Newspace parameters
| Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
| Weight: | \( k \) | \(=\) | \( 10 \) |
| Character orbit: | \([\chi]\) | \(=\) | 64.i (of order \(16\), degree \(8\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(32.9622935145\) |
| Analytic rank: | \(0\) |
| Dimension: | \(568\) |
| Relative dimension: | \(71\) over \(\Q(\zeta_{16})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5.1 | −22.6274 | + | 0.00136331i | −61.0037 | − | 40.7614i | 512.000 | − | 0.0616962i | 897.532 | + | 178.530i | 1380.41 | + | 922.241i | 4072.12 | − | 9830.97i | −11585.2 | + | 2.09404i | −5472.40 | − | 13211.5i | −20309.1 | − | 4038.45i |
| 5.2 | −22.6240 | − | 0.390747i | 0.460275 | + | 0.307546i | 511.695 | + | 17.6806i | 2016.41 | + | 401.089i | −10.2931 | − | 7.13779i | −2239.91 | + | 5407.61i | −11569.7 | − | 599.949i | −7532.24 | − | 18184.4i | −45462.6 | − | 9862.16i |
| 5.3 | −22.5838 | − | 1.40431i | −173.185 | − | 115.719i | 508.056 | + | 63.4294i | −1620.21 | − | 322.279i | 3748.67 | + | 2856.57i | −3384.90 | + | 8171.86i | −11384.8 | − | 2145.95i | 9069.94 | + | 21896.8i | 36137.8 | + | 9553.57i |
| 5.4 | −22.3444 | + | 3.56788i | 150.893 | + | 100.823i | 486.540 | − | 159.444i | −1900.87 | − | 378.107i | −3731.33 | − | 1714.46i | −4470.29 | + | 10792.2i | −10302.6 | + | 5298.59i | 5070.92 | + | 12242.3i | 43822.8 | + | 1666.47i |
| 5.5 | −22.2108 | − | 4.32229i | 158.701 | + | 106.040i | 474.636 | + | 192.003i | 198.982 | + | 39.5800i | −3066.53 | − | 3041.19i | 2226.24 | − | 5374.62i | −9712.13 | − | 6316.04i | 6409.00 | + | 15472.7i | −4248.47 | − | 1739.16i |
| 5.6 | −21.8044 | − | 6.04721i | −166.361 | − | 111.159i | 438.862 | + | 263.711i | 856.044 | + | 170.278i | 2955.21 | + | 3429.78i | −2280.04 | + | 5504.50i | −7974.41 | − | 8403.96i | 7787.42 | + | 18800.5i | −17635.8 | − | 8889.48i |
| 5.7 | −21.6788 | + | 6.48313i | −139.451 | − | 93.1781i | 427.938 | − | 281.093i | −1449.09 | − | 288.241i | 3627.21 | + | 1115.91i | 1958.23 | − | 4727.58i | −7454.81 | + | 8868.12i | 3232.03 | + | 7802.81i | 33283.1 | − | 3145.91i |
| 5.8 | −21.6323 | + | 6.63662i | 48.0959 | + | 32.1367i | 423.911 | − | 287.130i | −496.541 | − | 98.7681i | −1253.70 | − | 375.995i | −856.360 | + | 2067.43i | −7264.58 | + | 9024.61i | −6251.91 | − | 15093.4i | 11396.8 | − | 1158.77i |
| 5.9 | −21.5257 | − | 6.97468i | 26.8261 | + | 17.9246i | 414.708 | + | 300.269i | −1973.83 | − | 392.619i | −452.431 | − | 572.943i | 1748.32 | − | 4220.82i | −6832.57 | − | 9355.95i | −7134.01 | − | 17223.0i | 39749.6 | + | 22218.2i |
| 5.10 | −21.1342 | + | 8.08360i | 185.389 | + | 123.873i | 381.311 | − | 341.681i | 284.180 | + | 56.5268i | −4919.39 | − | 1119.35i | 2456.03 | − | 5929.39i | −5296.70 | + | 10303.5i | 11492.2 | + | 27744.6i | −6462.86 | + | 1102.54i |
| 5.11 | −20.4591 | − | 9.66566i | 174.556 | + | 116.634i | 325.150 | + | 395.502i | 991.245 | + | 197.171i | −2443.90 | − | 4073.43i | −1912.09 | + | 4616.18i | −2829.49 | − | 11234.4i | 9333.73 | + | 22533.6i | −18374.2 | − | 13615.0i |
| 5.12 | −19.5573 | + | 11.3804i | −208.374 | − | 139.231i | 252.975 | − | 445.138i | 2165.43 | + | 430.730i | 5659.72 | + | 351.610i | 895.911 | − | 2162.92i | 118.330 | + | 11584.6i | 16502.0 | + | 39839.4i | −47251.8 | + | 16219.4i |
| 5.13 | −19.1446 | − | 12.0616i | −203.663 | − | 136.083i | 221.034 | + | 461.831i | −101.206 | − | 20.1311i | 2257.67 | + | 5061.77i | 3486.79 | − | 8417.86i | 1338.83 | − | 11507.6i | 15427.6 | + | 37245.5i | 1694.74 | + | 1606.11i |
| 5.14 | −18.5512 | + | 12.9558i | 98.4214 | + | 65.7631i | 176.295 | − | 480.691i | 2139.40 | + | 425.554i | −2677.85 | + | 55.1424i | 688.510 | − | 1662.21i | 2957.25 | + | 11201.4i | −2170.36 | − | 5239.72i | −45201.9 | + | 19823.1i |
| 5.15 | −18.3262 | + | 13.2722i | −96.8286 | − | 64.6988i | 159.700 | − | 486.457i | 193.294 | + | 38.4485i | 2633.19 | − | 99.4401i | −1929.06 | + | 4657.16i | 3529.63 | + | 11034.5i | −2342.51 | − | 5655.33i | −4052.64 | + | 1860.81i |
| 5.16 | −17.9892 | − | 13.7255i | −12.8383 | − | 8.57826i | 135.223 | + | 493.820i | −684.820 | − | 136.219i | 113.210 | + | 330.528i | −1821.12 | + | 4396.58i | 4345.35 | − | 10739.4i | −7441.12 | − | 17964.5i | 10449.7 | + | 11849.9i |
| 5.17 | −17.1459 | − | 14.7654i | −84.6262 | − | 56.5454i | 75.9632 | + | 506.333i | 1594.75 | + | 317.216i | 616.073 | + | 2219.07i | 947.665 | − | 2287.87i | 6173.78 | − | 9803.17i | −3568.15 | − | 8614.27i | −22659.7 | − | 28986.2i |
| 5.18 | −16.2141 | + | 15.7830i | 50.2823 | + | 33.5976i | 13.7934 | − | 511.814i | −1948.31 | − | 387.543i | −1345.55 | + | 248.852i | 1690.99 | − | 4082.41i | 7854.32 | + | 8516.30i | −6132.84 | − | 14806.0i | 37706.7 | − | 24466.6i |
| 5.19 | −14.2080 | − | 17.6106i | 210.883 | + | 140.907i | −108.264 | + | 500.423i | −2350.51 | − | 467.546i | −514.767 | − | 5715.77i | −369.039 | + | 890.939i | 10351.0 | − | 5203.42i | 17084.2 | + | 41245.0i | 25162.4 | + | 48036.8i |
| 5.20 | −14.0980 | − | 17.6988i | 113.501 | + | 75.8391i | −114.494 | + | 499.034i | 2470.96 | + | 491.505i | −257.877 | − | 3078.01i | 1570.43 | − | 3791.36i | 10446.4 | − | 5008.96i | −401.396 | − | 969.056i | −26136.5 | − | 50662.3i |
| See next 80 embeddings (of 568 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 64.i | even | 16 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 64.10.i.a | ✓ | 568 |
| 64.i | even | 16 | 1 | inner | 64.10.i.a | ✓ | 568 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 64.10.i.a | ✓ | 568 | 1.a | even | 1 | 1 | trivial |
| 64.10.i.a | ✓ | 568 | 64.i | even | 16 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(64, [\chi])\).