Properties

Label 6336.2.d.e.3455.7
Level $6336$
Weight $2$
Character 6336.3455
Analytic conductor $50.593$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3455,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3455"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1768034304.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 9x^{6} - 2x^{5} + 34x^{4} - 18x^{3} + 51x^{2} + 18x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1584)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3455.7
Root \(1.44368 + 2.50053i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3455
Dual form 6336.2.d.e.3455.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.66913i q^{5} -2.66913i q^{7} +1.00000 q^{11} +3.60114 q^{13} -4.66385i q^{17} -3.04289i q^{19} -0.476882 q^{23} -2.12426 q^{25} +3.46410i q^{29} +1.19975i q^{31} +7.12426 q^{35} +8.37040 q^{37} +1.19975i q^{41} -10.7806i q^{43} -8.76926 q^{47} -0.124259 q^{49} +4.25907i q^{53} +2.66913i q^{55} -12.4484 q^{59} -0.398859 q^{61} +9.61191i q^{65} -11.9494i q^{67} -0.476882 q^{71} -14.4484 q^{73} -2.66913i q^{77} -11.9968i q^{79} +4.87574 q^{83} +12.4484 q^{85} -16.5091i q^{89} -9.61191i q^{91} +8.12188 q^{95} -3.12426 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{11} + 8 q^{13} + 16 q^{23} - 16 q^{25} + 56 q^{35} - 8 q^{37} - 16 q^{47} + 16 q^{59} - 24 q^{61} + 16 q^{71} + 40 q^{83} - 16 q^{85} - 8 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.66913i 1.19367i 0.802363 + 0.596836i \(0.203576\pi\)
−0.802363 + 0.596836i \(0.796424\pi\)
\(6\) 0 0
\(7\) − 2.66913i − 1.00884i −0.863459 0.504418i \(-0.831707\pi\)
0.863459 0.504418i \(-0.168293\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 3.60114 0.998777 0.499388 0.866378i \(-0.333558\pi\)
0.499388 + 0.866378i \(0.333558\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 4.66385i − 1.13115i −0.824697 0.565575i \(-0.808654\pi\)
0.824697 0.565575i \(-0.191346\pi\)
\(18\) 0 0
\(19\) − 3.04289i − 0.698088i −0.937106 0.349044i \(-0.886506\pi\)
0.937106 0.349044i \(-0.113494\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.476882 −0.0994368 −0.0497184 0.998763i \(-0.515832\pi\)
−0.0497184 + 0.998763i \(0.515832\pi\)
\(24\) 0 0
\(25\) −2.12426 −0.424852
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46410i 0.643268i 0.946864 + 0.321634i \(0.104232\pi\)
−0.946864 + 0.321634i \(0.895768\pi\)
\(30\) 0 0
\(31\) 1.19975i 0.215481i 0.994179 + 0.107740i \(0.0343615\pi\)
−0.994179 + 0.107740i \(0.965638\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.12426 1.20422
\(36\) 0 0
\(37\) 8.37040 1.37609 0.688043 0.725670i \(-0.258470\pi\)
0.688043 + 0.725670i \(0.258470\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.19975i 0.187369i 0.995602 + 0.0936845i \(0.0298645\pi\)
−0.995602 + 0.0936845i \(0.970136\pi\)
\(42\) 0 0
\(43\) − 10.7806i − 1.64403i −0.569463 0.822017i \(-0.692849\pi\)
0.569463 0.822017i \(-0.307151\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.76926 −1.27913 −0.639564 0.768738i \(-0.720885\pi\)
−0.639564 + 0.768738i \(0.720885\pi\)
\(48\) 0 0
\(49\) −0.124259 −0.0177512
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.25907i 0.585029i 0.956261 + 0.292514i \(0.0944919\pi\)
−0.956261 + 0.292514i \(0.905508\pi\)
\(54\) 0 0
\(55\) 2.66913i 0.359906i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.4484 −1.62065 −0.810323 0.585983i \(-0.800708\pi\)
−0.810323 + 0.585983i \(0.800708\pi\)
\(60\) 0 0
\(61\) −0.398859 −0.0510687 −0.0255344 0.999674i \(-0.508129\pi\)
−0.0255344 + 0.999674i \(0.508129\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.61191i 1.19221i
\(66\) 0 0
\(67\) − 11.9494i − 1.45985i −0.683528 0.729925i \(-0.739555\pi\)
0.683528 0.729925i \(-0.260445\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.476882 −0.0565955 −0.0282977 0.999600i \(-0.509009\pi\)
−0.0282977 + 0.999600i \(0.509009\pi\)
\(72\) 0 0
\(73\) −14.4484 −1.69106 −0.845530 0.533928i \(-0.820715\pi\)
−0.845530 + 0.533928i \(0.820715\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.66913i − 0.304176i
\(78\) 0 0
\(79\) − 11.9968i − 1.34975i −0.737933 0.674874i \(-0.764198\pi\)
0.737933 0.674874i \(-0.235802\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.87574 0.535182 0.267591 0.963533i \(-0.413772\pi\)
0.267591 + 0.963533i \(0.413772\pi\)
\(84\) 0 0
\(85\) 12.4484 1.35022
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 16.5091i − 1.74996i −0.484158 0.874981i \(-0.660874\pi\)
0.484158 0.874981i \(-0.339126\pi\)
\(90\) 0 0
\(91\) − 9.61191i − 1.00760i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.12188 0.833287
\(96\) 0 0
\(97\) −3.12426 −0.317220 −0.158610 0.987341i \(-0.550701\pi\)
−0.158610 + 0.987341i \(0.550701\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.94727i − 0.193761i −0.995296 0.0968805i \(-0.969114\pi\)
0.995296 0.0968805i \(-0.0308865\pi\)
\(102\) 0 0
\(103\) 0.390195i 0.0384471i 0.999815 + 0.0192235i \(0.00611942\pi\)
−0.999815 + 0.0192235i \(0.993881\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.24614 −0.313816 −0.156908 0.987613i \(-0.550153\pi\)
−0.156908 + 0.987613i \(0.550153\pi\)
\(108\) 0 0
\(109\) 11.8935 1.13919 0.569596 0.821925i \(-0.307100\pi\)
0.569596 + 0.821925i \(0.307100\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.84315i 0.173389i 0.996235 + 0.0866943i \(0.0276304\pi\)
−0.996235 + 0.0866943i \(0.972370\pi\)
\(114\) 0 0
\(115\) − 1.27286i − 0.118695i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.4484 −1.14114
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.67573i 0.686538i
\(126\) 0 0
\(127\) 4.25907i 0.377932i 0.981984 + 0.188966i \(0.0605135\pi\)
−0.981984 + 0.188966i \(0.939486\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.3704 0.906066 0.453033 0.891494i \(-0.350342\pi\)
0.453033 + 0.891494i \(0.350342\pi\)
\(132\) 0 0
\(133\) −8.12188 −0.704256
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 18.9086i − 1.61547i −0.589545 0.807735i \(-0.700693\pi\)
0.589545 0.807735i \(-0.299307\pi\)
\(138\) 0 0
\(139\) 16.9613i 1.43864i 0.694678 + 0.719320i \(0.255547\pi\)
−0.694678 + 0.719320i \(0.744453\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.60114 0.301143
\(144\) 0 0
\(145\) −9.24614 −0.767850
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.0339i 0.903929i 0.892036 + 0.451964i \(0.149277\pi\)
−0.892036 + 0.451964i \(0.850723\pi\)
\(150\) 0 0
\(151\) − 16.4927i − 1.34215i −0.741387 0.671077i \(-0.765832\pi\)
0.741387 0.671077i \(-0.234168\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.20228 −0.257213
\(156\) 0 0
\(157\) −23.6946 −1.89103 −0.945516 0.325576i \(-0.894442\pi\)
−0.945516 + 0.325576i \(0.894442\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.27286i 0.100315i
\(162\) 0 0
\(163\) − 12.2336i − 0.958210i −0.877758 0.479105i \(-0.840961\pi\)
0.877758 0.479105i \(-0.159039\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.57268 −0.121698 −0.0608488 0.998147i \(-0.519381\pi\)
−0.0608488 + 0.998147i \(0.519381\pi\)
\(168\) 0 0
\(169\) −0.0317864 −0.00244511
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.86360i 0.445801i 0.974841 + 0.222900i \(0.0715525\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(174\) 0 0
\(175\) 5.66992i 0.428606i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 25.4022 1.89865 0.949324 0.314298i \(-0.101769\pi\)
0.949324 + 0.314298i \(0.101769\pi\)
\(180\) 0 0
\(181\) −7.41663 −0.551274 −0.275637 0.961262i \(-0.588889\pi\)
−0.275637 + 0.961262i \(0.588889\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 22.3417i 1.64259i
\(186\) 0 0
\(187\) − 4.66385i − 0.341054i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.4662 1.69795 0.848977 0.528429i \(-0.177219\pi\)
0.848977 + 0.528429i \(0.177219\pi\)
\(192\) 0 0
\(193\) 12.1999 0.878168 0.439084 0.898446i \(-0.355303\pi\)
0.439084 + 0.898446i \(0.355303\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 12.6238i − 0.899408i −0.893178 0.449704i \(-0.851529\pi\)
0.893178 0.449704i \(-0.148471\pi\)
\(198\) 0 0
\(199\) − 16.4452i − 1.16577i −0.812554 0.582886i \(-0.801924\pi\)
0.812554 0.582886i \(-0.198076\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.24614 0.648952
\(204\) 0 0
\(205\) −3.20228 −0.223657
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 3.04289i − 0.210481i
\(210\) 0 0
\(211\) 12.1623i 0.837290i 0.908150 + 0.418645i \(0.137495\pi\)
−0.908150 + 0.418645i \(0.862505\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 28.7750 1.96244
\(216\) 0 0
\(217\) 3.20228 0.217385
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 16.7952i − 1.12977i
\(222\) 0 0
\(223\) 16.5401i 1.10761i 0.832647 + 0.553804i \(0.186824\pi\)
−0.832647 + 0.553804i \(0.813176\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.6507 1.43701 0.718504 0.695523i \(-0.244827\pi\)
0.718504 + 0.695523i \(0.244827\pi\)
\(228\) 0 0
\(229\) −1.20228 −0.0794490 −0.0397245 0.999211i \(-0.512648\pi\)
−0.0397245 + 0.999211i \(0.512648\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 5.72846i − 0.375284i −0.982238 0.187642i \(-0.939916\pi\)
0.982238 0.187642i \(-0.0600844\pi\)
\(234\) 0 0
\(235\) − 23.4063i − 1.52686i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.3242 1.50871 0.754357 0.656464i \(-0.227949\pi\)
0.754357 + 0.656464i \(0.227949\pi\)
\(240\) 0 0
\(241\) 21.9431 1.41348 0.706739 0.707474i \(-0.250166\pi\)
0.706739 + 0.707474i \(0.250166\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 0.331663i − 0.0211891i
\(246\) 0 0
\(247\) − 10.9579i − 0.697234i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.5409 0.665335 0.332668 0.943044i \(-0.392051\pi\)
0.332668 + 0.943044i \(0.392051\pi\)
\(252\) 0 0
\(253\) −0.476882 −0.0299813
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.12848i 0.0703929i 0.999380 + 0.0351965i \(0.0112057\pi\)
−0.999380 + 0.0351965i \(0.988794\pi\)
\(258\) 0 0
\(259\) − 22.3417i − 1.38824i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.6189 −0.778116 −0.389058 0.921213i \(-0.627199\pi\)
−0.389058 + 0.921213i \(0.627199\pi\)
\(264\) 0 0
\(265\) −11.3680 −0.698332
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 12.7444i − 0.777037i −0.921441 0.388518i \(-0.872987\pi\)
0.921441 0.388518i \(-0.127013\pi\)
\(270\) 0 0
\(271\) − 15.1438i − 0.919923i −0.887939 0.459962i \(-0.847863\pi\)
0.887939 0.459962i \(-0.152137\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.12426 −0.128098
\(276\) 0 0
\(277\) 12.3989 0.744975 0.372488 0.928037i \(-0.378505\pi\)
0.372488 + 0.928037i \(0.378505\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.85509i 0.408940i 0.978873 + 0.204470i \(0.0655471\pi\)
−0.978873 + 0.204470i \(0.934453\pi\)
\(282\) 0 0
\(283\) 8.38116i 0.498208i 0.968477 + 0.249104i \(0.0801361\pi\)
−0.968477 + 0.249104i \(0.919864\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.20228 0.189025
\(288\) 0 0
\(289\) −4.75148 −0.279499
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 18.1301i − 1.05917i −0.848257 0.529585i \(-0.822348\pi\)
0.848257 0.529585i \(-0.177652\pi\)
\(294\) 0 0
\(295\) − 33.2265i − 1.93452i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.71732 −0.0993151
\(300\) 0 0
\(301\) −28.7750 −1.65856
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1.06461i − 0.0609593i
\(306\) 0 0
\(307\) 16.1518i 0.921830i 0.887444 + 0.460915i \(0.152479\pi\)
−0.887444 + 0.460915i \(0.847521\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 23.5231 1.33387 0.666937 0.745114i \(-0.267605\pi\)
0.666937 + 0.745114i \(0.267605\pi\)
\(312\) 0 0
\(313\) 12.1560 0.687100 0.343550 0.939134i \(-0.388370\pi\)
0.343550 + 0.939134i \(0.388370\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.1438i − 0.850563i −0.905061 0.425282i \(-0.860175\pi\)
0.905061 0.425282i \(-0.139825\pi\)
\(318\) 0 0
\(319\) 3.46410i 0.193952i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −14.1916 −0.789642
\(324\) 0 0
\(325\) −7.64975 −0.424332
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 23.4063i 1.29043i
\(330\) 0 0
\(331\) 0.208252i 0.0114466i 0.999984 + 0.00572329i \(0.00182179\pi\)
−0.999984 + 0.00572329i \(0.998178\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 31.8945 1.74258
\(336\) 0 0
\(337\) −15.9075 −0.866538 −0.433269 0.901265i \(-0.642640\pi\)
−0.433269 + 0.901265i \(0.642640\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.19975i 0.0649699i
\(342\) 0 0
\(343\) − 18.3523i − 0.990928i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.1136 −1.61658 −0.808291 0.588784i \(-0.799607\pi\)
−0.808291 + 0.588784i \(0.799607\pi\)
\(348\) 0 0
\(349\) −2.64738 −0.141711 −0.0708554 0.997487i \(-0.522573\pi\)
−0.0708554 + 0.997487i \(0.522573\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 9.58090i − 0.509940i −0.966949 0.254970i \(-0.917934\pi\)
0.966949 0.254970i \(-0.0820656\pi\)
\(354\) 0 0
\(355\) − 1.27286i − 0.0675564i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.7052 0.565001 0.282501 0.959267i \(-0.408836\pi\)
0.282501 + 0.959267i \(0.408836\pi\)
\(360\) 0 0
\(361\) 9.74080 0.512674
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 38.5647i − 2.01857i
\(366\) 0 0
\(367\) − 6.57826i − 0.343382i −0.985151 0.171691i \(-0.945077\pi\)
0.985151 0.171691i \(-0.0549231\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.3680 0.590198
\(372\) 0 0
\(373\) 12.5549 0.650068 0.325034 0.945702i \(-0.394624\pi\)
0.325034 + 0.945702i \(0.394624\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.4747i 0.642481i
\(378\) 0 0
\(379\) 8.48528i 0.435860i 0.975964 + 0.217930i \(0.0699304\pi\)
−0.975964 + 0.217930i \(0.930070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −27.6222 −1.41143 −0.705715 0.708496i \(-0.749374\pi\)
−0.705715 + 0.708496i \(0.749374\pi\)
\(384\) 0 0
\(385\) 7.12426 0.363086
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 31.9682i 1.62085i 0.585842 + 0.810426i \(0.300764\pi\)
−0.585842 + 0.810426i \(0.699236\pi\)
\(390\) 0 0
\(391\) 2.22411i 0.112478i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 32.0211 1.61116
\(396\) 0 0
\(397\) −34.0650 −1.70967 −0.854836 0.518899i \(-0.826342\pi\)
−0.854836 + 0.518899i \(0.826342\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.8092i 1.58848i 0.607606 + 0.794238i \(0.292130\pi\)
−0.607606 + 0.794238i \(0.707870\pi\)
\(402\) 0 0
\(403\) 4.32046i 0.215217i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.37040 0.414905
\(408\) 0 0
\(409\) 31.1892 1.54221 0.771104 0.636709i \(-0.219705\pi\)
0.771104 + 0.636709i \(0.219705\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 33.2265i 1.63497i
\(414\) 0 0
\(415\) 13.0140i 0.638832i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.8968 −1.21629 −0.608145 0.793826i \(-0.708086\pi\)
−0.608145 + 0.793826i \(0.708086\pi\)
\(420\) 0 0
\(421\) −6.03416 −0.294087 −0.147044 0.989130i \(-0.546976\pi\)
−0.147044 + 0.989130i \(0.546976\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.90722i 0.480571i
\(426\) 0 0
\(427\) 1.06461i 0.0515200i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −37.5158 −1.80707 −0.903535 0.428514i \(-0.859037\pi\)
−0.903535 + 0.428514i \(0.859037\pi\)
\(432\) 0 0
\(433\) 21.9075 1.05281 0.526404 0.850234i \(-0.323540\pi\)
0.526404 + 0.850234i \(0.323540\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.45110i 0.0694156i
\(438\) 0 0
\(439\) − 27.1692i − 1.29671i −0.761336 0.648357i \(-0.775456\pi\)
0.761336 0.648357i \(-0.224544\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.1098 −0.812912 −0.406456 0.913670i \(-0.633235\pi\)
−0.406456 + 0.913670i \(0.633235\pi\)
\(444\) 0 0
\(445\) 44.0650 2.08888
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 16.0027i − 0.755214i −0.925966 0.377607i \(-0.876747\pi\)
0.925966 0.377607i \(-0.123253\pi\)
\(450\) 0 0
\(451\) 1.19975i 0.0564939i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 25.6555 1.20275
\(456\) 0 0
\(457\) 16.4046 0.767373 0.383687 0.923463i \(-0.374654\pi\)
0.383687 + 0.923463i \(0.374654\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.1554i 1.40448i 0.711942 + 0.702239i \(0.247816\pi\)
−0.711942 + 0.702239i \(0.752184\pi\)
\(462\) 0 0
\(463\) 32.5660i 1.51347i 0.653722 + 0.756735i \(0.273207\pi\)
−0.653722 + 0.756735i \(0.726793\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.1999 1.02729 0.513645 0.858003i \(-0.328295\pi\)
0.513645 + 0.858003i \(0.328295\pi\)
\(468\) 0 0
\(469\) −31.8945 −1.47275
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 10.7806i − 0.495695i
\(474\) 0 0
\(475\) 6.46389i 0.296584i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.86743 0.131016 0.0655082 0.997852i \(-0.479133\pi\)
0.0655082 + 0.997852i \(0.479133\pi\)
\(480\) 0 0
\(481\) 30.1430 1.37440
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 8.33905i − 0.378657i
\(486\) 0 0
\(487\) − 42.0288i − 1.90451i −0.305307 0.952254i \(-0.598759\pi\)
0.305307 0.952254i \(-0.401241\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.3915 1.37155 0.685775 0.727814i \(-0.259464\pi\)
0.685775 + 0.727814i \(0.259464\pi\)
\(492\) 0 0
\(493\) 16.1560 0.727632
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.27286i 0.0570956i
\(498\) 0 0
\(499\) − 25.5836i − 1.14528i −0.819807 0.572640i \(-0.805919\pi\)
0.819807 0.572640i \(-0.194081\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −27.4802 −1.22528 −0.612641 0.790361i \(-0.709893\pi\)
−0.612641 + 0.790361i \(0.709893\pi\)
\(504\) 0 0
\(505\) 5.19753 0.231287
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 12.7772i − 0.566340i −0.959070 0.283170i \(-0.908614\pi\)
0.959070 0.283170i \(-0.0913861\pi\)
\(510\) 0 0
\(511\) 38.5647i 1.70600i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.04148 −0.0458932
\(516\) 0 0
\(517\) −8.76926 −0.385672
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 34.2892i − 1.50224i −0.660167 0.751119i \(-0.729514\pi\)
0.660167 0.751119i \(-0.270486\pi\)
\(522\) 0 0
\(523\) − 10.8135i − 0.472842i −0.971651 0.236421i \(-0.924026\pi\)
0.971651 0.236421i \(-0.0759744\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.59544 0.243741
\(528\) 0 0
\(529\) −22.7726 −0.990112
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.32046i 0.187140i
\(534\) 0 0
\(535\) − 8.66437i − 0.374593i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.124259 −0.00535220
\(540\) 0 0
\(541\) 22.5988 0.971597 0.485798 0.874071i \(-0.338529\pi\)
0.485798 + 0.874071i \(0.338529\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 31.7454i 1.35982i
\(546\) 0 0
\(547\) − 20.6148i − 0.881423i −0.897649 0.440712i \(-0.854726\pi\)
0.897649 0.440712i \(-0.145274\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.5409 0.449057
\(552\) 0 0
\(553\) −32.0211 −1.36168
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.6334i 0.450553i 0.974295 + 0.225276i \(0.0723285\pi\)
−0.974295 + 0.225276i \(0.927672\pi\)
\(558\) 0 0
\(559\) − 38.8226i − 1.64202i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 43.7301 1.84300 0.921502 0.388373i \(-0.126963\pi\)
0.921502 + 0.388373i \(0.126963\pi\)
\(564\) 0 0
\(565\) −4.91960 −0.206969
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.6598i 1.41109i 0.708665 + 0.705545i \(0.249298\pi\)
−0.708665 + 0.705545i \(0.750702\pi\)
\(570\) 0 0
\(571\) 30.7849i 1.28831i 0.764896 + 0.644153i \(0.222790\pi\)
−0.764896 + 0.644153i \(0.777210\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.01302 0.0422459
\(576\) 0 0
\(577\) 35.8651 1.49308 0.746541 0.665340i \(-0.231713\pi\)
0.746541 + 0.665340i \(0.231713\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 13.0140i − 0.539911i
\(582\) 0 0
\(583\) 4.25907i 0.176393i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −45.5499 −1.88005 −0.940023 0.341110i \(-0.889197\pi\)
−0.940023 + 0.341110i \(0.889197\pi\)
\(588\) 0 0
\(589\) 3.65070 0.150425
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 31.3880i − 1.28895i −0.764625 0.644476i \(-0.777076\pi\)
0.764625 0.644476i \(-0.222924\pi\)
\(594\) 0 0
\(595\) − 33.2265i − 1.36215i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.6353 0.883995 0.441997 0.897016i \(-0.354270\pi\)
0.441997 + 0.897016i \(0.354270\pi\)
\(600\) 0 0
\(601\) −15.0901 −0.615538 −0.307769 0.951461i \(-0.599582\pi\)
−0.307769 + 0.951461i \(0.599582\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.66913i 0.108516i
\(606\) 0 0
\(607\) − 20.3067i − 0.824224i −0.911133 0.412112i \(-0.864791\pi\)
0.911133 0.412112i \(-0.135209\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −31.5793 −1.27756
\(612\) 0 0
\(613\) −6.94806 −0.280630 −0.140315 0.990107i \(-0.544811\pi\)
−0.140315 + 0.990107i \(0.544811\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7.68782i − 0.309500i −0.987954 0.154750i \(-0.950543\pi\)
0.987954 0.154750i \(-0.0494572\pi\)
\(618\) 0 0
\(619\) 14.4109i 0.579223i 0.957144 + 0.289612i \(0.0935261\pi\)
−0.957144 + 0.289612i \(0.906474\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −44.0650 −1.76543
\(624\) 0 0
\(625\) −31.1088 −1.24435
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 39.0383i − 1.55656i
\(630\) 0 0
\(631\) 27.5637i 1.09729i 0.836054 + 0.548647i \(0.184857\pi\)
−0.836054 + 0.548647i \(0.815143\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.3680 −0.451126
\(636\) 0 0
\(637\) −0.447473 −0.0177295
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.79972i 0.229075i 0.993419 + 0.114538i \(0.0365386\pi\)
−0.993419 + 0.114538i \(0.963461\pi\)
\(642\) 0 0
\(643\) − 21.7835i − 0.859057i −0.903053 0.429528i \(-0.858680\pi\)
0.903053 0.429528i \(-0.141320\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0285 0.472888 0.236444 0.971645i \(-0.424018\pi\)
0.236444 + 0.971645i \(0.424018\pi\)
\(648\) 0 0
\(649\) −12.4484 −0.488643
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 4.11285i − 0.160948i −0.996757 0.0804740i \(-0.974357\pi\)
0.996757 0.0804740i \(-0.0256434\pi\)
\(654\) 0 0
\(655\) 27.6799i 1.08155i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.40456 0.249486 0.124743 0.992189i \(-0.460189\pi\)
0.124743 + 0.992189i \(0.460189\pi\)
\(660\) 0 0
\(661\) −2.86605 −0.111476 −0.0557381 0.998445i \(-0.517751\pi\)
−0.0557381 + 0.998445i \(0.517751\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 21.6784i − 0.840651i
\(666\) 0 0
\(667\) − 1.65197i − 0.0639644i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.398859 −0.0153978
\(672\) 0 0
\(673\) −48.6400 −1.87493 −0.937467 0.348073i \(-0.886836\pi\)
−0.937467 + 0.348073i \(0.886836\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34.1231i 1.31146i 0.754997 + 0.655728i \(0.227638\pi\)
−0.754997 + 0.655728i \(0.772362\pi\)
\(678\) 0 0
\(679\) 8.33905i 0.320024i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.2817 −0.737793 −0.368897 0.929470i \(-0.620264\pi\)
−0.368897 + 0.929470i \(0.620264\pi\)
\(684\) 0 0
\(685\) 50.4695 1.92834
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.3375i 0.584313i
\(690\) 0 0
\(691\) 11.4430i 0.435311i 0.976026 + 0.217656i \(0.0698410\pi\)
−0.976026 + 0.217656i \(0.930159\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −45.2720 −1.71726
\(696\) 0 0
\(697\) 5.59544 0.211942
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 40.9782i 1.54772i 0.633354 + 0.773862i \(0.281678\pi\)
−0.633354 + 0.773862i \(0.718322\pi\)
\(702\) 0 0
\(703\) − 25.4702i − 0.960628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.19753 −0.195473
\(708\) 0 0
\(709\) 19.5385 0.733784 0.366892 0.930263i \(-0.380422\pi\)
0.366892 + 0.930263i \(0.380422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 0.572138i − 0.0214267i
\(714\) 0 0
\(715\) 9.61191i 0.359465i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.7776 −0.625698 −0.312849 0.949803i \(-0.601283\pi\)
−0.312849 + 0.949803i \(0.601283\pi\)
\(720\) 0 0
\(721\) 1.04148 0.0387868
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 7.35865i − 0.273293i
\(726\) 0 0
\(727\) − 5.62248i − 0.208526i −0.994550 0.104263i \(-0.966752\pi\)
0.994550 0.104263i \(-0.0332484\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −50.2793 −1.85965
\(732\) 0 0
\(733\) 16.3906 0.605399 0.302699 0.953086i \(-0.402112\pi\)
0.302699 + 0.953086i \(0.402112\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 11.9494i − 0.440161i
\(738\) 0 0
\(739\) − 35.7871i − 1.31645i −0.752821 0.658225i \(-0.771307\pi\)
0.752821 0.658225i \(-0.228693\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 46.5914 1.70927 0.854636 0.519227i \(-0.173780\pi\)
0.854636 + 0.519227i \(0.173780\pi\)
\(744\) 0 0
\(745\) −29.4508 −1.07899
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.66437i 0.316589i
\(750\) 0 0
\(751\) − 24.9523i − 0.910522i −0.890358 0.455261i \(-0.849546\pi\)
0.890358 0.455261i \(-0.150454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 44.0211 1.60209
\(756\) 0 0
\(757\) 10.4629 0.380280 0.190140 0.981757i \(-0.439106\pi\)
0.190140 + 0.981757i \(0.439106\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 28.1461i 1.02030i 0.860087 + 0.510148i \(0.170409\pi\)
−0.860087 + 0.510148i \(0.829591\pi\)
\(762\) 0 0
\(763\) − 31.7454i − 1.14926i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −44.8285 −1.61866
\(768\) 0 0
\(769\) −37.2331 −1.34266 −0.671330 0.741159i \(-0.734276\pi\)
−0.671330 + 0.741159i \(0.734276\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.9285i 1.29226i 0.763229 + 0.646128i \(0.223613\pi\)
−0.763229 + 0.646128i \(0.776387\pi\)
\(774\) 0 0
\(775\) − 2.54857i − 0.0915474i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.65070 0.130800
\(780\) 0 0
\(781\) −0.476882 −0.0170642
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 63.2439i − 2.25727i
\(786\) 0 0
\(787\) − 26.9745i − 0.961538i −0.876847 0.480769i \(-0.840358\pi\)
0.876847 0.480769i \(-0.159642\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.91960 0.174921
\(792\) 0 0
\(793\) −1.43635 −0.0510062
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 24.6748i − 0.874027i −0.899455 0.437013i \(-0.856036\pi\)
0.899455 0.437013i \(-0.143964\pi\)
\(798\) 0 0
\(799\) 40.8985i 1.44688i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.4484 −0.509874
\(804\) 0 0
\(805\) −3.39743 −0.119744
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 22.4908i − 0.790733i −0.918523 0.395367i \(-0.870618\pi\)
0.918523 0.395367i \(-0.129382\pi\)
\(810\) 0 0
\(811\) − 16.4549i − 0.577810i −0.957358 0.288905i \(-0.906709\pi\)
0.957358 0.288905i \(-0.0932912\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32.6531 1.14379
\(816\) 0 0
\(817\) −32.8044 −1.14768
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 50.2327i − 1.75313i −0.481279 0.876567i \(-0.659828\pi\)
0.481279 0.876567i \(-0.340172\pi\)
\(822\) 0 0
\(823\) 36.3546i 1.26724i 0.773644 + 0.633620i \(0.218432\pi\)
−0.773644 + 0.633620i \(0.781568\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.6059 1.27291 0.636455 0.771314i \(-0.280400\pi\)
0.636455 + 0.771314i \(0.280400\pi\)
\(828\) 0 0
\(829\) −49.2331 −1.70994 −0.854968 0.518681i \(-0.826423\pi\)
−0.854968 + 0.518681i \(0.826423\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.579524i 0.0200793i
\(834\) 0 0
\(835\) − 4.19769i − 0.145267i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −49.3737 −1.70457 −0.852285 0.523077i \(-0.824784\pi\)
−0.852285 + 0.523077i \(0.824784\pi\)
\(840\) 0 0
\(841\) 17.0000 0.586207
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 0.0848421i − 0.00291866i
\(846\) 0 0
\(847\) − 2.66913i − 0.0917124i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.99169 −0.136833
\(852\) 0 0
\(853\) 44.7334 1.53164 0.765822 0.643053i \(-0.222332\pi\)
0.765822 + 0.643053i \(0.222332\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.23487i 0.212979i 0.994314 + 0.106489i \(0.0339611\pi\)
−0.994314 + 0.106489i \(0.966039\pi\)
\(858\) 0 0
\(859\) 4.40096i 0.150159i 0.997178 + 0.0750793i \(0.0239210\pi\)
−0.997178 + 0.0750793i \(0.976079\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.7693 −1.11548 −0.557739 0.830016i \(-0.688331\pi\)
−0.557739 + 0.830016i \(0.688331\pi\)
\(864\) 0 0
\(865\) −15.6507 −0.532140
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 11.9968i − 0.406965i
\(870\) 0 0
\(871\) − 43.0314i − 1.45806i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 20.4875 0.692605
\(876\) 0 0
\(877\) −18.8034 −0.634946 −0.317473 0.948267i \(-0.602834\pi\)
−0.317473 + 0.948267i \(0.602834\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 22.7518i − 0.766528i −0.923639 0.383264i \(-0.874800\pi\)
0.923639 0.383264i \(-0.125200\pi\)
\(882\) 0 0
\(883\) 28.8394i 0.970525i 0.874369 + 0.485262i \(0.161276\pi\)
−0.874369 + 0.485262i \(0.838724\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.54920 0.219901 0.109950 0.993937i \(-0.464931\pi\)
0.109950 + 0.993937i \(0.464931\pi\)
\(888\) 0 0
\(889\) 11.3680 0.381271
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 26.6839i 0.892943i
\(894\) 0 0
\(895\) 67.8018i 2.26636i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.15605 −0.138612
\(900\) 0 0
\(901\) 19.8637 0.661755
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 19.7960i − 0.658040i
\(906\) 0 0
\(907\) 8.70747i 0.289127i 0.989496 + 0.144563i \(0.0461778\pi\)
−0.989496 + 0.144563i \(0.953822\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −50.6685 −1.67872 −0.839361 0.543575i \(-0.817070\pi\)
−0.839361 + 0.543575i \(0.817070\pi\)
\(912\) 0 0
\(913\) 4.87574 0.161363
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 27.6799i − 0.914072i
\(918\) 0 0
\(919\) 33.2878i 1.09806i 0.835801 + 0.549032i \(0.185004\pi\)
−0.835801 + 0.549032i \(0.814996\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.71732 −0.0565262
\(924\) 0 0
\(925\) −17.7809 −0.584632
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 43.3758i − 1.42311i −0.702628 0.711557i \(-0.747990\pi\)
0.702628 0.711557i \(-0.252010\pi\)
\(930\) 0 0
\(931\) 0.378106i 0.0123919i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.4484 0.407107
\(936\) 0 0
\(937\) 5.70762 0.186460 0.0932300 0.995645i \(-0.470281\pi\)
0.0932300 + 0.995645i \(0.470281\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.9576i 0.487603i 0.969825 + 0.243801i \(0.0783945\pi\)
−0.969825 + 0.243801i \(0.921606\pi\)
\(942\) 0 0
\(943\) − 0.572138i − 0.0186314i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.15605 −0.135053 −0.0675267 0.997717i \(-0.521511\pi\)
−0.0675267 + 0.997717i \(0.521511\pi\)
\(948\) 0 0
\(949\) −52.0308 −1.68899
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 4.95177i − 0.160404i −0.996779 0.0802018i \(-0.974444\pi\)
0.996779 0.0802018i \(-0.0255565\pi\)
\(954\) 0 0
\(955\) 62.6343i 2.02680i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −50.4695 −1.62975
\(960\) 0 0
\(961\) 29.5606 0.953568
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 32.5631i 1.04824i
\(966\) 0 0
\(967\) 0.269637i 0.00867094i 0.999991 + 0.00433547i \(0.00138003\pi\)
−0.999991 + 0.00433547i \(0.998620\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −41.5385 −1.33303 −0.666517 0.745490i \(-0.732216\pi\)
−0.666517 + 0.745490i \(0.732216\pi\)
\(972\) 0 0
\(973\) 45.2720 1.45135
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.98870i 0.0956171i 0.998857 + 0.0478086i \(0.0152237\pi\)
−0.998857 + 0.0478086i \(0.984776\pi\)
\(978\) 0 0
\(979\) − 16.5091i − 0.527633i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 21.1608 0.674923 0.337462 0.941339i \(-0.390432\pi\)
0.337462 + 0.941339i \(0.390432\pi\)
\(984\) 0 0
\(985\) 33.6946 1.07360
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.14110i 0.163477i
\(990\) 0 0
\(991\) − 4.23340i − 0.134479i −0.997737 0.0672393i \(-0.978581\pi\)
0.997737 0.0672393i \(-0.0214191\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 43.8945 1.39155
\(996\) 0 0
\(997\) −42.3289 −1.34057 −0.670284 0.742104i \(-0.733828\pi\)
−0.670284 + 0.742104i \(0.733828\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.d.e.3455.7 8
3.2 odd 2 6336.2.d.c.3455.2 8
4.3 odd 2 6336.2.d.c.3455.7 8
8.3 odd 2 1584.2.d.d.287.2 yes 8
8.5 even 2 1584.2.d.c.287.2 8
12.11 even 2 inner 6336.2.d.e.3455.2 8
24.5 odd 2 1584.2.d.d.287.7 yes 8
24.11 even 2 1584.2.d.c.287.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1584.2.d.c.287.2 8 8.5 even 2
1584.2.d.c.287.7 yes 8 24.11 even 2
1584.2.d.d.287.2 yes 8 8.3 odd 2
1584.2.d.d.287.7 yes 8 24.5 odd 2
6336.2.d.c.3455.2 8 3.2 odd 2
6336.2.d.c.3455.7 8 4.3 odd 2
6336.2.d.e.3455.2 8 12.11 even 2 inner
6336.2.d.e.3455.7 8 1.1 even 1 trivial