Defining parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(64, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 2 | 12 |
Cusp forms | 2 | 2 | 0 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(64, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
64.2.b.a | $2$ | $0.511$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{3}-q^{9}-3\beta q^{11}-6 q^{17}+\beta q^{19}+\cdots\) |