Properties

Label 6336.2.f.b.3169.1
Level $6336$
Weight $2$
Character 6336.3169
Analytic conductor $50.593$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3169,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,12,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(41)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3169.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3169
Dual form 6336.2.f.b.3169.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{5} -4.24264 q^{7} -1.00000i q^{11} -1.41421i q^{13} -4.00000 q^{17} +1.41421 q^{23} +3.00000 q^{25} +2.82843i q^{29} -5.65685 q^{31} +6.00000i q^{35} -6.00000 q^{41} +4.00000i q^{43} -9.89949 q^{47} +11.0000 q^{49} +1.41421i q^{53} -1.41421 q^{55} +8.00000i q^{59} -12.7279i q^{61} -2.00000 q^{65} -10.0000i q^{67} -12.7279 q^{71} +10.0000 q^{73} +4.24264i q^{77} +4.24264 q^{79} +6.00000i q^{83} +5.65685i q^{85} +6.00000 q^{89} +6.00000i q^{91} +12.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{17} + 12 q^{25} - 24 q^{41} + 44 q^{49} - 8 q^{65} + 40 q^{73} + 24 q^{89} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.41421i − 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.948683 0.316228i \(-0.102416\pi\)
\(6\) 0 0
\(7\) −4.24264 −1.60357 −0.801784 0.597614i \(-0.796115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) − 1.41421i − 0.392232i −0.980581 0.196116i \(-0.937167\pi\)
0.980581 0.196116i \(-0.0628330\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.41421 0.294884 0.147442 0.989071i \(-0.452896\pi\)
0.147442 + 0.989071i \(0.452896\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.82843i 0.525226i 0.964901 + 0.262613i \(0.0845842\pi\)
−0.964901 + 0.262613i \(0.915416\pi\)
\(30\) 0 0
\(31\) −5.65685 −1.01600 −0.508001 0.861357i \(-0.669615\pi\)
−0.508001 + 0.861357i \(0.669615\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.00000i 1.01419i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.89949 −1.44399 −0.721995 0.691898i \(-0.756775\pi\)
−0.721995 + 0.691898i \(0.756775\pi\)
\(48\) 0 0
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.41421i 0.194257i 0.995272 + 0.0971286i \(0.0309658\pi\)
−0.995272 + 0.0971286i \(0.969034\pi\)
\(54\) 0 0
\(55\) −1.41421 −0.190693
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000i 1.04151i 0.853706 + 0.520756i \(0.174350\pi\)
−0.853706 + 0.520756i \(0.825650\pi\)
\(60\) 0 0
\(61\) − 12.7279i − 1.62964i −0.579712 0.814822i \(-0.696835\pi\)
0.579712 0.814822i \(-0.303165\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) − 10.0000i − 1.22169i −0.791748 0.610847i \(-0.790829\pi\)
0.791748 0.610847i \(-0.209171\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.7279 −1.51053 −0.755263 0.655422i \(-0.772491\pi\)
−0.755263 + 0.655422i \(0.772491\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.24264i 0.483494i
\(78\) 0 0
\(79\) 4.24264 0.477334 0.238667 0.971101i \(-0.423290\pi\)
0.238667 + 0.971101i \(0.423290\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 5.65685i 0.613572i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 6.00000i 0.628971i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 8.48528i − 0.844317i −0.906522 0.422159i \(-0.861273\pi\)
0.906522 0.422159i \(-0.138727\pi\)
\(102\) 0 0
\(103\) 14.1421 1.39347 0.696733 0.717331i \(-0.254636\pi\)
0.696733 + 0.717331i \(0.254636\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 4.24264i 0.406371i 0.979140 + 0.203186i \(0.0651295\pi\)
−0.979140 + 0.203186i \(0.934871\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) − 2.00000i − 0.186501i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 16.9706 1.55569
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.3137i − 1.01193i
\(126\) 0 0
\(127\) −12.7279 −1.12942 −0.564710 0.825289i \(-0.691012\pi\)
−0.564710 + 0.825289i \(0.691012\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0000i 1.22319i 0.791173 + 0.611593i \(0.209471\pi\)
−0.791173 + 0.611593i \(0.790529\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.41421 −0.118262
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.6274i 1.85371i 0.375419 + 0.926855i \(0.377499\pi\)
−0.375419 + 0.926855i \(0.622501\pi\)
\(150\) 0 0
\(151\) 4.24264 0.345261 0.172631 0.984987i \(-0.444773\pi\)
0.172631 + 0.984987i \(0.444773\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.00000i 0.642575i
\(156\) 0 0
\(157\) 19.7990i 1.58013i 0.613022 + 0.790066i \(0.289954\pi\)
−0.613022 + 0.790066i \(0.710046\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.4558 1.96983 0.984916 0.173032i \(-0.0553564\pi\)
0.984916 + 0.173032i \(0.0553564\pi\)
\(168\) 0 0
\(169\) 11.0000 0.846154
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 8.48528i − 0.645124i −0.946548 0.322562i \(-0.895456\pi\)
0.946548 0.322562i \(-0.104544\pi\)
\(174\) 0 0
\(175\) −12.7279 −0.962140
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000i 0.298974i 0.988764 + 0.149487i \(0.0477622\pi\)
−0.988764 + 0.149487i \(0.952238\pi\)
\(180\) 0 0
\(181\) 8.48528i 0.630706i 0.948974 + 0.315353i \(0.102123\pi\)
−0.948974 + 0.315353i \(0.897877\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.24264 −0.306987 −0.153493 0.988150i \(-0.549052\pi\)
−0.153493 + 0.988150i \(0.549052\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.82843i 0.201517i 0.994911 + 0.100759i \(0.0321270\pi\)
−0.994911 + 0.100759i \(0.967873\pi\)
\(198\) 0 0
\(199\) 25.4558 1.80452 0.902258 0.431196i \(-0.141908\pi\)
0.902258 + 0.431196i \(0.141908\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 12.0000i − 0.842235i
\(204\) 0 0
\(205\) 8.48528i 0.592638i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 12.0000i − 0.826114i −0.910705 0.413057i \(-0.864461\pi\)
0.910705 0.413057i \(-0.135539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.65685 0.385794
\(216\) 0 0
\(217\) 24.0000 1.62923
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.65685i 0.380521i
\(222\) 0 0
\(223\) 16.9706 1.13643 0.568216 0.822879i \(-0.307634\pi\)
0.568216 + 0.822879i \(0.307634\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 28.0000i 1.85843i 0.369546 + 0.929213i \(0.379513\pi\)
−0.369546 + 0.929213i \(0.620487\pi\)
\(228\) 0 0
\(229\) − 19.7990i − 1.30835i −0.756341 0.654177i \(-0.773015\pi\)
0.756341 0.654177i \(-0.226985\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 14.0000i 0.913259i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.82843 −0.182956 −0.0914779 0.995807i \(-0.529159\pi\)
−0.0914779 + 0.995807i \(0.529159\pi\)
\(240\) 0 0
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 15.5563i − 0.993859i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 24.0000i − 1.51487i −0.652913 0.757433i \(-0.726453\pi\)
0.652913 0.757433i \(-0.273547\pi\)
\(252\) 0 0
\(253\) − 1.41421i − 0.0889108i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.6274 −1.39527 −0.697633 0.716455i \(-0.745763\pi\)
−0.697633 + 0.716455i \(0.745763\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.3848i 1.12094i 0.828175 + 0.560470i \(0.189379\pi\)
−0.828175 + 0.560470i \(0.810621\pi\)
\(270\) 0 0
\(271\) −12.7279 −0.773166 −0.386583 0.922255i \(-0.626345\pi\)
−0.386583 + 0.922255i \(0.626345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 3.00000i − 0.180907i
\(276\) 0 0
\(277\) 7.07107i 0.424859i 0.977176 + 0.212430i \(0.0681376\pi\)
−0.977176 + 0.212430i \(0.931862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 32.0000i 1.90220i 0.308879 + 0.951101i \(0.400046\pi\)
−0.308879 + 0.951101i \(0.599954\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 25.4558 1.50261
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.2843i 1.65238i 0.563388 + 0.826192i \(0.309498\pi\)
−0.563388 + 0.826192i \(0.690502\pi\)
\(294\) 0 0
\(295\) 11.3137 0.658710
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 2.00000i − 0.115663i
\(300\) 0 0
\(301\) − 16.9706i − 0.978167i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −18.0000 −1.03068
\(306\) 0 0
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.89949 0.561349 0.280674 0.959803i \(-0.409442\pi\)
0.280674 + 0.959803i \(0.409442\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 35.3553i − 1.98575i −0.119145 0.992877i \(-0.538015\pi\)
0.119145 0.992877i \(-0.461985\pi\)
\(318\) 0 0
\(319\) 2.82843 0.158362
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 4.24264i − 0.235339i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 42.0000 2.31553
\(330\) 0 0
\(331\) 28.0000i 1.53902i 0.638635 + 0.769510i \(0.279499\pi\)
−0.638635 + 0.769510i \(0.720501\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14.1421 −0.772667
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.65685i 0.306336i
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.0000i 0.751559i 0.926709 + 0.375780i \(0.122625\pi\)
−0.926709 + 0.375780i \(0.877375\pi\)
\(348\) 0 0
\(349\) − 7.07107i − 0.378506i −0.981928 0.189253i \(-0.939393\pi\)
0.981928 0.189253i \(-0.0606066\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 18.0000i 0.955341i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.1127 −1.64207 −0.821033 0.570881i \(-0.806602\pi\)
−0.821033 + 0.570881i \(0.806602\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 14.1421i − 0.740233i
\(366\) 0 0
\(367\) 5.65685 0.295285 0.147643 0.989041i \(-0.452831\pi\)
0.147643 + 0.989041i \(0.452831\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 6.00000i − 0.311504i
\(372\) 0 0
\(373\) 1.41421i 0.0732252i 0.999330 + 0.0366126i \(0.0116568\pi\)
−0.999330 + 0.0366126i \(0.988343\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 4.00000i 0.205466i 0.994709 + 0.102733i \(0.0327588\pi\)
−0.994709 + 0.102733i \(0.967241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 29.6985 1.51752 0.758761 0.651369i \(-0.225805\pi\)
0.758761 + 0.651369i \(0.225805\pi\)
\(384\) 0 0
\(385\) 6.00000 0.305788
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 9.89949i − 0.501924i −0.967997 0.250962i \(-0.919253\pi\)
0.967997 0.250962i \(-0.0807470\pi\)
\(390\) 0 0
\(391\) −5.65685 −0.286079
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 6.00000i − 0.301893i
\(396\) 0 0
\(397\) 8.48528i 0.425864i 0.977067 + 0.212932i \(0.0683013\pi\)
−0.977067 + 0.212932i \(0.931699\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 33.9411i − 1.67013i
\(414\) 0 0
\(415\) 8.48528 0.416526
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) − 22.6274i − 1.10279i −0.834243 0.551396i \(-0.814095\pi\)
0.834243 0.551396i \(-0.185905\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) 54.0000i 2.61324i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.65685 −0.272481 −0.136241 0.990676i \(-0.543502\pi\)
−0.136241 + 0.990676i \(0.543502\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.24264 −0.202490 −0.101245 0.994862i \(-0.532283\pi\)
−0.101245 + 0.994862i \(0.532283\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 32.0000i − 1.52037i −0.649709 0.760183i \(-0.725109\pi\)
0.649709 0.760183i \(-0.274891\pi\)
\(444\) 0 0
\(445\) − 8.48528i − 0.402241i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.0000 −1.22702 −0.613508 0.789689i \(-0.710242\pi\)
−0.613508 + 0.789689i \(0.710242\pi\)
\(450\) 0 0
\(451\) 6.00000i 0.282529i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.48528 0.397796
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.65685i 0.263466i 0.991285 + 0.131733i \(0.0420541\pi\)
−0.991285 + 0.131733i \(0.957946\pi\)
\(462\) 0 0
\(463\) −14.1421 −0.657241 −0.328620 0.944462i \(-0.606584\pi\)
−0.328620 + 0.944462i \(0.606584\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 24.0000i − 1.11059i −0.831654 0.555294i \(-0.812606\pi\)
0.831654 0.555294i \(-0.187394\pi\)
\(468\) 0 0
\(469\) 42.4264i 1.95907i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −39.5980 −1.80928 −0.904639 0.426179i \(-0.859859\pi\)
−0.904639 + 0.426179i \(0.859859\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 16.9706i − 0.770594i
\(486\) 0 0
\(487\) −25.4558 −1.15351 −0.576757 0.816916i \(-0.695682\pi\)
−0.576757 + 0.816916i \(0.695682\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 12.0000i − 0.541552i −0.962642 0.270776i \(-0.912720\pi\)
0.962642 0.270776i \(-0.0872803\pi\)
\(492\) 0 0
\(493\) − 11.3137i − 0.509544i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 54.0000 2.42223
\(498\) 0 0
\(499\) − 28.0000i − 1.25345i −0.779240 0.626726i \(-0.784395\pi\)
0.779240 0.626726i \(-0.215605\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.48528 0.378340 0.189170 0.981944i \(-0.439420\pi\)
0.189170 + 0.981944i \(0.439420\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.2132i 0.940259i 0.882598 + 0.470129i \(0.155793\pi\)
−0.882598 + 0.470129i \(0.844207\pi\)
\(510\) 0 0
\(511\) −42.4264 −1.87683
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 20.0000i − 0.881305i
\(516\) 0 0
\(517\) 9.89949i 0.435379i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) − 4.00000i − 0.174908i −0.996169 0.0874539i \(-0.972127\pi\)
0.996169 0.0874539i \(-0.0278730\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.6274 0.985666
\(528\) 0 0
\(529\) −21.0000 −0.913043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.48528i 0.367538i
\(534\) 0 0
\(535\) 5.65685 0.244567
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 11.0000i − 0.473804i
\(540\) 0 0
\(541\) − 24.0416i − 1.03363i −0.856097 0.516815i \(-0.827117\pi\)
0.856097 0.516815i \(-0.172883\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) 20.0000i 0.855138i 0.903983 + 0.427569i \(0.140630\pi\)
−0.903983 + 0.427569i \(0.859370\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −18.0000 −0.765438
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.2843i 1.19844i 0.800583 + 0.599222i \(0.204523\pi\)
−0.800583 + 0.599222i \(0.795477\pi\)
\(558\) 0 0
\(559\) 5.65685 0.239259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000i 0.505740i 0.967500 + 0.252870i \(0.0813744\pi\)
−0.967500 + 0.252870i \(0.918626\pi\)
\(564\) 0 0
\(565\) − 8.48528i − 0.356978i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.0000 −1.50920 −0.754599 0.656186i \(-0.772169\pi\)
−0.754599 + 0.656186i \(0.772169\pi\)
\(570\) 0 0
\(571\) − 32.0000i − 1.33916i −0.742741 0.669579i \(-0.766474\pi\)
0.742741 0.669579i \(-0.233526\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.24264 0.176930
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 25.4558i − 1.05609i
\(582\) 0 0
\(583\) 1.41421 0.0585707
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) − 24.0000i − 0.983904i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.3848 −0.751182 −0.375591 0.926786i \(-0.622560\pi\)
−0.375591 + 0.926786i \(0.622560\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.41421i 0.0574960i
\(606\) 0 0
\(607\) 41.0122 1.66463 0.832317 0.554300i \(-0.187014\pi\)
0.832317 + 0.554300i \(0.187014\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.0000i 0.566379i
\(612\) 0 0
\(613\) − 43.8406i − 1.77071i −0.464919 0.885353i \(-0.653917\pi\)
0.464919 0.885353i \(-0.346083\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.0000 1.36879 0.684394 0.729112i \(-0.260067\pi\)
0.684394 + 0.729112i \(0.260067\pi\)
\(618\) 0 0
\(619\) 26.0000i 1.04503i 0.852631 + 0.522514i \(0.175006\pi\)
−0.852631 + 0.522514i \(0.824994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25.4558 −1.01987
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −22.6274 −0.900783 −0.450392 0.892831i \(-0.648716\pi\)
−0.450392 + 0.892831i \(0.648716\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.0000i 0.714308i
\(636\) 0 0
\(637\) − 15.5563i − 0.616365i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −26.0000 −1.02694 −0.513469 0.858108i \(-0.671640\pi\)
−0.513469 + 0.858108i \(0.671640\pi\)
\(642\) 0 0
\(643\) 34.0000i 1.34083i 0.741987 + 0.670415i \(0.233884\pi\)
−0.741987 + 0.670415i \(0.766116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −29.6985 −1.16757 −0.583784 0.811909i \(-0.698428\pi\)
−0.583784 + 0.811909i \(0.698428\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32.5269i 1.27288i 0.771328 + 0.636438i \(0.219593\pi\)
−0.771328 + 0.636438i \(0.780407\pi\)
\(654\) 0 0
\(655\) 19.7990 0.773611
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.0000i 1.09073i 0.838200 + 0.545363i \(0.183608\pi\)
−0.838200 + 0.545363i \(0.816392\pi\)
\(660\) 0 0
\(661\) 8.48528i 0.330039i 0.986290 + 0.165020i \(0.0527687\pi\)
−0.986290 + 0.165020i \(0.947231\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.00000i 0.154881i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.7279 −0.491356
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.82843i 0.108705i 0.998522 + 0.0543526i \(0.0173095\pi\)
−0.998522 + 0.0543526i \(0.982690\pi\)
\(678\) 0 0
\(679\) −50.9117 −1.95381
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 28.0000i − 1.07139i −0.844411 0.535695i \(-0.820050\pi\)
0.844411 0.535695i \(-0.179950\pi\)
\(684\) 0 0
\(685\) − 2.82843i − 0.108069i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.00000 0.0761939
\(690\) 0 0
\(691\) − 2.00000i − 0.0760836i −0.999276 0.0380418i \(-0.987888\pi\)
0.999276 0.0380418i \(-0.0121120\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.2843i 1.06828i 0.845395 + 0.534141i \(0.179365\pi\)
−0.845395 + 0.534141i \(0.820635\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000i 1.35392i
\(708\) 0 0
\(709\) 8.48528i 0.318671i 0.987224 + 0.159336i \(0.0509352\pi\)
−0.987224 + 0.159336i \(0.949065\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.00000 −0.299602
\(714\) 0 0
\(715\) 2.00000i 0.0747958i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 41.0122 1.52950 0.764748 0.644329i \(-0.222863\pi\)
0.764748 + 0.644329i \(0.222863\pi\)
\(720\) 0 0
\(721\) −60.0000 −2.23452
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.48528i 0.315135i
\(726\) 0 0
\(727\) 36.7696 1.36371 0.681854 0.731489i \(-0.261174\pi\)
0.681854 + 0.731489i \(0.261174\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 16.0000i − 0.591781i
\(732\) 0 0
\(733\) 21.2132i 0.783528i 0.920066 + 0.391764i \(0.128135\pi\)
−0.920066 + 0.391764i \(0.871865\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.0000 −0.368355
\(738\) 0 0
\(739\) − 40.0000i − 1.47142i −0.677295 0.735712i \(-0.736848\pi\)
0.677295 0.735712i \(-0.263152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.82843 −0.103765 −0.0518825 0.998653i \(-0.516522\pi\)
−0.0518825 + 0.998653i \(0.516522\pi\)
\(744\) 0 0
\(745\) 32.0000 1.17239
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 16.9706i − 0.620091i
\(750\) 0 0
\(751\) 16.9706 0.619265 0.309632 0.950856i \(-0.399794\pi\)
0.309632 + 0.950856i \(0.399794\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 6.00000i − 0.218362i
\(756\) 0 0
\(757\) 45.2548i 1.64481i 0.568899 + 0.822407i \(0.307370\pi\)
−0.568899 + 0.822407i \(0.692630\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.0000 0.724999 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(762\) 0 0
\(763\) − 18.0000i − 0.651644i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.3137 0.408514
\(768\) 0 0
\(769\) −6.00000 −0.216366 −0.108183 0.994131i \(-0.534503\pi\)
−0.108183 + 0.994131i \(0.534503\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.89949i 0.356060i 0.984025 + 0.178030i \(0.0569724\pi\)
−0.984025 + 0.178030i \(0.943028\pi\)
\(774\) 0 0
\(775\) −16.9706 −0.609601
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 12.7279i 0.455441i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 28.0000 0.999363
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −25.4558 −0.905106
\(792\) 0 0
\(793\) −18.0000 −0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 43.8406i 1.55291i 0.630170 + 0.776457i \(0.282985\pi\)
−0.630170 + 0.776457i \(0.717015\pi\)
\(798\) 0 0
\(799\) 39.5980 1.40088
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 10.0000i − 0.352892i
\(804\) 0 0
\(805\) 8.48528i 0.299067i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 24.0000i 0.842754i 0.906886 + 0.421377i \(0.138453\pi\)
−0.906886 + 0.421377i \(0.861547\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.9706 0.594453
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.1421i 0.493564i 0.969071 + 0.246782i \(0.0793731\pi\)
−0.969071 + 0.246782i \(0.920627\pi\)
\(822\) 0 0
\(823\) 28.2843 0.985928 0.492964 0.870050i \(-0.335913\pi\)
0.492964 + 0.870050i \(0.335913\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 6.00000i − 0.208640i −0.994544 0.104320i \(-0.966733\pi\)
0.994544 0.104320i \(-0.0332667\pi\)
\(828\) 0 0
\(829\) 33.9411i 1.17882i 0.807833 + 0.589412i \(0.200641\pi\)
−0.807833 + 0.589412i \(0.799359\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −44.0000 −1.52451
\(834\) 0 0
\(835\) − 36.0000i − 1.24583i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 43.8406 1.51355 0.756773 0.653678i \(-0.226775\pi\)
0.756773 + 0.653678i \(0.226775\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 15.5563i − 0.535155i
\(846\) 0 0
\(847\) 4.24264 0.145779
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 29.6985i 1.01686i 0.861104 + 0.508428i \(0.169773\pi\)
−0.861104 + 0.508428i \(0.830227\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) − 36.0000i − 1.22830i −0.789188 0.614152i \(-0.789498\pi\)
0.789188 0.614152i \(-0.210502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.41421 0.0481404 0.0240702 0.999710i \(-0.492337\pi\)
0.0240702 + 0.999710i \(0.492337\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 4.24264i − 0.143922i
\(870\) 0 0
\(871\) −14.1421 −0.479188
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 48.0000i 1.62270i
\(876\) 0 0
\(877\) 52.3259i 1.76692i 0.468506 + 0.883460i \(0.344792\pi\)
−0.468506 + 0.883460i \(0.655208\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) − 2.00000i − 0.0673054i −0.999434 0.0336527i \(-0.989286\pi\)
0.999434 0.0336527i \(-0.0107140\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.82843 0.0949693 0.0474846 0.998872i \(-0.484879\pi\)
0.0474846 + 0.998872i \(0.484879\pi\)
\(888\) 0 0
\(889\) 54.0000 1.81110
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 5.65685 0.189088
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 16.0000i − 0.533630i
\(900\) 0 0
\(901\) − 5.65685i − 0.188457i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.0000 0.398893
\(906\) 0 0
\(907\) − 26.0000i − 0.863316i −0.902037 0.431658i \(-0.857929\pi\)
0.902037 0.431658i \(-0.142071\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.41421 −0.0468550 −0.0234275 0.999726i \(-0.507458\pi\)
−0.0234275 + 0.999726i \(0.507458\pi\)
\(912\) 0 0
\(913\) 6.00000 0.198571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 59.3970i − 1.96146i
\(918\) 0 0
\(919\) 1.41421 0.0466506 0.0233253 0.999728i \(-0.492575\pi\)
0.0233253 + 0.999728i \(0.492575\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 18.0000i 0.592477i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.65685 0.184999
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 53.7401i − 1.75188i −0.482422 0.875939i \(-0.660243\pi\)
0.482422 0.875939i \(-0.339757\pi\)
\(942\) 0 0
\(943\) −8.48528 −0.276319
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.0000i 1.55979i 0.625910 + 0.779895i \(0.284728\pi\)
−0.625910 + 0.779895i \(0.715272\pi\)
\(948\) 0 0
\(949\) − 14.1421i − 0.459073i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −50.0000 −1.61966 −0.809829 0.586665i \(-0.800440\pi\)
−0.809829 + 0.586665i \(0.800440\pi\)
\(954\) 0 0
\(955\) 6.00000i 0.194155i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.48528 −0.274004
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 14.1421i − 0.455251i
\(966\) 0 0
\(967\) −9.89949 −0.318346 −0.159173 0.987251i \(-0.550883\pi\)
−0.159173 + 0.987251i \(0.550883\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000i 1.15529i 0.816286 + 0.577647i \(0.196029\pi\)
−0.816286 + 0.577647i \(0.803971\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −46.0000 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(978\) 0 0
\(979\) − 6.00000i − 0.191761i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 26.8701 0.857022 0.428511 0.903537i \(-0.359038\pi\)
0.428511 + 0.903537i \(0.359038\pi\)
\(984\) 0 0
\(985\) 4.00000 0.127451
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.65685i 0.179878i
\(990\) 0 0
\(991\) 22.6274 0.718784 0.359392 0.933187i \(-0.382984\pi\)
0.359392 + 0.933187i \(0.382984\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 36.0000i − 1.14128i
\(996\) 0 0
\(997\) − 29.6985i − 0.940560i −0.882517 0.470280i \(-0.844153\pi\)
0.882517 0.470280i \(-0.155847\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.f.b.3169.1 4
3.2 odd 2 2112.2.f.f.1057.2 yes 4
4.3 odd 2 inner 6336.2.f.b.3169.2 4
8.3 odd 2 inner 6336.2.f.b.3169.4 4
8.5 even 2 inner 6336.2.f.b.3169.3 4
12.11 even 2 2112.2.f.f.1057.4 yes 4
24.5 odd 2 2112.2.f.f.1057.3 yes 4
24.11 even 2 2112.2.f.f.1057.1 4
48.5 odd 4 8448.2.a.bf.1.1 2
48.11 even 4 8448.2.a.bz.1.1 2
48.29 odd 4 8448.2.a.bz.1.2 2
48.35 even 4 8448.2.a.bf.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.f.f.1057.1 4 24.11 even 2
2112.2.f.f.1057.2 yes 4 3.2 odd 2
2112.2.f.f.1057.3 yes 4 24.5 odd 2
2112.2.f.f.1057.4 yes 4 12.11 even 2
6336.2.f.b.3169.1 4 1.1 even 1 trivial
6336.2.f.b.3169.2 4 4.3 odd 2 inner
6336.2.f.b.3169.3 4 8.5 even 2 inner
6336.2.f.b.3169.4 4 8.3 odd 2 inner
8448.2.a.bf.1.1 2 48.5 odd 4
8448.2.a.bf.1.2 2 48.35 even 4
8448.2.a.bz.1.1 2 48.11 even 4
8448.2.a.bz.1.2 2 48.29 odd 4