−0.879007 + 0.476808i \(0.841794\pi\)
\(30\) 0 0
\(31\) 4.52120e15 0.990730 0.495365 0.868685i \(-0.335034\pi\)
0.495365 + 0.868685i \(0.335034\pi\)
\(32\) 0 0
\(33\) −2.31025e16 −2.62580
\(34\) 0 0
\(35\) 7.07199e15 + 7.07199e15i 0.433338 + 0.433338i
\(36\) 0 0
\(37\) 2.37522e16 2.37522e16i 0.812056 0.812056i −0.172886 0.984942i \(-0.555309\pi\)
0.984942 + 0.172886i \(0.0553092\pi\)
\(38\) 0 0
\(39\) 1.69985e16i 0.334375i
\(40\) 0 0
\(41\) 4.95700e16i 0.576751i −0.957517 0.288375i \(-0.906885\pi\)
0.957517 0.288375i \(-0.0931151\pi\)
\(42\) 0 0
\(43\) 5.80467e16 5.80467e16i 0.409599 0.409599i −0.472000 0.881599i \(-0.656468\pi\)
0.881599 + 0.472000i \(0.156468\pi\)
\(44\) 0 0
\(45\) 1.43274e17 + 1.43274e17i 0.627241 + 0.627241i
\(46\) 0 0
\(47\) −1.35072e17 −0.374573 −0.187287 0.982305i \(-0.559969\pi\)
−0.187287 + 0.982305i \(0.559969\pi\)
\(48\) 0 0
\(49\) −6.36747e17 −1.14001
\(50\) 0 0
\(51\) −1.57329e18 1.57329e18i −1.85064 1.85064i
\(52\) 0 0
\(53\) 1.22723e18 1.22723e18i 0.963891 0.963891i −0.0354791 0.999370i \(-0.511296\pi\)
0.999370 + 0.0354791i \(0.0112957\pi\)
\(54\) 0 0
\(55\) 1.17032e18i 0.623011i
\(56\) 0 0
\(57\) 7.58110e18i 2.77362i
\(58\) 0 0
\(59\) 2.88659e18 2.88659e18i 0.735257 0.735257i −0.236399 0.971656i \(-0.575967\pi\)
0.971656 + 0.236399i \(0.0759673\pi\)
\(60\) 0 0
\(61\) −2.51678e18 2.51678e18i −0.451733 0.451733i 0.444197 0.895929i \(-0.353489\pi\)
−0.895929 + 0.444197i \(0.853489\pi\)
\(62\) 0 0
\(63\) −2.42158e19 −3.09758
\(64\) 0 0
\(65\) 8.61108e17 0.0793354
\(66\) 0 0
\(67\) −1.76441e18 1.76441e18i −0.118254 0.118254i 0.645504 0.763757i \(-0.276648\pi\)
−0.763757 + 0.645504i \(0.776648\pi\)
\(68\) 0 0
\(69\) −2.51861e19 + 2.51861e19i −1.23950 + 1.23950i
\(70\) 0 0
\(71\) 6.89277e18i 0.251293i 0.992075 + 0.125647i \(0.0401006\pi\)
−0.992075 + 0.125647i \(0.959899\pi\)
\(72\) 0 0
\(73\) 2.30134e19i 0.626746i 0.949630 + 0.313373i \(0.101459\pi\)
−0.949630 + 0.313373i \(0.898541\pi\)
\(74\) 0 0
\(75\) −5.02020e19 + 5.02020e19i −1.02939 + 1.02939i
\(76\) 0 0
\(77\) −9.89024e19 9.89024e19i −1.53835 1.53835i
\(78\) 0 0
\(79\) −5.60462e18 −0.0665981 −0.0332991 0.999445i \(-0.510601\pi\)
−0.0332991 + 0.999445i \(0.510601\pi\)
\(80\) 0 0
\(81\) −1.49486e20 −1.36618
\(82\) 0 0
\(83\) 5.63613e18 + 5.63613e18i 0.0398713 + 0.0398713i 0.726761 0.686890i \(-0.241025\pi\)
−0.686890 + 0.726761i \(0.741025\pi\)
\(84\) 0 0
\(85\) −7.96993e19 + 7.96993e19i −0.439092 + 0.439092i
\(86\) 0 0
\(87\) 2.32706e20i 1.00428i
\(88\) 0 0
\(89\) 1.52218e20i 0.517454i −0.965950 0.258727i \(-0.916697\pi\)
0.965950 0.258727i \(-0.0833031\pi\)
\(90\) 0 0
\(91\) −7.27713e19 + 7.27713e19i −0.195896 + 0.195896i
\(92\) 0 0
\(93\) 5.77314e20 + 5.77314e20i 1.23692 + 1.23692i
\(94\) 0 0
\(95\) 3.84041e20 0.658082
\(96\) 0 0
\(97\) −2.96525e20 −0.408280 −0.204140 0.978942i \(-0.565440\pi\)
−0.204140 + 0.978942i \(0.565440\pi\)
\(98\) 0 0
\(99\) −2.00369e21 2.00369e21i −2.22670 2.22670i
\(100\) 0 0
\(101\) −3.30198e20 + 3.30198e20i −0.297441 + 0.297441i −0.840011 0.542570i \(-0.817451\pi\)
0.542570 + 0.840011i \(0.317451\pi\)
\(102\) 0 0
\(103\) 1.54573e21i 1.13330i 0.823960 + 0.566648i \(0.191760\pi\)
−0.823960 + 0.566648i \(0.808240\pi\)
\(104\) 0 0
\(105\) 1.80605e21i 1.08204i
\(106\) 0 0
\(107\) 1.29617e21 1.29617e21i 0.636989 0.636989i −0.312823 0.949812i \(-0.601275\pi\)
0.949812 + 0.312823i \(0.101275\pi\)
\(108\) 0 0
\(109\) 1.86079e21 + 1.86079e21i 0.752867 + 0.752867i 0.975013 0.222147i \(-0.0713064\pi\)
−0.222147 + 0.975013i \(0.571306\pi\)
\(110\) 0 0
\(111\) 6.06586e21 2.02769
\(112\) 0 0
\(113\) 6.20544e21 1.71968 0.859842 0.510560i \(-0.170562\pi\)
0.859842 + 0.510560i \(0.170562\pi\)
\(114\) 0 0
\(115\) 1.27587e21 + 1.27587e21i 0.294089 + 0.294089i
\(116\) 0 0
\(117\) −1.47430e21 + 1.47430e21i −0.283552 + 0.283552i
\(118\) 0 0
\(119\) 1.34706e22i 2.16842i
\(120\) 0 0
\(121\) 8.96676e21i 1.21168i
\(122\) 0 0
\(123\) 6.32962e21 6.32962e21i 0.720068 0.720068i
\(124\) 0 0
\(125\) 5.62755e21 + 5.62755e21i 0.540461 + 0.540461i
\(126\) 0 0
\(127\) 1.34643e20 0.0109457 0.00547286 0.999985i \(-0.498258\pi\)
0.00547286 + 0.999985i \(0.498258\pi\)
\(128\) 0 0
\(129\) 1.48240e22 1.02276
\(130\) 0 0
\(131\) −1.36500e22 1.36500e22i −0.801279 0.801279i 0.182017 0.983295i \(-0.441738\pi\)
−0.983295 + 0.182017i \(0.941738\pi\)
\(132\) 0 0
\(133\) −3.24549e22 + 3.24549e22i −1.62494 + 1.62494i
\(134\) 0 0
\(135\) 1.93095e22i 0.826545i
\(136\) 0 0
\(137\) 9.56736e21i 0.350935i 0.984485 + 0.175467i \(0.0561436\pi\)
−0.984485 + 0.175467i \(0.943856\pi\)
\(138\) 0 0
\(139\) −2.93604e22 + 2.93604e22i −0.924925 + 0.924925i −0.997372 0.0724475i \(-0.976919\pi\)
0.0724475 + 0.997372i \(0.476919\pi\)
\(140\) 0 0
\(141\) −1.72474e22 1.72474e22i −0.467651 0.467651i
\(142\) 0 0
\(143\) −1.20427e22 −0.281640
\(144\) 0 0
\(145\) −1.17884e22 −0.238281
\(146\) 0 0
\(147\) −8.13066e22 8.13066e22i −1.42329 1.42329i
\(148\) 0 0
\(149\) −5.13045e22 + 5.13045e22i −0.779292 + 0.779292i −0.979710 0.200419i \(-0.935770\pi\)
0.200419 + 0.979710i \(0.435770\pi\)
\(150\) 0 0
\(151\) 1.19676e23i 1.58033i 0.612893 + 0.790166i \(0.290006\pi\)
−0.612893 + 0.790166i \(0.709994\pi\)
\(152\) 0 0
\(153\) 2.72905e23i 3.13871i
\(154\) 0 0
\(155\) 2.92454e22 2.92454e22i 0.293478 0.293478i
\(156\) 0 0
\(157\) −5.54236e22 5.54236e22i −0.486126 0.486126i 0.420956 0.907081i \(-0.361695\pi\)
−0.907081 + 0.420956i \(0.861695\pi\)
\(158\) 0 0
\(159\) 3.13410e23 2.40682
\(160\) 0 0
\(161\) −2.15645e23 −1.45234
\(162\) 0 0
\(163\) −1.91177e23 1.91177e23i −1.13101 1.13101i −0.990010 0.140995i \(-0.954970\pi\)
−0.140995 0.990010i \(-0.545030\pi\)
\(164\) 0 0
\(165\) −1.49439e23 + 1.49439e23i −0.777824 + 0.777824i
\(166\) 0 0
\(167\) 1.02442e23i 0.469848i 0.972014 + 0.234924i \(0.0754841\pi\)
−0.972014 + 0.234924i \(0.924516\pi\)
\(168\) 0 0
\(169\) 2.38204e23i 0.964135i
\(170\) 0 0
\(171\) −6.57514e23 + 6.57514e23i −2.35205 + 2.35205i
\(172\) 0 0
\(173\) 3.70272e23 + 3.70272e23i 1.17230 + 1.17230i 0.981661 + 0.190634i \(0.0610545\pi\)
0.190634 + 0.981661i \(0.438945\pi\)
\(174\) 0 0
\(175\) −4.29833e23 −1.20615
\(176\) 0 0
\(177\) 7.37180e23 1.83592
\(178\) 0 0
\(179\) −8.53306e22 8.53306e22i −0.188863 0.188863i 0.606341 0.795205i \(-0.292637\pi\)
−0.795205 + 0.606341i \(0.792637\pi\)
\(180\) 0 0
\(181\) −1.04338e23 + 1.04338e23i −0.205503 + 0.205503i −0.802353 0.596850i \(-0.796419\pi\)
0.596850 + 0.802353i \(0.296419\pi\)
\(182\) 0 0
\(183\) 6.42737e23i 1.12797i
\(184\) 0 0
\(185\) 3.07283e23i 0.481100i
\(186\) 0 0
\(187\) 1.11460e24 1.11460e24i 1.55877 1.55877i
\(188\) 0 0
\(189\) −1.63183e24 1.63183e24i −2.04092 2.04092i
\(190\) 0 0
\(191\) 1.11757e24 1.25148 0.625739 0.780033i \(-0.284798\pi\)
0.625739 + 0.780033i \(0.284798\pi\)
\(192\) 0 0
\(193\) 9.81338e22 0.0985070 0.0492535 0.998786i \(-0.484316\pi\)
0.0492535 + 0.998786i \(0.484316\pi\)
\(194\) 0 0
\(195\) 1.09955e23 + 1.09955e23i 0.0990496 + 0.0990496i
\(196\) 0 0
\(197\) 1.71171e24 1.71171e24i 1.38527 1.38527i 0.550307 0.834962i \(-0.314511\pi\)
0.834962 0.550307i \(-0.185489\pi\)
\(198\) 0 0
\(199\) 9.27620e23i 0.675170i 0.941295 + 0.337585i \(0.109610\pi\)
−0.941295 + 0.337585i \(0.890390\pi\)
\(200\) 0 0
\(201\) 4.50597e23i 0.295277i
\(202\) 0 0
\(203\) 9.96224e23 9.96224e23i 0.588367 0.588367i
\(204\) 0 0
\(205\) −3.20644e23 3.20644e23i −0.170847 0.170847i
\(206\) 0 0
\(207\) −4.36882e24 −2.10221
\(208\) 0 0
\(209\) −5.37085e24 −2.33619
\(210\) 0 0
\(211\) 4.36535e22 + 4.36535e22i 0.0171812 + 0.0171812i 0.715645 0.698464i \(-0.246133\pi\)
−0.698464 + 0.715645i \(0.746133\pi\)
\(212\) 0 0
\(213\) −8.80141e23 + 8.80141e23i −0.313737 + 0.313737i
\(214\) 0 0
\(215\) 7.50951e23i 0.242665i
\(216\) 0 0
\(217\) 4.94300e24i 1.44932i
\(218\) 0 0
\(219\) −2.93860e24 + 2.93860e24i −0.782486 + 0.782486i
\(220\) 0 0
\(221\) −8.20112e23 8.20112e23i −0.198497 0.198497i
\(222\) 0 0
\(223\) −8.06105e24 −1.77497 −0.887484 0.460839i \(-0.847548\pi\)
−0.887484 + 0.460839i \(0.847548\pi\)
\(224\) 0 0
\(225\) −8.70811e24 −1.74585
\(226\) 0 0
\(227\) −4.51946e24 4.51946e24i −0.825686 0.825686i 0.161231 0.986917i \(-0.448454\pi\)
−0.986917 + 0.161231i \(0.948454\pi\)
\(228\) 0 0
\(229\) −1.32722e24 + 1.32722e24i −0.221142 + 0.221142i −0.808979 0.587837i \(-0.799979\pi\)
0.587837 + 0.808979i \(0.299979\pi\)
\(230\) 0 0
\(231\) 2.52578e25i 3.84122i
\(232\) 0 0
\(233\) 1.07270e24i 0.149019i −0.997220 0.0745095i \(-0.976261\pi\)
0.997220 0.0745095i \(-0.0237391\pi\)
\(234\) 0 0
\(235\) −8.73713e23 + 8.73713e23i −0.110957 + 0.110957i
\(236\) 0 0
\(237\) −7.15657e23 7.15657e23i −0.0831471 0.0831471i
\(238\) 0 0
\(239\) −1.44562e25 −1.53771 −0.768856 0.639423i \(-0.779173\pi\)
−0.768856 + 0.639423i \(0.779173\pi\)
\(240\) 0 0
\(241\) 4.34920e24 0.423868 0.211934 0.977284i \(-0.432024\pi\)
0.211934 + 0.977284i \(0.432024\pi\)
\(242\) 0 0
\(243\) −3.47501e24 3.47501e24i −0.310520 0.310520i
\(244\) 0 0
\(245\) −4.11881e24 + 4.11881e24i −0.337697 + 0.337697i
\(246\) 0 0
\(247\) 3.95182e24i 0.297494i
\(248\) 0 0
\(249\) 1.43936e24i 0.0995580i
\(250\) 0 0
\(251\) 6.83809e24 6.83809e24i 0.434871 0.434871i −0.455410 0.890282i \(-0.650507\pi\)
0.890282 + 0.455410i \(0.150507\pi\)
\(252\) 0 0
\(253\) −1.78432e25 1.78432e25i −1.04401 1.04401i
\(254\) 0 0
\(255\) −2.03537e25 −1.09641
\(256\) 0 0
\(257\) −1.42894e25 −0.709115 −0.354557 0.935034i \(-0.615368\pi\)
−0.354557 + 0.935034i \(0.615368\pi\)
\(258\) 0 0
\(259\) 2.59682e25 + 2.59682e25i 1.18794 + 1.18794i
\(260\) 0 0
\(261\) 2.01828e25 2.01828e25i 0.851640 0.851640i
\(262\) 0 0
\(263\) 4.82269e24i 0.187825i 0.995580 + 0.0939126i \(0.0299374\pi\)
−0.995580 + 0.0939126i \(0.970063\pi\)
\(264\) 0 0
\(265\) 1.58767e25i 0.571054i
\(266\) 0 0
\(267\) 1.94368e25 1.94368e25i 0.646037 0.646037i
\(268\) 0 0
\(269\) −1.44174e25 1.44174e25i −0.443085 0.443085i 0.449962 0.893048i \(-0.351437\pi\)
−0.893048 + 0.449962i \(0.851437\pi\)
\(270\) 0 0
\(271\) 5.03629e25 1.43197 0.715983 0.698117i \(-0.245979\pi\)
0.715983 + 0.698117i \(0.245979\pi\)
\(272\) 0 0
\(273\) −1.85844e25 −0.489149
\(274\) 0 0
\(275\) −3.55658e25 3.55658e25i −0.867040 0.867040i
\(276\) 0 0
\(277\) 4.43100e25 4.43100e25i 1.00107 1.00107i 0.00107069 0.999999i \(-0.499659\pi\)
0.999999 0.00107069i \(-0.000340810\pi\)
\(278\) 0 0
\(279\) 1.00142e26i 2.09783i
\(280\) 0 0
\(281\) 8.99135e23i 0.0174747i 0.999962 + 0.00873733i \(0.00278121\pi\)
−0.999962 + 0.00873733i \(0.997219\pi\)
\(282\) 0 0
\(283\) −2.47394e25 + 2.47394e25i −0.446306 + 0.446306i −0.894124 0.447819i \(-0.852201\pi\)
0.447819 + 0.894124i \(0.352201\pi\)
\(284\) 0 0
\(285\) 4.90384e25 + 4.90384e25i 0.821610 + 0.821610i
\(286\) 0 0
\(287\) 5.41946e25 0.843716
\(288\) 0 0
\(289\) 8.27181e25 1.19722
\(290\) 0 0
\(291\) −3.78635e25 3.78635e25i −0.509734 0.509734i
\(292\) 0 0
\(293\) −1.09210e26 + 1.09210e26i −1.36821 + 1.36821i −0.505227 + 0.862986i \(0.668591\pi\)
−0.862986 + 0.505227i \(0.831409\pi\)
\(294\) 0 0
\(295\) 3.73439e25i 0.435600i
\(296\) 0 0
\(297\) 2.70045e26i 2.93423i
\(298\) 0 0
\(299\) −1.31288e25 + 1.31288e25i −0.132947 + 0.132947i
\(300\) 0 0
\(301\) 6.34621e25 + 6.34621e25i 0.599193 + 0.599193i
\(302\) 0 0
\(303\) −8.43264e25 −0.742704
\(304\) 0 0
\(305\) −3.25596e25 −0.267628
\(306\) 0 0
\(307\) 8.69206e25 + 8.69206e25i 0.667068 + 0.667068i 0.957036 0.289969i \(-0.0936448\pi\)
−0.289969 + 0.957036i \(0.593645\pi\)
\(308\) 0 0
\(309\) −1.97375e26 + 1.97375e26i −1.41491 + 1.41491i
\(310\) 0 0
\(311\) 7.56721e25i 0.506934i −0.967344 0.253467i \(-0.918429\pi\)
0.967344 0.253467i \(-0.0815709\pi\)
\(312\) 0 0
\(313\) 8.29325e25i 0.519409i 0.965688 + 0.259704i \(0.0836251\pi\)
−0.965688 + 0.259704i \(0.916375\pi\)
\(314\) 0 0
\(315\) −1.56640e26 + 1.56640e26i −0.917577 + 0.917577i
\(316\) 0 0
\(317\) −1.02487e26 1.02487e26i −0.561752 0.561752i 0.368053 0.929805i \(-0.380025\pi\)
−0.929805 + 0.368053i \(0.880025\pi\)
\(318\) 0 0
\(319\) 1.64862e26 0.845897
\(320\) 0 0
\(321\) 3.31017e26 1.59055
\(322\) 0 0
\(323\) −3.65758e26 3.65758e26i −1.64652 1.64652i
\(324\) 0 0
\(325\) −2.61689e25 + 2.61689e25i −0.110410 + 0.110410i
\(326\) 0 0
\(327\) 4.75209e26i 1.87989i
\(328\) 0 0
\(329\) 1.47673e26i 0.547954i
\(330\) 0 0
\(331\) 3.09901e26 3.09901e26i 1.07902 1.07902i 0.0824216 0.996598i \(-0.473735\pi\)
0.996598 0.0824216i \(-0.0262654\pi\)
\(332\) 0 0
\(333\) 5.26097e26 + 5.26097e26i 1.71950 + 1.71950i
\(334\) 0 0
\(335\) −2.28262e25 −0.0700590
\(336\) 0 0
\(337\) −5.21303e26 −1.50306 −0.751530 0.659699i \(-0.770684\pi\)
−0.751530 + 0.659699i \(0.770684\pi\)
\(338\) 0 0
\(339\) 7.92375e26 + 7.92375e26i 2.14701 + 2.14701i
\(340\) 0 0
\(341\) −4.09000e26 + 4.09000e26i −1.04184 + 1.04184i
\(342\) 0 0
\(343\) 8.54971e25i 0.204816i
\(344\) 0 0
\(345\) 3.25833e26i 0.734336i
\(346\) 0 0
\(347\) 3.21524e26 3.21524e26i 0.681953 0.681953i −0.278487 0.960440i \(-0.589833\pi\)
0.960440 + 0.278487i \(0.0898330\pi\)
\(348\) 0 0
\(349\) 4.77175e26 + 4.77175e26i 0.952820 + 0.952820i 0.998936 0.0461156i \(-0.0146843\pi\)
−0.0461156 + 0.998936i \(0.514684\pi\)
\(350\) 0 0
\(351\) −1.98696e26 −0.373650
\(352\) 0 0
\(353\) 3.64220e26 0.645252 0.322626 0.946527i \(-0.395434\pi\)
0.322626 + 0.946527i \(0.395434\pi\)
\(354\) 0 0
\(355\) 4.45859e25 + 4.45859e25i 0.0744389 + 0.0744389i
\(356\) 0 0
\(357\) 1.72007e27 1.72007e27i 2.70726 2.70726i
\(358\) 0 0
\(359\) 6.77780e26i 1.00600i −0.864287 0.502999i \(-0.832230\pi\)
0.864287 0.502999i \(-0.167770\pi\)
\(360\) 0 0
\(361\) 1.04824e27i 1.46770i
\(362\) 0 0
\(363\) 1.14497e27 1.14497e27i 1.51278 1.51278i
\(364\) 0 0
\(365\) 1.48863e26 + 1.48863e26i 0.185657 + 0.185657i
\(366\) 0 0
\(367\) −9.92356e26 −1.16862 −0.584311 0.811530i \(-0.698635\pi\)
−0.584311 + 0.811530i \(0.698635\pi\)
\(368\) 0 0
\(369\) 1.09794e27 1.22125
\(370\) 0 0
\(371\) 1.34172e27 + 1.34172e27i 1.41005 + 1.41005i
\(372\) 0 0
\(373\) −2.21469e26 + 2.21469e26i −0.219974 + 0.219974i −0.808487 0.588514i \(-0.799713\pi\)
0.588514 + 0.808487i \(0.299713\pi\)
\(374\) 0 0
\(375\) 1.43717e27i 1.34952i
\(376\) 0 0
\(377\) 1.21303e26i 0.107718i
\(378\) 0 0
\(379\) −7.14103e25 + 7.14103e25i −0.0599859 + 0.0599859i −0.736463 0.676477i \(-0.763506\pi\)
0.676477 + 0.736463i \(0.263506\pi\)
\(380\) 0 0
\(381\) 1.71926e25 + 1.71926e25i 0.0136656 + 0.0136656i
\(382\) 0 0
\(383\) 1.63715e27 1.23169 0.615843 0.787869i \(-0.288816\pi\)
0.615843 + 0.787869i \(0.288816\pi\)
\(384\) 0 0
\(385\) −1.27950e27 −0.911389
\(386\) 0 0
\(387\) 1.28570e27 + 1.28570e27i 0.867309 + 0.867309i
\(388\) 0 0
\(389\) −1.17091e27 + 1.17091e27i −0.748259 + 0.748259i −0.974152 0.225893i \(-0.927470\pi\)
0.225893 + 0.974152i \(0.427470\pi\)
\(390\) 0 0
\(391\) 2.43026e27i 1.47162i
\(392\) 0 0
\(393\) 3.48595e27i 2.00078i
\(394\) 0 0
\(395\) −3.62536e25 + 3.62536e25i −0.0197279 + 0.0197279i
\(396\) 0 0
\(397\) 4.05449e25 + 4.05449e25i 0.0209236 + 0.0209236i 0.717491 0.696568i \(-0.245290\pi\)
−0.696568 + 0.717491i \(0.745290\pi\)
\(398\) 0 0
\(399\) −8.28838e27 −4.05746
\(400\) 0 0
\(401\) −9.71024e26 −0.451039 −0.225520 0.974239i \(-0.572408\pi\)
−0.225520 + 0.974239i \(0.572408\pi\)
\(402\) 0 0
\(403\) 3.00938e26 + 3.00938e26i 0.132670 + 0.132670i
\(404\) 0 0
\(405\) −9.66950e26 + 9.66950e26i −0.404693 + 0.404693i
\(406\) 0 0
\(407\) 4.29738e27i 1.70790i
\(408\) 0 0
\(409\) 8.88599e25i 0.0335437i 0.999859 + 0.0167719i \(0.00533890\pi\)
−0.999859 + 0.0167719i \(0.994661\pi\)
\(410\) 0 0
\(411\) −1.22166e27 + 1.22166e27i −0.438139 + 0.438139i
\(412\) 0 0
\(413\) 3.15589e27 + 3.15589e27i 1.07559 + 1.07559i
\(414\) 0 0
\(415\) 7.29147e25 0.0236216
\(416\) 0 0
\(417\) −7.49809e27 −2.30952
\(418\) 0 0
\(419\) −2.67901e27 2.67901e27i −0.784743 0.784743i 0.195884 0.980627i \(-0.437242\pi\)
−0.980627 + 0.195884i \(0.937242\pi\)
\(420\) 0 0
\(421\) 3.47449e27 3.47449e27i 0.968120 0.968120i −0.0313874 0.999507i \(-0.509993\pi\)
0.999507 + 0.0313874i \(0.00999257\pi\)
\(422\) 0 0
\(423\) 2.99175e27i 0.793144i
\(424\) 0 0
\(425\) 4.84410e27i 1.22216i
\(426\) 0 0
\(427\) 2.75158e27 2.75158e27i 0.660830 0.660830i
\(428\) 0 0
\(429\) −1.53773e27 1.53773e27i −0.351625 0.351625i
\(430\) 0 0
\(431\) 1.33425e27 0.290553 0.145276 0.989391i \(-0.453593\pi\)
0.145276 + 0.989391i \(0.453593\pi\)
\(432\) 0 0
\(433\) 1.98332e27 0.411405 0.205703 0.978615i \(-0.434052\pi\)
0.205703 + 0.978615i \(0.434052\pi\)
\(434\) 0 0
\(435\) −1.50526e27 1.50526e27i −0.297492 0.297492i
\(436\) 0 0
\(437\) −5.85525e27 + 5.85525e27i −1.10278 + 1.10278i
\(438\) 0 0
\(439\) 8.80300e27i 1.58035i 0.612881 + 0.790175i \(0.290011\pi\)
−0.612881 + 0.790175i \(0.709989\pi\)
\(440\) 0 0
\(441\) 1.41036e28i 2.41392i
\(442\) 0 0
\(443\) 2.58131e27 2.58131e27i 0.421309 0.421309i −0.464345 0.885654i \(-0.653710\pi\)
0.885654 + 0.464345i \(0.153710\pi\)
\(444\) 0 0
\(445\) −9.84627e26 9.84627e26i −0.153282 0.153282i
\(446\) 0 0
\(447\) −1.31022e28 −1.94588
\(448\) 0 0
\(449\) 1.66494e27 0.235946 0.117973 0.993017i \(-0.462360\pi\)
0.117973 + 0.993017i \(0.462360\pi\)
\(450\) 0 0
\(451\) 4.48424e27 + 4.48424e27i 0.606506 + 0.606506i
\(452\) 0 0
\(453\) −1.52815e28 + 1.52815e28i −1.97303 + 1.97303i
\(454\) 0 0
\(455\) 9.41444e26i 0.116058i
\(456\) 0 0
\(457\) 1.04266e28i 1.22750i −0.789501 0.613750i \(-0.789660\pi\)
0.789501 0.613750i \(-0.210340\pi\)
\(458\) 0 0
\(459\) 1.83902e28 1.83902e28i 2.06802 2.06802i
\(460\) 0 0
\(461\) −2.03523e27 2.03523e27i −0.218652 0.218652i 0.589278 0.807930i \(-0.299412\pi\)
−0.807930 + 0.589278i \(0.799412\pi\)
\(462\) 0 0
\(463\) −5.92350e27 −0.608104 −0.304052 0.952655i \(-0.598340\pi\)
−0.304052 + 0.952655i \(0.598340\pi\)
\(464\) 0 0
\(465\) 7.46872e27 0.732808
\(466\) 0 0
\(467\) −3.67120e27 3.67120e27i −0.344335 0.344335i 0.513660 0.857994i \(-0.328289\pi\)
−0.857994 + 0.513660i \(0.828289\pi\)
\(468\) 0 0
\(469\) 1.92902e27 1.92902e27i 0.172991 0.172991i
\(470\) 0 0
\(471\) 1.41541e28i 1.21385i
\(472\) 0 0
\(473\) 1.05021e28i 0.861460i
\(474\) 0 0
\(475\) −1.16709e28 + 1.16709e28i −0.915848 + 0.915848i
\(476\) 0 0
\(477\) 2.71823e28 + 2.71823e28i 2.04100 + 2.04100i
\(478\) 0 0
\(479\) 2.00681e28 1.44206 0.721030 0.692903i \(-0.243669\pi\)
0.721030 + 0.692903i \(0.243669\pi\)
\(480\) 0 0
\(481\) 3.16197e27 0.217487
\(482\) 0 0
\(483\) −2.75358e28 2.75358e28i −1.81323 1.81323i
\(484\) 0 0
\(485\) −1.91808e27 + 1.91808e27i −0.120942 + 0.120942i
\(486\) 0 0
\(487\) 2.46609e28i 1.48921i −0.667508 0.744603i \(-0.732639\pi\)
0.667508 0.744603i \(-0.267361\pi\)
\(488\) 0 0
\(489\) 4.88229e28i 2.82410i
\(490\) 0 0
\(491\) −4.19718e26 + 4.19718e26i −0.0232596 + 0.0232596i −0.718641 0.695381i \(-0.755235\pi\)
0.695381 + 0.718641i \(0.255235\pi\)
\(492\) 0 0
\(493\) 1.12272e28 + 1.12272e28i 0.596180 + 0.596180i
\(494\) 0 0
\(495\) −2.59218e28 −1.31920
\(496\) 0 0
\(497\) −7.53582e27 −0.367611
\(498\) 0 0
\(499\) 1.34722e28 + 1.34722e28i 0.630062 + 0.630062i 0.948083 0.318022i \(-0.103019\pi\)
−0.318022 + 0.948083i \(0.603019\pi\)
\(500\) 0 0
\(501\) −1.30809e28 + 1.30809e28i −0.586601 + 0.586601i
\(502\) 0 0
\(503\) 1.89582e28i 0.815329i 0.913132 + 0.407665i \(0.133657\pi\)
−0.913132 + 0.407665i \(0.866343\pi\)
\(504\) 0 0
\(505\) 4.27178e27i 0.176218i
\(506\) 0 0
\(507\) 3.04163e28 3.04163e28i 1.20371 1.20371i
\(508\) 0 0
\(509\) 7.98866e27 + 7.98866e27i 0.303345 + 0.303345i 0.842321 0.538976i \(-0.181189\pi\)
−0.538976 + 0.842321i \(0.681189\pi\)
\(510\) 0 0
\(511\) −2.51605e28 −0.916852
\(512\) 0 0
\(513\) −8.86157e28 −3.09940
\(514\) 0 0
\(515\) 9.99858e27 + 9.99858e27i 0.335709 + 0.335709i
\(516\) 0 0
\(517\) 1.22190e28 1.22190e28i 0.393897 0.393897i
\(518\) 0 0
\(519\) 9.45605e28i 2.92720i
\(520\) 0 0
\(521\) 4.40513e28i 1.30967i 0.755771 + 0.654836i \(0.227262\pi\)
−0.755771 + 0.654836i \(0.772738\pi\)
\(522\) 0 0
\(523\) −3.82450e28 + 3.82450e28i −1.09221 + 1.09221i −0.0969183 + 0.995292i \(0.530899\pi\)
−0.995292 + 0.0969183i \(0.969101\pi\)
\(524\) 0 0
\(525\) −5.48856e28 5.48856e28i −1.50586 1.50586i
\(526\) 0 0
\(527\) −5.57062e28 −1.46856
\(528\) 0 0
\(529\) 5.66681e26 0.0143567
\(530\) 0 0
\(531\) 6.39362e28 + 6.39362e28i 1.55688 + 1.55688i
\(532\) 0 0
\(533\) 3.29945e27 3.29945e27i 0.0772336 0.0772336i
\(534\) 0 0
\(535\) 1.67686e28i 0.377382i
\(536\) 0 0
\(537\) 2.17918e28i 0.471589i
\(538\) 0 0
\(539\) 5.76019e28 5.76019e28i 1.19882 1.19882i
\(540\) 0 0
\(541\) 1.61872e28 + 1.61872e28i 0.324041 + 0.324041i 0.850315 0.526274i \(-0.176411\pi\)
−0.526274 + 0.850315i \(0.676411\pi\)
\(542\) 0 0
\(543\) −2.66459e28 −0.513136
\(544\) 0 0
\(545\) 2.40730e28 0.446033
\(546\) 0 0
\(547\) 7.44953e28 + 7.44953e28i 1.32820 + 1.32820i 0.906943 + 0.421253i \(0.138410\pi\)
0.421253 + 0.906943i \(0.361590\pi\)
\(548\) 0 0
\(549\) 5.57451e28 5.57451e28i 0.956526 0.956526i
\(550\) 0 0
\(551\) 5.40995e28i 0.893515i
\(552\) 0 0
\(553\) 6.12750e27i 0.0974248i
\(554\) 0 0
\(555\) 3.92371e28 3.92371e28i 0.600649 0.600649i
\(556\) 0 0
\(557\) −8.80710e27 8.80710e27i −0.129824 0.129824i 0.639209 0.769033i \(-0.279262\pi\)
−0.769033 + 0.639209i \(0.779262\pi\)
\(558\) 0 0
\(559\) 7.72735e27 0.109700
\(560\) 0 0
\(561\) 2.84648e29 3.89223
\(562\) 0 0
\(563\) 4.72577e28 + 4.72577e28i 0.622494 + 0.622494i 0.946168 0.323675i \(-0.104918\pi\)
−0.323675 + 0.946168i \(0.604918\pi\)
\(564\) 0 0
\(565\) 4.01399e28 4.01399e28i 0.509411 0.509411i
\(566\) 0 0
\(567\) 1.63432e29i 1.99855i
\(568\) 0 0
\(569\) 7.22370e28i 0.851297i 0.904889 + 0.425649i \(0.139954\pi\)
−0.904889 + 0.425649i \(0.860046\pi\)
\(570\) 0 0
\(571\) −3.90692e28 + 3.90692e28i −0.443768 + 0.443768i −0.893276 0.449508i \(-0.851599\pi\)
0.449508 + 0.893276i \(0.351599\pi\)
\(572\) 0 0
\(573\) 1.42703e29 + 1.42703e29i 1.56246 + 1.56246i
\(574\) 0 0
\(575\) −7.75469e28 −0.818563
\(576\) 0 0
\(577\) −1.66093e29 −1.69046 −0.845231 0.534402i \(-0.820537\pi\)
−0.845231 + 0.534402i \(0.820537\pi\)
\(578\) 0 0
\(579\) 1.25308e28 + 1.25308e28i 0.122985 + 0.122985i
\(580\) 0 0
\(581\) −6.16195e27 + 6.16195e27i −0.0583268 + 0.0583268i
\(582\) 0 0
\(583\) 2.22037e29i 2.02724i
\(584\) 0 0
\(585\) 1.90730e28i 0.167990i
\(586\) 0 0
\(587\) −1.61341e28 + 1.61341e28i −0.137103 + 0.137103i −0.772327 0.635225i \(-0.780907\pi\)
0.635225 + 0.772327i \(0.280907\pi\)
\(588\) 0 0
\(589\) 1.34214e29 + 1.34214e29i 1.10049 + 1.10049i
\(590\) 0 0
\(591\) 4.37138e29 3.45899
\(592\) 0 0
\(593\) −1.24782e29 −0.952965 −0.476483 0.879184i \(-0.658088\pi\)
−0.476483 + 0.879184i \(0.658088\pi\)
\(594\) 0 0
\(595\) −8.71348e28 8.71348e28i −0.642338 0.642338i
\(596\) 0 0
\(597\) −1.18448e29 + 1.18448e29i −0.842943 + 0.842943i
\(598\) 0 0
\(599\) 1.88628e29i 1.29606i 0.761615 + 0.648030i \(0.224407\pi\)
−0.761615 + 0.648030i \(0.775593\pi\)
\(600\) 0 0
\(601\) 1.02716e29i 0.681484i 0.940157 + 0.340742i \(0.110678\pi\)
−0.940157 + 0.340742i \(0.889322\pi\)
\(602\) 0 0
\(603\) 3.90806e28 3.90806e28i 0.250397 0.250397i
\(604\) 0 0
\(605\) −5.80016e28 5.80016e28i −0.358929 0.358929i
\(606\) 0 0
\(607\) 9.20192e28 0.550043 0.275022 0.961438i \(-0.411315\pi\)
0.275022 + 0.961438i \(0.411315\pi\)
\(608\) 0 0
\(609\) 2.54417e29 1.46914
\(610\) 0 0
\(611\) −8.99057e27 8.99057e27i −0.0501597 0.0501597i
\(612\) 0 0
\(613\) 1.02511e29 1.02511e29i 0.552632 0.552632i −0.374568 0.927199i \(-0.622209\pi\)
0.927199 + 0.374568i \(0.122209\pi\)
\(614\) 0 0
\(615\) 8.18864e28i 0.426602i
\(616\) 0 0
\(617\) 2.53932e29i 1.27857i −0.768972 0.639283i \(-0.779231\pi\)
0.768972 0.639283i \(-0.220769\pi\)
\(618\) 0 0
\(619\) −1.04494e29 + 1.04494e29i −0.508558 + 0.508558i −0.914084 0.405526i \(-0.867089\pi\)
0.405526 + 0.914084i \(0.367089\pi\)
\(620\) 0 0
\(621\) −2.94401e29 2.94401e29i −1.38509 1.38509i
\(622\) 0 0
\(623\) 1.66420e29 0.756972
\(624\) 0 0
\(625\) −1.14667e29 −0.504309
\(626\) 0 0
\(627\) −6.85807e29 6.85807e29i −2.91671 2.91671i
\(628\) 0 0
\(629\) −2.92654e29 + 2.92654e29i −1.20371 + 1.20371i
\(630\) 0 0
\(631\) 3.00172e29i 1.19416i −0.802182 0.597080i \(-0.796328\pi\)
0.802182 0.597080i \(-0.203672\pi\)
\(632\) 0 0
\(633\) 1.11483e28i 0.0429012i
\(634\) 0 0
\(635\) 8.70939e26 8.70939e26i 0.00324238 0.00324238i
\(636\) 0 0
\(637\) −4.23828e28 4.23828e28i −0.152660 0.152660i
\(638\) 0 0
\(639\) −1.52670e29 −0.532103
\(640\) 0 0
\(641\) 2.89613e29 0.976808 0.488404 0.872618i \(-0.337579\pi\)
0.488404 + 0.872618i \(0.337579\pi\)
\(642\) 0 0
\(643\) 2.77322e29 + 2.77322e29i 0.905253 + 0.905253i 0.995884 0.0906317i \(-0.0288886\pi\)
−0.0906317 + 0.995884i \(0.528889\pi\)
\(644\) 0 0
\(645\) 9.58894e28 9.58894e28i 0.302966 0.302966i
\(646\) 0 0
\(647\) 1.13910e29i 0.348391i 0.984711 + 0.174195i \(0.0557324\pi\)
−0.984711 + 0.174195i \(0.944268\pi\)
\(648\) 0 0
\(649\) 5.22258e29i 1.54638i
\(650\) 0 0
\(651\) −6.31174e29 + 6.31174e29i −1.80946 + 1.80946i
\(652\) 0 0
\(653\) 1.45323e29 + 1.45323e29i 0.403409 + 0.403409i 0.879433 0.476023i \(-0.157922\pi\)
−0.476023 + 0.879433i \(0.657922\pi\)
\(654\) 0 0
\(655\) −1.76590e29 −0.474715
\(656\) 0 0
\(657\) −5.09733e29 −1.32711
\(658\) 0 0
\(659\) −4.24768e28 4.24768e28i −0.107116 0.107116i 0.651518 0.758634i \(-0.274133\pi\)
−0.758634 + 0.651518i \(0.774133\pi\)
\(660\) 0 0
\(661\) −4.37328e29 + 4.37328e29i −1.06830 + 1.06830i −0.0708080 + 0.997490i \(0.522558\pi\)
−0.997490 + 0.0708080i \(0.977442\pi\)
\(662\) 0 0
\(663\) 2.09441e29i 0.495644i
\(664\) 0 0
\(665\) 4.19870e29i 0.962693i
\(666\) 0 0
\(667\) 1.79731e29 1.79731e29i 0.399301 0.399301i
\(668\) 0 0
\(669\) −1.02932e30 1.02932e30i −2.21603 2.21603i
\(670\) 0 0
\(671\) 4.55349e29 0.950076
\(672\) 0 0
\(673\) 4.15844e29 0.840954 0.420477 0.907303i \(-0.361863\pi\)
0.420477 + 0.907303i \(0.361863\pi\)
\(674\) 0 0
\(675\) −5.86813e29 5.86813e29i −1.15030 1.15030i
\(676\) 0 0
\(677\) −3.66467e27 + 3.66467e27i −0.00696393 + 0.00696393i −0.710580 0.703616i \(-0.751567\pi\)
0.703616 + 0.710580i \(0.251567\pi\)
\(678\) 0 0
\(679\) 3.24189e29i 0.597264i
\(680\) 0 0
\(681\) 1.15418e30i 2.06172i
\(682\) 0 0
\(683\) −2.67612e29 + 2.67612e29i −0.463541 + 0.463541i −0.899814 0.436273i \(-0.856298\pi\)
0.436273 + 0.899814i \(0.356298\pi\)
\(684\) 0 0
\(685\) 6.18866e28 + 6.18866e28i 0.103955 + 0.103955i
\(686\) 0 0
\(687\) −3.38947e29 −0.552187
\(688\) 0 0
\(689\) 1.63372e29 0.258152
\(690\) 0 0
\(691\) 5.31525e29 + 5.31525e29i 0.814712 + 0.814712i 0.985336 0.170624i \(-0.0545785\pi\)
−0.170624 + 0.985336i \(0.554578\pi\)
\(692\) 0 0
\(693\) 2.19063e30 2.19063e30i 3.25739 3.25739i
\(694\) 0 0
\(695\) 3.79836e29i 0.547969i
\(696\) 0 0
\(697\) 6.10758e29i 0.854919i
\(698\) 0 0
\(699\) 1.36974e29 1.36974e29i 0.186049 0.186049i
\(700\) 0 0
\(701\) 3.87829e29 + 3.87829e29i 0.511211 + 0.511211i 0.914898 0.403686i \(-0.132271\pi\)
−0.403686 + 0.914898i \(0.632271\pi\)
\(702\) 0 0
\(703\) 1.41019e30 1.80404
\(704\) 0 0
\(705\) −2.23130e29 −0.277059
\(706\) 0 0
\(707\) −3.61004e29 3.61004e29i −0.435119 0.435119i
\(708\) 0 0
\(709\) −1.68164e29 + 1.68164e29i −0.196765 + 0.196765i −0.798612 0.601847i \(-0.794432\pi\)
0.601847 + 0.798612i \(0.294432\pi\)
\(710\) 0 0
\(711\) 1.24139e29i 0.141019i
\(712\) 0 0
\(713\) 8.91775e29i 0.983593i
\(714\) 0 0
\(715\) −7.78982e28 + 7.78982e28i −0.0834284 + 0.0834284i
\(716\) 0 0
\(717\) −1.84591e30 1.84591e30i −1.91982 1.91982i
\(718\) 0 0
\(719\) −6.34019e28 −0.0640396 −0.0320198 0.999487i \(-0.510194\pi\)
−0.0320198 + 0.999487i \(0.510194\pi\)
\(720\) 0 0
\(721\) −1.68994e30 −1.65787
\(722\) 0 0
\(723\) 5.55352e29 + 5.55352e29i 0.529195 + 0.529195i
\(724\) 0 0
\(725\) 3.58247e29 3.58247e29i 0.331614 0.331614i
\(726\) 0 0
\(727\) 1.30125e30i 1.17017i −0.810972 0.585086i \(-0.801061\pi\)
0.810972 0.585086i \(-0.198939\pi\)
\(728\) 0 0
\(729\) 6.76221e29i 0.590813i
\(730\) 0 0
\(731\) −7.15200e29 + 7.15200e29i −0.607149 + 0.607149i
\(732\) 0 0
\(733\) −4.12501e29 4.12501e29i −0.340278 0.340278i 0.516194 0.856472i \(-0.327348\pi\)
−0.856472 + 0.516194i \(0.827348\pi\)
\(734\) 0 0
\(735\) −1.05187e30 −0.843224
\(736\) 0 0
\(737\) 3.19227e29 0.248709
\(738\) 0 0
\(739\) −6.00578e28 6.00578e28i −0.0454781 0.0454781i 0.684002 0.729480i \(-0.260238\pi\)
−0.729480 + 0.684002i \(0.760238\pi\)
\(740\) 0 0
\(741\) −5.04609e29 + 5.04609e29i −0.371419 + 0.371419i
\(742\) 0 0
\(743\) 8.94934e29i 0.640337i 0.947361 + 0.320168i \(0.103739\pi\)
−0.947361 + 0.320168i \(0.896261\pi\)
\(744\) 0 0
\(745\) 6.63728e29i 0.461689i
\(746\) 0 0
\(747\) −1.24837e29 + 1.24837e29i −0.0844259 + 0.0844259i
\(748\) 0 0
\(749\) 1.41709e30 + 1.41709e30i 0.931836 + 0.931836i
\(750\) 0 0
\(751\) −1.50887e30 −0.964792 −0.482396 0.875953i \(-0.660233\pi\)
−0.482396 + 0.875953i \(0.660233\pi\)
\(752\) 0 0
\(753\) 1.74632e30 1.08587
\(754\) 0 0
\(755\) 7.74124e29 + 7.74124e29i 0.468131 + 0.468131i
\(756\) 0 0
\(757\) 5.95005e28 5.95005e28i 0.0349956 0.0349956i −0.689392 0.724388i \(-0.742122\pi\)
0.724388 + 0.689392i \(0.242122\pi\)
\(758\) 0 0
\(759\) 4.55681e30i 2.60688i
\(760\) 0 0
\(761\) 6.19594e28i 0.0344801i −0.999851 0.0172400i \(-0.994512\pi\)
0.999851 0.0172400i \(-0.00548795\pi\)
\(762\) 0 0
\(763\) −2.03439e30 + 2.03439e30i −1.10135 + 1.10135i
\(764\) 0 0
\(765\) −1.76529e30 1.76529e30i −0.929761 0.929761i
\(766\) 0 0
\(767\) 3.84271e29 0.196919
\(768\) 0 0
\(769\) −1.48010e30 −0.738015 −0.369008 0.929426i \(-0.620302\pi\)
−0.369008 + 0.929426i \(0.620302\pi\)
\(770\) 0 0
\(771\) −1.82462e30 1.82462e30i −0.885323 0.885323i
\(772\) 0 0
\(773\) −1.19025e29 + 1.19025e29i −0.0562022 + 0.0562022i −0.734649 0.678447i \(-0.762653\pi\)
0.678447 + 0.734649i \(0.262653\pi\)
\(774\) 0 0
\(775\) 1.77753e30i 0.816861i
\(776\) 0 0
\(777\) 6.63178e30i 2.96626i
\(778\) 0 0
\(779\) 1.47151e30 1.47151e30i 0.640647 0.640647i
\(780\) 0 0
\(781\) −6.23538e29 6.23538e29i −0.264258 0.264258i
\(782\) 0 0
\(783\) 2.72011e30 1.12225
\(784\) 0 0
\(785\) −7.17017e29 −0.288004
\(786\) 0 0
\(787\) 1.50882e30 + 1.50882e30i 0.590070 + 0.590070i 0.937650 0.347581i \(-0.112997\pi\)
−0.347581 + 0.937650i \(0.612997\pi\)
\(788\) 0 0
\(789\) −6.15812e29 + 6.15812e29i −0.234498 + 0.234498i
\(790\) 0 0
\(791\) 6.78437e30i 2.51569i
\(792\) 0 0
\(793\) 3.35041e29i 0.120984i
\(794\) 0 0
\(795\) 2.02730e30 2.02730e30i 0.712956 0.712956i
\(796\) 0 0
\(797\) 2.61894e30 + 2.61894e30i 0.897043 + 0.897043i 0.995174 0.0981305i \(-0.0312863\pi\)
−0.0981305 + 0.995174i \(0.531286\pi\)
\(798\) 0 0
\(799\) 1.66423e30 0.555230
\(800\) 0 0
\(801\) 3.37154e30 1.09569
\(802\) 0 0
\(803\) −2.08186e30 2.08186e30i −0.659080 0.659080i
\(804\) 0 0
\(805\) −1.39490e30 + 1.39490e30i −0.430216 + 0.430216i
\(806\) 0 0
\(807\) 3.68193e30i 1.10638i
\(808\) 0 0
\(809\) 3.79175e30i 1.11015i −0.831802 0.555073i \(-0.812690\pi\)
0.831802 0.555073i \(-0.187310\pi\)
\(810\) 0 0
\(811\) 3.58639e30 3.58639e30i 1.02315 1.02315i 0.0234231 0.999726i \(-0.492544\pi\)
0.999726 0.0234231i \(-0.00745649\pi\)
\(812\) 0 0
\(813\) 6.43086e30 + 6.43086e30i 1.78780 + 1.78780i
\(814\) 0 0
\(815\) −2.47326e30 −0.670061
\(816\) 0 0
\(817\) 3.44628e30 0.909954
\(818\) 0 0
\(819\) −1.61184e30 1.61184e30i −0.414802 0.414802i
\(820\) 0 0
\(821\) 2.24165e30 2.24165e30i 0.562296 0.562296i −0.367663 0.929959i \(-0.619842\pi\)
0.929959 + 0.367663i \(0.119842\pi\)
\(822\) 0 0
\(823\) 7.04894e30i 1.72356i 0.507285 + 0.861779i \(0.330649\pi\)
−0.507285 + 0.861779i \(0.669351\pi\)
\(824\) 0 0
\(825\) 9.08282e30i 2.16498i
\(826\) 0 0
\(827\) −3.55530e30 + 3.55530e30i −0.826169 + 0.826169i −0.986984 0.160815i \(-0.948588\pi\)
0.160815 + 0.986984i \(0.448588\pi\)
\(828\) 0 0
\(829\) 1.93524e30 + 1.93524e30i 0.438442 + 0.438442i 0.891487 0.453046i \(-0.149663\pi\)
−0.453046 + 0.891487i \(0.649663\pi\)
\(830\) 0 0
\(831\) 1.13159e31 2.49965
\(832\) 0 0
\(833\) 7.84544e30 1.68984
\(834\) 0 0
\(835\) 6.62651e29 + 6.62651e29i 0.139180 + 0.139180i
\(836\) 0 0
\(837\) −6.74823e30 + 6.74823e30i −1.38221 + 1.38221i
\(838\) 0 0
\(839\) 5.95259e30i 1.18906i −0.804072 0.594532i \(-0.797337\pi\)
0.804072 0.594532i \(-0.202663\pi\)
\(840\) 0 0
\(841\) 3.47223e30i 0.676472i
\(842\) 0 0
\(843\) −1.14811e29 + 1.14811e29i −0.0218170 + 0.0218170i
\(844\) 0 0
\(845\) −1.54082e30 1.54082e30i −0.285599 0.285599i
\(846\) 0 0
\(847\) 9.80331e30 1.77254
\(848\) 0 0
\(849\) −6.31798e30 −1.11442
\(850\) 0 0
\(851\) 4.68496e30 + 4.68496e30i 0.806206 + 0.806206i
\(852\) 0 0
\(853\) 1.22814e29 1.22814e29i 0.0206197 0.0206197i −0.696722 0.717341i \(-0.745359\pi\)
0.717341 + 0.696722i \(0.245359\pi\)
\(854\) 0 0
\(855\) 8.50628e30i 1.39346i
\(856\) 0 0
\(857\) 4.87085e30i 0.778585i −0.921114 0.389293i \(-0.872719\pi\)
0.921114 0.389293i \(-0.127281\pi\)
\(858\) 0 0
\(859\) −2.91890e29 + 2.91890e29i −0.0455293 + 0.0455293i −0.729505 0.683976i \(-0.760249\pi\)
0.683976 + 0.729505i \(0.260249\pi\)
\(860\) 0 0
\(861\) 6.92014e30 + 6.92014e30i 1.05337 + 1.05337i
\(862\) 0 0
\(863\) −8.09863e30 −1.20309 −0.601545 0.798839i \(-0.705448\pi\)
−0.601545 + 0.798839i \(0.705448\pi\)
\(864\) 0 0
\(865\) 4.79022e30 0.694523
\(866\) 0 0
\(867\) 1.05623e31 + 1.05623e31i 1.49472 + 1.49472i
\(868\) 0 0
\(869\) 5.07009e29 5.07009e29i 0.0700339 0.0700339i
\(870\) 0 0
\(871\) 2.34884e29i 0.0316711i
\(872\) 0 0
\(873\) 6.56785e30i 0.864517i
\(874\) 0 0
\(875\) −6.15257e30 + 6.15257e30i −0.790627 + 0.790627i
\(876\) 0 0
\(877\) −6.65933e30 6.65933e30i −0.835477 0.835477i 0.152782 0.988260i \(-0.451177\pi\)
−0.988260 + 0.152782i \(0.951177\pi\)
\(878\) 0 0
\(879\) −2.78903e31 −3.41641
\(880\) 0 0
\(881\) −1.35113e31 −1.61603 −0.808015 0.589162i \(-0.799458\pi\)
−0.808015 + 0.589162i \(0.799458\pi\)
\(882\) 0 0
\(883\) 1.22213e30 + 1.22213e30i 0.142734 + 0.142734i 0.774863 0.632129i \(-0.217819\pi\)
−0.632129 + 0.774863i \(0.717819\pi\)
\(884\) 0 0
\(885\) 4.76846e30 4.76846e30i 0.543843 0.543843i
\(886\) 0 0
\(887\) 6.83119e30i 0.760849i −0.924812 0.380425i \(-0.875778\pi\)
0.924812 0.380425i \(-0.124222\pi\)
\(888\) 0 0
\(889\) 1.47204e29i 0.0160122i
\(890\) 0 0
\(891\) 1.35229e31 1.35229e31i 1.43666 1.43666i
\(892\) 0 0
\(893\) −4.00966e30 4.00966e30i −0.416071 0.416071i
\(894\) 0 0
\(895\) −1.10392e30 −0.111892
\(896\) 0 0
\(897\) −3.35285e30 −0.331966
\(898\) 0 0
\(899\) −4.11977e30 4.11977e30i −0.398471 0.398471i
\(900\) 0 0
\(901\) −1.51208e31 + 1.51208e31i −1.42878 + 1.42878i
\(902\) 0 0
\(903\) 1.62070e31i 1.49617i
\(904\) 0 0
\(905\) 1.34982e30i 0.121749i
\(906\) 0 0
\(907\) 1.46625e31 1.46625e31i 1.29221 1.29221i 0.358789 0.933419i \(-0.383190\pi\)
0.933419 0.358789i \(-0.116810\pi\)
\(908\) 0 0
\(909\) −7.31369e30 7.31369e30i −0.629819 0.629819i
\(910\) 0 0
\(911\) −1.88663e31 −1.58761 −0.793805 0.608172i \(-0.791903\pi\)
−0.793805 + 0.608172i \(0.791903\pi\)
\(912\) 0 0
\(913\) −1.01972e30 −0.0838566
\(914\) 0 0
\(915\) −4.15755e30 4.15755e30i −0.334131 0.334131i
\(916\) 0 0
\(917\) 1.49235e31 1.49235e31i 1.17217 1.17217i
\(918\) 0 0
\(919\) 4.74697e30i 0.364422i −0.983259 0.182211i \(-0.941675\pi\)
0.983259 0.182211i \(-0.0583253\pi\)
\(920\) 0 0
\(921\) 2.21979e31i 1.66566i
\(922\) 0 0
\(923\) −4.58793e29 + 4.58793e29i −0.0336511 + 0.0336511i
\(924\) 0 0
\(925\) 9.33827e30 + 9.33827e30i 0.669543 + 0.669543i
\(926\) 0 0
\(927\) −3.42370e31 −2.39971
\(928\) 0 0
\(929\) −2.33380e31 −1.59919 −0.799594 0.600542i \(-0.794952\pi\)
−0.799594 + 0.600542i \(0.794952\pi\)
\(930\) 0 0
\(931\) −1.89021e31 1.89021e31i −1.26631 1.26631i
\(932\) 0 0
\(933\) 9.66260e30 9.66260e30i 0.632903 0.632903i
\(934\) 0 0
\(935\) 1.44196e31i 0.923491i
\(936\) 0 0
\(937\) 4.96132e30i 0.310693i 0.987860 + 0.155346i \(0.0496494\pi\)
−0.987860 + 0.155346i \(0.950351\pi\)
\(938\) 0 0
\(939\) −1.05897e31 + 1.05897e31i −0.648477 + 0.648477i
\(940\) 0 0
\(941\) 9.68676e30 + 9.68676e30i 0.580079 + 0.580079i 0.934925 0.354846i \(-0.115467\pi\)
−0.354846 + 0.934925i \(0.615467\pi\)
\(942\) 0 0
\(943\) 9.77735e30 0.572596
\(944\) 0 0
\(945\) −2.11110e31 −1.20913
\(946\) 0 0
\(947\) 8.03123e30 + 8.03123e30i 0.449891 + 0.449891i 0.895318 0.445427i \(-0.146948\pi\)
−0.445427 + 0.895318i \(0.646948\pi\)
\(948\) 0 0
\(949\) −1.53181e30 + 1.53181e30i −0.0839285 + 0.0839285i
\(950\) 0 0
\(951\) 2.61731e31i 1.40268i
\(952\) 0 0
\(953\) 1.16414e31i 0.610279i 0.952308 + 0.305140i \(0.0987031\pi\)
−0.952308 + 0.305140i \(0.901297\pi\)
\(954\) 0 0
\(955\) 7.22899e30 7.22899e30i 0.370717 0.370717i
\(956\) 0 0
\(957\) 2.10513e31 + 2.10513e31i 1.05609 + 1.05609i
\(958\) 0 0
\(959\) −1.04599e31 −0.513374
\(960\) 0 0
\(961\) −3.84300e29 −0.0184533
\(962\) 0 0
\(963\) 2.87093e31 + 2.87093e31i 1.34880 + 1.34880i
\(964\) 0 0
\(965\) 6.34780e29 6.34780e29i 0.0291801 0.0291801i
\(966\) 0 0
\(967\) 5.95496e30i 0.267856i −0.990991 0.133928i \(-0.957241\pi\)
0.990991 0.133928i \(-0.0427590\pi\)
\(968\) 0 0
\(969\) 9.34077e31i 4.11133i
\(970\) 0 0
\(971\) 1.64188e31 1.64188e31i 0.707194 0.707194i −0.258751 0.965944i \(-0.583311\pi\)
0.965944 + 0.258751i \(0.0833108\pi\)
\(972\) 0 0
\(973\) −3.20996e31 3.20996e31i −1.35305 1.35305i
\(974\) 0 0
\(975\) −6.68304e30 −0.275693
\(976\) 0 0
\(977\) 5.02907e30 0.203046 0.101523 0.994833i \(-0.467628\pi\)
0.101523 + 0.994833i \(0.467628\pi\)
\(978\) 0 0
\(979\) 1.37701e31 + 1.37701e31i 0.544150 + 0.544150i
\(980\) 0 0
\(981\) −4.12152e31 + 4.12152e31i −1.59416 + 1.59416i
\(982\) 0 0
\(983\) 3.40557e31i 1.28937i −0.764448 0.644685i \(-0.776989\pi\)
0.764448 0.644685i \(-0.223011\pi\)
\(984\) 0 0
\(985\) 2.21444e31i 0.820698i
\(986\) 0 0
\(987\) 1.88565e31 1.88565e31i 0.684116 0.684116i
\(988\) 0 0
\(989\) 1.14493e31 + 1.14493e31i 0.406648 + 0.406648i
\(990\) 0 0
\(991\) 4.84855e31 1.68592 0.842962 0.537972i \(-0.180810\pi\)
0.842962 + 0.537972i \(0.180810\pi\)
\(992\) 0 0
\(993\) 7.91429e31 2.69429
\(994\) 0 0
\(995\) 6.00032e30 + 6.00032e30i 0.200001 + 0.200001i
\(996\) 0 0
\(997\) −4.16405e30 + 4.16405e30i −0.135899 + 0.135899i −0.771784 0.635885i \(-0.780635\pi\)
0.635885 + 0.771784i \(0.280635\pi\)
\(998\) 0 0
\(999\) 7.09040e31i 2.26586i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.22.e.a.17.39 82
4.3 odd 2 16.22.e.a.13.10 yes 82
16.5 even 4 inner 64.22.e.a.49.39 82
16.11 odd 4 16.22.e.a.5.10 82
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.22.e.a.5.10 82 16.11 odd 4
16.22.e.a.13.10 yes 82 4.3 odd 2
64.22.e.a.17.39 82 1.1 even 1 trivial
64.22.e.a.49.39 82 16.5 even 4 inner