Properties

Label 6336.2.f.c.3169.1
Level $6336$
Weight $2$
Character 6336.3169
Analytic conductor $50.593$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3169,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(41)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3169.1
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3169
Dual form 6336.2.f.c.3169.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44949i q^{5} -2.44949 q^{7} +1.00000i q^{11} -2.44949i q^{13} -8.00000i q^{19} +7.34847 q^{23} -1.00000 q^{25} +4.89898i q^{29} +9.79796 q^{31} +6.00000i q^{35} -6.00000 q^{41} -4.00000i q^{43} +7.34847 q^{47} -1.00000 q^{49} -7.34847i q^{53} +2.44949 q^{55} +7.34847i q^{61} -6.00000 q^{65} -10.0000i q^{67} +2.44949 q^{71} +2.00000 q^{73} -2.44949i q^{77} +12.2474 q^{79} +6.00000i q^{83} -18.0000 q^{89} +6.00000i q^{91} -19.5959 q^{95} -8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{25} - 24 q^{41} - 4 q^{49} - 24 q^{65} + 8 q^{73} - 72 q^{89} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.44949i − 1.09545i −0.836660 0.547723i \(-0.815495\pi\)
0.836660 0.547723i \(-0.184505\pi\)
\(6\) 0 0
\(7\) −2.44949 −0.925820 −0.462910 0.886405i \(-0.653195\pi\)
−0.462910 + 0.886405i \(0.653195\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) − 2.44949i − 0.679366i −0.940540 0.339683i \(-0.889680\pi\)
0.940540 0.339683i \(-0.110320\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) − 8.00000i − 1.83533i −0.397360 0.917663i \(-0.630073\pi\)
0.397360 0.917663i \(-0.369927\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.34847 1.53226 0.766131 0.642685i \(-0.222179\pi\)
0.766131 + 0.642685i \(0.222179\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.89898i 0.909718i 0.890564 + 0.454859i \(0.150310\pi\)
−0.890564 + 0.454859i \(0.849690\pi\)
\(30\) 0 0
\(31\) 9.79796 1.75977 0.879883 0.475191i \(-0.157621\pi\)
0.879883 + 0.475191i \(0.157621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.00000i 1.01419i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.34847 1.07188 0.535942 0.844255i \(-0.319956\pi\)
0.535942 + 0.844255i \(0.319956\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.34847i − 1.00939i −0.863298 0.504695i \(-0.831605\pi\)
0.863298 0.504695i \(-0.168395\pi\)
\(54\) 0 0
\(55\) 2.44949 0.330289
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 7.34847i 0.940875i 0.882433 + 0.470438i \(0.155904\pi\)
−0.882433 + 0.470438i \(0.844096\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) − 10.0000i − 1.22169i −0.791748 0.610847i \(-0.790829\pi\)
0.791748 0.610847i \(-0.209171\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.44949 0.290701 0.145350 0.989380i \(-0.453569\pi\)
0.145350 + 0.989380i \(0.453569\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.44949i − 0.279145i
\(78\) 0 0
\(79\) 12.2474 1.37795 0.688973 0.724787i \(-0.258062\pi\)
0.688973 + 0.724787i \(0.258062\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 6.00000i 0.628971i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −19.5959 −2.01050
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.89898i 0.487467i 0.969842 + 0.243733i \(0.0783722\pi\)
−0.969842 + 0.243733i \(0.921628\pi\)
\(102\) 0 0
\(103\) −4.89898 −0.482711 −0.241355 0.970437i \(-0.577592\pi\)
−0.241355 + 0.970437i \(0.577592\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) − 12.2474i − 1.17309i −0.809916 0.586546i \(-0.800487\pi\)
0.809916 0.586546i \(-0.199513\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) − 18.0000i − 1.67851i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 9.79796i − 0.876356i
\(126\) 0 0
\(127\) −17.1464 −1.52150 −0.760750 0.649045i \(-0.775169\pi\)
−0.760750 + 0.649045i \(0.775169\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 18.0000i − 1.57267i −0.617802 0.786334i \(-0.711977\pi\)
0.617802 0.786334i \(-0.288023\pi\)
\(132\) 0 0
\(133\) 19.5959i 1.69918i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) − 8.00000i − 0.678551i −0.940687 0.339276i \(-0.889818\pi\)
0.940687 0.339276i \(-0.110182\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44949 0.204837
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 19.5959i − 1.60536i −0.596410 0.802680i \(-0.703407\pi\)
0.596410 0.802680i \(-0.296593\pi\)
\(150\) 0 0
\(151\) −17.1464 −1.39536 −0.697678 0.716411i \(-0.745783\pi\)
−0.697678 + 0.716411i \(0.745783\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 24.0000i − 1.92773i
\(156\) 0 0
\(157\) − 4.89898i − 0.390981i −0.980706 0.195491i \(-0.937370\pi\)
0.980706 0.195491i \(-0.0626299\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −18.0000 −1.41860
\(162\) 0 0
\(163\) − 20.0000i − 1.56652i −0.621694 0.783260i \(-0.713555\pi\)
0.621694 0.783260i \(-0.286445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.89898 −0.379094 −0.189547 0.981872i \(-0.560702\pi\)
−0.189547 + 0.981872i \(0.560702\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.4949i 1.86231i 0.364620 + 0.931156i \(0.381199\pi\)
−0.364620 + 0.931156i \(0.618801\pi\)
\(174\) 0 0
\(175\) 2.44949 0.185164
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000i 0.896922i 0.893802 + 0.448461i \(0.148028\pi\)
−0.893802 + 0.448461i \(0.851972\pi\)
\(180\) 0 0
\(181\) − 24.4949i − 1.82069i −0.413849 0.910346i \(-0.635816\pi\)
0.413849 0.910346i \(-0.364184\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.1464 1.24067 0.620336 0.784336i \(-0.286996\pi\)
0.620336 + 0.784336i \(0.286996\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.89898i 0.349038i 0.984654 + 0.174519i \(0.0558370\pi\)
−0.984654 + 0.174519i \(0.944163\pi\)
\(198\) 0 0
\(199\) 14.6969 1.04184 0.520919 0.853606i \(-0.325589\pi\)
0.520919 + 0.853606i \(0.325589\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 12.0000i − 0.842235i
\(204\) 0 0
\(205\) 14.6969i 1.02648i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) − 4.00000i − 0.275371i −0.990476 0.137686i \(-0.956034\pi\)
0.990476 0.137686i \(-0.0439664\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.79796 −0.668215
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −9.79796 −0.656120 −0.328060 0.944657i \(-0.606395\pi\)
−0.328060 + 0.944657i \(0.606395\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) − 14.6969i − 0.971201i −0.874181 0.485601i \(-0.838601\pi\)
0.874181 0.485601i \(-0.161399\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) − 18.0000i − 1.17419i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.89898 0.316889 0.158444 0.987368i \(-0.449352\pi\)
0.158444 + 0.987368i \(0.449352\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.44949i 0.156492i
\(246\) 0 0
\(247\) −19.5959 −1.24686
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 7.34847i 0.461994i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −19.5959 −1.20834 −0.604168 0.796857i \(-0.706494\pi\)
−0.604168 + 0.796857i \(0.706494\pi\)
\(264\) 0 0
\(265\) −18.0000 −1.10573
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.2474i 0.746740i 0.927682 + 0.373370i \(0.121798\pi\)
−0.927682 + 0.373370i \(0.878202\pi\)
\(270\) 0 0
\(271\) 12.2474 0.743980 0.371990 0.928237i \(-0.378676\pi\)
0.371990 + 0.928237i \(0.378676\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.00000i − 0.0603023i
\(276\) 0 0
\(277\) − 17.1464i − 1.03023i −0.857121 0.515115i \(-0.827749\pi\)
0.857121 0.515115i \(-0.172251\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) − 8.00000i − 0.475551i −0.971320 0.237775i \(-0.923582\pi\)
0.971320 0.237775i \(-0.0764182\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.6969 0.867533
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.3939i 1.71721i 0.512639 + 0.858604i \(0.328668\pi\)
−0.512639 + 0.858604i \(0.671332\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 18.0000i − 1.04097i
\(300\) 0 0
\(301\) 9.79796i 0.564745i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.0000 1.03068
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.1464 −0.972285 −0.486142 0.873880i \(-0.661596\pi\)
−0.486142 + 0.873880i \(0.661596\pi\)
\(312\) 0 0
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.44949i − 0.137577i −0.997631 0.0687885i \(-0.978087\pi\)
0.997631 0.0687885i \(-0.0219134\pi\)
\(318\) 0 0
\(319\) −4.89898 −0.274290
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.44949i 0.135873i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18.0000 −0.992372
\(330\) 0 0
\(331\) 28.0000i 1.53902i 0.638635 + 0.769510i \(0.279499\pi\)
−0.638635 + 0.769510i \(0.720501\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −24.4949 −1.33830
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.79796i 0.530589i
\(342\) 0 0
\(343\) 19.5959 1.05808
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 18.0000i − 0.966291i −0.875540 0.483145i \(-0.839494\pi\)
0.875540 0.483145i \(-0.160506\pi\)
\(348\) 0 0
\(349\) 7.34847i 0.393355i 0.980468 + 0.196677i \(0.0630151\pi\)
−0.980468 + 0.196677i \(0.936985\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) − 6.00000i − 0.318447i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.89898 −0.258558 −0.129279 0.991608i \(-0.541266\pi\)
−0.129279 + 0.991608i \(0.541266\pi\)
\(360\) 0 0
\(361\) −45.0000 −2.36842
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 4.89898i − 0.256424i
\(366\) 0 0
\(367\) −9.79796 −0.511449 −0.255725 0.966750i \(-0.582314\pi\)
−0.255725 + 0.966750i \(0.582314\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.0000i 0.934513i
\(372\) 0 0
\(373\) 2.44949i 0.126830i 0.997987 + 0.0634149i \(0.0201991\pi\)
−0.997987 + 0.0634149i \(0.979801\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) − 4.00000i − 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.2474 −0.625815 −0.312908 0.949784i \(-0.601303\pi\)
−0.312908 + 0.949784i \(0.601303\pi\)
\(384\) 0 0
\(385\) −6.00000 −0.305788
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 26.9444i − 1.36613i −0.730355 0.683067i \(-0.760646\pi\)
0.730355 0.683067i \(-0.239354\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 30.0000i − 1.50946i
\(396\) 0 0
\(397\) − 4.89898i − 0.245873i −0.992415 0.122936i \(-0.960769\pi\)
0.992415 0.122936i \(-0.0392311\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) − 24.0000i − 1.19553i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 14.6969 0.721444
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 19.5959i 0.955047i 0.878619 + 0.477523i \(0.158465\pi\)
−0.878619 + 0.477523i \(0.841535\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 18.0000i − 0.871081i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 29.3939 1.41585 0.707927 0.706286i \(-0.249631\pi\)
0.707927 + 0.706286i \(0.249631\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 58.7878i − 2.81220i
\(438\) 0 0
\(439\) −31.8434 −1.51980 −0.759900 0.650039i \(-0.774752\pi\)
−0.759900 + 0.650039i \(0.774752\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 24.0000i − 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 0 0
\(445\) 44.0908i 2.09011i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) − 6.00000i − 0.282529i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.6969 0.689003
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.79796i 0.456336i 0.973622 + 0.228168i \(0.0732736\pi\)
−0.973622 + 0.228168i \(0.926726\pi\)
\(462\) 0 0
\(463\) 24.4949 1.13837 0.569187 0.822208i \(-0.307258\pi\)
0.569187 + 0.822208i \(0.307258\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 24.4949i 1.13107i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 8.00000i 0.367065i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.79796 −0.447680 −0.223840 0.974626i \(-0.571859\pi\)
−0.223840 + 0.974626i \(0.571859\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.5959i 0.889805i
\(486\) 0 0
\(487\) 24.4949 1.10997 0.554985 0.831860i \(-0.312724\pi\)
0.554985 + 0.831860i \(0.312724\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 12.0000i − 0.541552i −0.962642 0.270776i \(-0.912720\pi\)
0.962642 0.270776i \(-0.0872803\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.00000 −0.269137
\(498\) 0 0
\(499\) − 4.00000i − 0.179065i −0.995984 0.0895323i \(-0.971463\pi\)
0.995984 0.0895323i \(-0.0285372\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.89898 0.218435 0.109217 0.994018i \(-0.465166\pi\)
0.109217 + 0.994018i \(0.465166\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 26.9444i 1.19429i 0.802134 + 0.597144i \(0.203698\pi\)
−0.802134 + 0.597144i \(0.796302\pi\)
\(510\) 0 0
\(511\) −4.89898 −0.216718
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.0000i 0.528783i
\(516\) 0 0
\(517\) 7.34847i 0.323185i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 31.0000 1.34783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.6969i 0.636595i
\(534\) 0 0
\(535\) 29.3939 1.27081
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 1.00000i − 0.0430730i
\(540\) 0 0
\(541\) − 2.44949i − 0.105312i −0.998613 0.0526559i \(-0.983231\pi\)
0.998613 0.0526559i \(-0.0167686\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −30.0000 −1.28506
\(546\) 0 0
\(547\) − 20.0000i − 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 39.1918 1.66963
\(552\) 0 0
\(553\) −30.0000 −1.27573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 9.79796i − 0.415153i −0.978219 0.207576i \(-0.933442\pi\)
0.978219 0.207576i \(-0.0665576\pi\)
\(558\) 0 0
\(559\) −9.79796 −0.414410
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 36.0000i − 1.51722i −0.651546 0.758610i \(-0.725879\pi\)
0.651546 0.758610i \(-0.274121\pi\)
\(564\) 0 0
\(565\) − 14.6969i − 0.618305i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 40.0000i 1.67395i 0.547243 + 0.836974i \(0.315677\pi\)
−0.547243 + 0.836974i \(0.684323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.34847 −0.306452
\(576\) 0 0
\(577\) 28.0000 1.16566 0.582828 0.812596i \(-0.301946\pi\)
0.582828 + 0.812596i \(0.301946\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 14.6969i − 0.609732i
\(582\) 0 0
\(583\) 7.34847 0.304342
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 36.0000i − 1.48588i −0.669359 0.742940i \(-0.733431\pi\)
0.669359 0.742940i \(-0.266569\pi\)
\(588\) 0 0
\(589\) − 78.3837i − 3.22974i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.0000 0.492781 0.246390 0.969171i \(-0.420755\pi\)
0.246390 + 0.969171i \(0.420755\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.34847 −0.300250 −0.150125 0.988667i \(-0.547968\pi\)
−0.150125 + 0.988667i \(0.547968\pi\)
\(600\) 0 0
\(601\) −46.0000 −1.87638 −0.938190 0.346122i \(-0.887498\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.44949i 0.0995859i
\(606\) 0 0
\(607\) −41.6413 −1.69017 −0.845085 0.534633i \(-0.820450\pi\)
−0.845085 + 0.534633i \(0.820450\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 18.0000i − 0.728202i
\(612\) 0 0
\(613\) − 46.5403i − 1.87975i −0.341525 0.939873i \(-0.610943\pi\)
0.341525 0.939873i \(-0.389057\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 10.0000i 0.401934i 0.979598 + 0.200967i \(0.0644084\pi\)
−0.979598 + 0.200967i \(0.935592\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 44.0908 1.76646
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 19.5959 0.780101 0.390051 0.920793i \(-0.372458\pi\)
0.390051 + 0.920793i \(0.372458\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 42.0000i 1.66672i
\(636\) 0 0
\(637\) 2.44949i 0.0970523i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) − 14.0000i − 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.8434 1.25189 0.625946 0.779866i \(-0.284713\pi\)
0.625946 + 0.779866i \(0.284713\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 2.44949i − 0.0958559i −0.998851 0.0479280i \(-0.984738\pi\)
0.998851 0.0479280i \(-0.0152618\pi\)
\(654\) 0 0
\(655\) −44.0908 −1.72277
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 12.0000i − 0.467454i −0.972302 0.233727i \(-0.924908\pi\)
0.972302 0.233727i \(-0.0750921\pi\)
\(660\) 0 0
\(661\) 34.2929i 1.33384i 0.745130 + 0.666919i \(0.232387\pi\)
−0.745130 + 0.666919i \(0.767613\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 48.0000 1.86136
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.34847 −0.283685
\(672\) 0 0
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 24.4949i 0.941415i 0.882289 + 0.470708i \(0.156001\pi\)
−0.882289 + 0.470708i \(0.843999\pi\)
\(678\) 0 0
\(679\) 19.5959 0.752022
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 14.6969i 0.561541i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.0000 −0.685745
\(690\) 0 0
\(691\) − 2.00000i − 0.0760836i −0.999276 0.0380418i \(-0.987888\pi\)
0.999276 0.0380418i \(-0.0121120\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.5959 −0.743316
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.79796i 0.370064i 0.982733 + 0.185032i \(0.0592388\pi\)
−0.982733 + 0.185032i \(0.940761\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 12.0000i − 0.451306i
\(708\) 0 0
\(709\) − 24.4949i − 0.919925i −0.887938 0.459963i \(-0.847863\pi\)
0.887938 0.459963i \(-0.152137\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 72.0000 2.69642
\(714\) 0 0
\(715\) − 6.00000i − 0.224387i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.8434 −1.18756 −0.593779 0.804628i \(-0.702364\pi\)
−0.593779 + 0.804628i \(0.702364\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 4.89898i − 0.181944i
\(726\) 0 0
\(727\) 14.6969 0.545079 0.272540 0.962145i \(-0.412136\pi\)
0.272540 + 0.962145i \(0.412136\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 22.0454i − 0.814266i −0.913369 0.407133i \(-0.866529\pi\)
0.913369 0.407133i \(-0.133471\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.0000 0.368355
\(738\) 0 0
\(739\) − 16.0000i − 0.588570i −0.955718 0.294285i \(-0.904919\pi\)
0.955718 0.294285i \(-0.0950814\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.0908 1.61754 0.808768 0.588128i \(-0.200135\pi\)
0.808768 + 0.588128i \(0.200135\pi\)
\(744\) 0 0
\(745\) −48.0000 −1.75858
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 29.3939i − 1.07403i
\(750\) 0 0
\(751\) 48.9898 1.78766 0.893832 0.448403i \(-0.148007\pi\)
0.893832 + 0.448403i \(0.148007\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 42.0000i 1.52854i
\(756\) 0 0
\(757\) − 19.5959i − 0.712226i −0.934443 0.356113i \(-0.884102\pi\)
0.934443 0.356113i \(-0.115898\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −48.0000 −1.74000 −0.869999 0.493053i \(-0.835881\pi\)
−0.869999 + 0.493053i \(0.835881\pi\)
\(762\) 0 0
\(763\) 30.0000i 1.08607i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 41.6413i − 1.49773i −0.662720 0.748867i \(-0.730598\pi\)
0.662720 0.748867i \(-0.269402\pi\)
\(774\) 0 0
\(775\) −9.79796 −0.351953
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 48.0000i 1.71978i
\(780\) 0 0
\(781\) 2.44949i 0.0876496i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.0000 −0.428298
\(786\) 0 0
\(787\) 40.0000i 1.42585i 0.701242 + 0.712923i \(0.252629\pi\)
−0.701242 + 0.712923i \(0.747371\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.6969 −0.522563
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 31.8434i − 1.12795i −0.825792 0.563975i \(-0.809271\pi\)
0.825792 0.563975i \(-0.190729\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.00000i 0.0705785i
\(804\) 0 0
\(805\) 44.0908i 1.55400i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) − 16.0000i − 0.561836i −0.959732 0.280918i \(-0.909361\pi\)
0.959732 0.280918i \(-0.0906389\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −48.9898 −1.71604
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.89898i 0.170976i 0.996339 + 0.0854878i \(0.0272449\pi\)
−0.996339 + 0.0854878i \(0.972755\pi\)
\(822\) 0 0
\(823\) −29.3939 −1.02461 −0.512303 0.858805i \(-0.671208\pi\)
−0.512303 + 0.858805i \(0.671208\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 54.0000i − 1.87776i −0.344239 0.938882i \(-0.611863\pi\)
0.344239 0.938882i \(-0.388137\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 12.0000i 0.415277i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.8434 1.09936 0.549678 0.835377i \(-0.314751\pi\)
0.549678 + 0.835377i \(0.314751\pi\)
\(840\) 0 0
\(841\) 5.00000 0.172414
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 17.1464i − 0.589855i
\(846\) 0 0
\(847\) 2.44949 0.0841655
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 2.44949i 0.0838689i 0.999120 + 0.0419345i \(0.0133521\pi\)
−0.999120 + 0.0419345i \(0.986648\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) 20.0000i 0.682391i 0.939992 + 0.341196i \(0.110832\pi\)
−0.939992 + 0.341196i \(0.889168\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.8434 −1.08396 −0.541980 0.840391i \(-0.682325\pi\)
−0.541980 + 0.840391i \(0.682325\pi\)
\(864\) 0 0
\(865\) 60.0000 2.04006
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.2474i 0.415466i
\(870\) 0 0
\(871\) −24.4949 −0.829978
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 24.0000i 0.811348i
\(876\) 0 0
\(877\) − 36.7423i − 1.24070i −0.784325 0.620350i \(-0.786990\pi\)
0.784325 0.620350i \(-0.213010\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) − 2.00000i − 0.0673054i −0.999434 0.0336527i \(-0.989286\pi\)
0.999434 0.0336527i \(-0.0107140\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.89898 −0.164492 −0.0822458 0.996612i \(-0.526209\pi\)
−0.0822458 + 0.996612i \(0.526209\pi\)
\(888\) 0 0
\(889\) 42.0000 1.40863
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 58.7878i − 1.96726i
\(894\) 0 0
\(895\) 29.3939 0.982529
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 48.0000i 1.60089i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −60.0000 −1.99447
\(906\) 0 0
\(907\) − 58.0000i − 1.92586i −0.269754 0.962929i \(-0.586942\pi\)
0.269754 0.962929i \(-0.413058\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.4393 1.70426 0.852130 0.523331i \(-0.175311\pi\)
0.852130 + 0.523331i \(0.175311\pi\)
\(912\) 0 0
\(913\) −6.00000 −0.198571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.0908i 1.45601i
\(918\) 0 0
\(919\) 26.9444 0.888813 0.444407 0.895825i \(-0.353415\pi\)
0.444407 + 0.895825i \(0.353415\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 6.00000i − 0.197492i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 8.00000i 0.262189i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 14.6969i − 0.479107i −0.970883 0.239553i \(-0.922999\pi\)
0.970883 0.239553i \(-0.0770010\pi\)
\(942\) 0 0
\(943\) −44.0908 −1.43579
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0000i 0.779895i 0.920837 + 0.389948i \(0.127507\pi\)
−0.920837 + 0.389948i \(0.872493\pi\)
\(948\) 0 0
\(949\) − 4.89898i − 0.159028i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) − 42.0000i − 1.35909i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.6969 0.474589
\(960\) 0 0
\(961\) 65.0000 2.09677
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 4.89898i − 0.157704i
\(966\) 0 0
\(967\) −22.0454 −0.708933 −0.354466 0.935069i \(-0.615337\pi\)
−0.354466 + 0.935069i \(0.615337\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 60.0000i 1.92549i 0.270408 + 0.962746i \(0.412841\pi\)
−0.270408 + 0.962746i \(0.587159\pi\)
\(972\) 0 0
\(973\) 19.5959i 0.628216i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) − 18.0000i − 0.575282i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −26.9444 −0.859392 −0.429696 0.902973i \(-0.641379\pi\)
−0.429696 + 0.902973i \(0.641379\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 29.3939i − 0.934671i
\(990\) 0 0
\(991\) 19.5959 0.622485 0.311242 0.950331i \(-0.399255\pi\)
0.311242 + 0.950331i \(0.399255\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 36.0000i − 1.14128i
\(996\) 0 0
\(997\) 56.3383i 1.78425i 0.451788 + 0.892125i \(0.350786\pi\)
−0.451788 + 0.892125i \(0.649214\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.f.c.3169.1 4
3.2 odd 2 2112.2.f.d.1057.4 yes 4
4.3 odd 2 inner 6336.2.f.c.3169.2 4
8.3 odd 2 inner 6336.2.f.c.3169.4 4
8.5 even 2 inner 6336.2.f.c.3169.3 4
12.11 even 2 2112.2.f.d.1057.2 yes 4
24.5 odd 2 2112.2.f.d.1057.1 4
24.11 even 2 2112.2.f.d.1057.3 yes 4
48.5 odd 4 8448.2.a.by.1.1 2
48.11 even 4 8448.2.a.be.1.1 2
48.29 odd 4 8448.2.a.be.1.2 2
48.35 even 4 8448.2.a.by.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.f.d.1057.1 4 24.5 odd 2
2112.2.f.d.1057.2 yes 4 12.11 even 2
2112.2.f.d.1057.3 yes 4 24.11 even 2
2112.2.f.d.1057.4 yes 4 3.2 odd 2
6336.2.f.c.3169.1 4 1.1 even 1 trivial
6336.2.f.c.3169.2 4 4.3 odd 2 inner
6336.2.f.c.3169.3 4 8.5 even 2 inner
6336.2.f.c.3169.4 4 8.3 odd 2 inner
8448.2.a.be.1.1 2 48.11 even 4
8448.2.a.be.1.2 2 48.29 odd 4
8448.2.a.by.1.1 2 48.5 odd 4
8448.2.a.by.1.2 2 48.35 even 4