Properties

Label 64.2.b
Level $64$
Weight $2$
Character orbit 64.b
Rep. character $\chi_{64}(33,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 64.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(64, [\chi])\).

Total New Old
Modular forms 14 2 12
Cusp forms 2 2 0
Eisenstein series 12 0 12

Trace form

\( 2 q - 2 q^{9} - 12 q^{17} + 10 q^{25} + 24 q^{33} - 12 q^{41} - 14 q^{49} - 8 q^{57} + 4 q^{73} - 22 q^{81} + 36 q^{89} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(64, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
64.2.b.a 64.b 8.b $2$ $0.511$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-2}) \) 64.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{3}-q^{9}-3\beta q^{11}-6 q^{17}+\beta q^{19}+\cdots\)