Properties

Label 6336.2.d.e.3455.6
Level $6336$
Weight $2$
Character 6336.3455
Analytic conductor $50.593$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3455,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3455"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1768034304.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 9x^{6} - 2x^{5} + 34x^{4} - 18x^{3} + 51x^{2} + 18x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1584)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3455.6
Root \(-0.197356 - 0.341831i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3455
Dual form 6336.2.d.e.3455.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.97242i q^{5} -1.97242i q^{7} +1.00000 q^{11} -6.65525 q^{13} +5.31217i q^{17} -4.53363i q^{19} +6.54569 q^{23} +1.10955 q^{25} +3.46410i q^{29} -8.77627i q^{31} +3.89045 q^{35} +2.72311 q^{37} -8.77627i q^{41} +9.07407i q^{43} -13.3784 q^{47} +3.10955 q^{49} +4.95578i q^{53} +1.97242i q^{55} +10.4778 q^{59} -10.6552 q^{61} -13.1270i q^{65} +5.02118i q^{67} +6.54569 q^{71} +8.47783 q^{73} -1.97242i q^{77} +8.65191i q^{79} +8.10955 q^{83} -10.4778 q^{85} -6.63040i q^{89} +13.1270i q^{91} +8.94222 q^{95} +0.109555 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{11} + 8 q^{13} + 16 q^{23} - 16 q^{25} + 56 q^{35} - 8 q^{37} - 16 q^{47} + 16 q^{59} - 24 q^{61} + 16 q^{71} + 40 q^{83} - 16 q^{85} - 8 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.97242i 0.882094i 0.897484 + 0.441047i \(0.145393\pi\)
−0.897484 + 0.441047i \(0.854607\pi\)
\(6\) 0 0
\(7\) − 1.97242i − 0.745505i −0.927931 0.372753i \(-0.878414\pi\)
0.927931 0.372753i \(-0.121586\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −6.65525 −1.84583 −0.922917 0.384999i \(-0.874202\pi\)
−0.922917 + 0.384999i \(0.874202\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.31217i 1.28839i 0.764861 + 0.644195i \(0.222807\pi\)
−0.764861 + 0.644195i \(0.777193\pi\)
\(18\) 0 0
\(19\) − 4.53363i − 1.04009i −0.854140 0.520043i \(-0.825916\pi\)
0.854140 0.520043i \(-0.174084\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.54569 1.36487 0.682436 0.730946i \(-0.260921\pi\)
0.682436 + 0.730946i \(0.260921\pi\)
\(24\) 0 0
\(25\) 1.10955 0.221911
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46410i 0.643268i 0.946864 + 0.321634i \(0.104232\pi\)
−0.946864 + 0.321634i \(0.895768\pi\)
\(30\) 0 0
\(31\) − 8.77627i − 1.57626i −0.615506 0.788132i \(-0.711048\pi\)
0.615506 0.788132i \(-0.288952\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.89045 0.657605
\(36\) 0 0
\(37\) 2.72311 0.447677 0.223838 0.974626i \(-0.428141\pi\)
0.223838 + 0.974626i \(0.428141\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 8.77627i − 1.37062i −0.728250 0.685311i \(-0.759666\pi\)
0.728250 0.685311i \(-0.240334\pi\)
\(42\) 0 0
\(43\) 9.07407i 1.38378i 0.722002 + 0.691891i \(0.243222\pi\)
−0.722002 + 0.691891i \(0.756778\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −13.3784 −1.95143 −0.975717 0.219034i \(-0.929709\pi\)
−0.975717 + 0.219034i \(0.929709\pi\)
\(48\) 0 0
\(49\) 3.10955 0.444222
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.95578i 0.680729i 0.940294 + 0.340365i \(0.110550\pi\)
−0.940294 + 0.340365i \(0.889450\pi\)
\(54\) 0 0
\(55\) 1.97242i 0.265961i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.4778 1.36410 0.682049 0.731307i \(-0.261089\pi\)
0.682049 + 0.731307i \(0.261089\pi\)
\(60\) 0 0
\(61\) −10.6552 −1.36426 −0.682132 0.731229i \(-0.738947\pi\)
−0.682132 + 0.731229i \(0.738947\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 13.1270i − 1.62820i
\(66\) 0 0
\(67\) 5.02118i 0.613435i 0.951801 + 0.306717i \(0.0992306\pi\)
−0.951801 + 0.306717i \(0.900769\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.54569 0.776831 0.388415 0.921484i \(-0.373023\pi\)
0.388415 + 0.921484i \(0.373023\pi\)
\(72\) 0 0
\(73\) 8.47783 0.992255 0.496127 0.868250i \(-0.334755\pi\)
0.496127 + 0.868250i \(0.334755\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1.97242i − 0.224778i
\(78\) 0 0
\(79\) 8.65191i 0.973416i 0.873565 + 0.486708i \(0.161802\pi\)
−0.873565 + 0.486708i \(0.838198\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.10955 0.890139 0.445070 0.895496i \(-0.353179\pi\)
0.445070 + 0.895496i \(0.353179\pi\)
\(84\) 0 0
\(85\) −10.4778 −1.13648
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 6.63040i − 0.702822i −0.936221 0.351411i \(-0.885702\pi\)
0.936221 0.351411i \(-0.114298\pi\)
\(90\) 0 0
\(91\) 13.1270i 1.37608i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.94222 0.917453
\(96\) 0 0
\(97\) 0.109555 0.0111236 0.00556180 0.999985i \(-0.498230\pi\)
0.00556180 + 0.999985i \(0.498230\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.65386i 0.363572i 0.983338 + 0.181786i \(0.0581879\pi\)
−0.983338 + 0.181786i \(0.941812\pi\)
\(102\) 0 0
\(103\) 11.7596i 1.15871i 0.815075 + 0.579355i \(0.196696\pi\)
−0.815075 + 0.579355i \(0.803304\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.832667 −0.0804970 −0.0402485 0.999190i \(-0.512815\pi\)
−0.0402485 + 0.999190i \(0.512815\pi\)
\(108\) 0 0
\(109\) 13.2688 1.27092 0.635461 0.772133i \(-0.280810\pi\)
0.635461 + 0.772133i \(0.280810\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.3099i 1.25209i 0.779787 + 0.626045i \(0.215327\pi\)
−0.779787 + 0.626045i \(0.784673\pi\)
\(114\) 0 0
\(115\) 12.9109i 1.20394i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.4778 0.960501
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0506i 1.07784i
\(126\) 0 0
\(127\) 4.95578i 0.439755i 0.975528 + 0.219877i \(0.0705657\pi\)
−0.975528 + 0.219877i \(0.929434\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.72311 0.412660 0.206330 0.978482i \(-0.433848\pi\)
0.206330 + 0.978482i \(0.433848\pi\)
\(132\) 0 0
\(133\) −8.94222 −0.775389
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.9221i 0.933141i 0.884484 + 0.466570i \(0.154511\pi\)
−0.884484 + 0.466570i \(0.845489\pi\)
\(138\) 0 0
\(139\) − 7.26827i − 0.616487i −0.951307 0.308244i \(-0.900259\pi\)
0.951307 0.308244i \(-0.0997412\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.65525 −0.556540
\(144\) 0 0
\(145\) −6.83267 −0.567422
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.25247i 0.102606i 0.998683 + 0.0513031i \(0.0163375\pi\)
−0.998683 + 0.0513031i \(0.983663\pi\)
\(150\) 0 0
\(151\) 2.56802i 0.208982i 0.994526 + 0.104491i \(0.0333214\pi\)
−0.994526 + 0.104491i \(0.966679\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.3105 1.39041
\(156\) 0 0
\(157\) 1.64516 0.131298 0.0656491 0.997843i \(-0.479088\pi\)
0.0656491 + 0.997843i \(0.479088\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 12.9109i − 1.01752i
\(162\) 0 0
\(163\) 7.52380i 0.589309i 0.955604 + 0.294655i \(0.0952046\pi\)
−0.955604 + 0.294655i \(0.904795\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24.5874 1.90263 0.951314 0.308222i \(-0.0997340\pi\)
0.951314 + 0.308222i \(0.0997340\pi\)
\(168\) 0 0
\(169\) 31.2923 2.40710
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 14.0884i − 1.07112i −0.844496 0.535562i \(-0.820100\pi\)
0.844496 0.535562i \(-0.179900\pi\)
\(174\) 0 0
\(175\) − 2.18851i − 0.165436i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.5692 −0.864724 −0.432362 0.901700i \(-0.642320\pi\)
−0.432362 + 0.901700i \(0.642320\pi\)
\(180\) 0 0
\(181\) −15.8145 −1.17548 −0.587741 0.809049i \(-0.699983\pi\)
−0.587741 + 0.809049i \(0.699983\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.37113i 0.394893i
\(186\) 0 0
\(187\) 5.31217i 0.388464i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.31858 −0.0954089 −0.0477045 0.998861i \(-0.515191\pi\)
−0.0477045 + 0.998861i \(0.515191\pi\)
\(192\) 0 0
\(193\) −4.25872 −0.306549 −0.153275 0.988184i \(-0.548982\pi\)
−0.153275 + 0.988184i \(0.548982\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 4.23583i − 0.301790i −0.988550 0.150895i \(-0.951784\pi\)
0.988550 0.150895i \(-0.0482156\pi\)
\(198\) 0 0
\(199\) − 1.06271i − 0.0753338i −0.999290 0.0376669i \(-0.988007\pi\)
0.999290 0.0376669i \(-0.0119926\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.83267 0.479559
\(204\) 0 0
\(205\) 17.3105 1.20902
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 4.53363i − 0.313598i
\(210\) 0 0
\(211\) 27.8368i 1.91636i 0.286159 + 0.958182i \(0.407621\pi\)
−0.286159 + 0.958182i \(0.592379\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −17.8979 −1.22063
\(216\) 0 0
\(217\) −17.3105 −1.17511
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 35.3538i − 2.37815i
\(222\) 0 0
\(223\) − 6.19875i − 0.415099i −0.978225 0.207549i \(-0.933451\pi\)
0.978225 0.207549i \(-0.0665488\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.7883 −1.44614 −0.723071 0.690774i \(-0.757270\pi\)
−0.723071 + 0.690774i \(0.757270\pi\)
\(228\) 0 0
\(229\) 19.3105 1.27607 0.638037 0.770006i \(-0.279747\pi\)
0.638037 + 0.770006i \(0.279747\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 15.7045i − 1.02883i −0.857540 0.514417i \(-0.828008\pi\)
0.857540 0.514417i \(-0.171992\pi\)
\(234\) 0 0
\(235\) − 26.3878i − 1.72135i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.63173 0.234917 0.117458 0.993078i \(-0.462525\pi\)
0.117458 + 0.993078i \(0.462525\pi\)
\(240\) 0 0
\(241\) −9.86427 −0.635414 −0.317707 0.948189i \(-0.602913\pi\)
−0.317707 + 0.948189i \(0.602913\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.13335i 0.391845i
\(246\) 0 0
\(247\) 30.1724i 1.91982i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.7049 0.991287 0.495644 0.868526i \(-0.334932\pi\)
0.495644 + 0.868526i \(0.334932\pi\)
\(252\) 0 0
\(253\) 6.54569 0.411524
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.5843i 1.65828i 0.559037 + 0.829142i \(0.311171\pi\)
−0.559037 + 0.829142i \(0.688829\pi\)
\(258\) 0 0
\(259\) − 5.37113i − 0.333745i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.504003 −0.0310782 −0.0155391 0.999879i \(-0.504946\pi\)
−0.0155391 + 0.999879i \(0.504946\pi\)
\(264\) 0 0
\(265\) −9.77489 −0.600467
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.52950i 0.215197i 0.994194 + 0.107599i \(0.0343162\pi\)
−0.994194 + 0.107599i \(0.965684\pi\)
\(270\) 0 0
\(271\) 21.0820i 1.28064i 0.768107 + 0.640321i \(0.221199\pi\)
−0.768107 + 0.640321i \(0.778801\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.10955 0.0669087
\(276\) 0 0
\(277\) 22.6552 1.36122 0.680611 0.732645i \(-0.261714\pi\)
0.680611 + 0.732645i \(0.261714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.0628i 0.659951i 0.943989 + 0.329976i \(0.107041\pi\)
−0.943989 + 0.329976i \(0.892959\pi\)
\(282\) 0 0
\(283\) 8.47847i 0.503993i 0.967728 + 0.251996i \(0.0810871\pi\)
−0.967728 + 0.251996i \(0.918913\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −17.3105 −1.02181
\(288\) 0 0
\(289\) −11.2191 −0.659948
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.21539i 0.187845i 0.995580 + 0.0939225i \(0.0299406\pi\)
−0.995580 + 0.0939225i \(0.970059\pi\)
\(294\) 0 0
\(295\) 20.6667i 1.20326i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −43.5632 −2.51933
\(300\) 0 0
\(301\) 17.8979 1.03162
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 21.0166i − 1.20341i
\(306\) 0 0
\(307\) 13.2676i 0.757223i 0.925556 + 0.378612i \(0.123598\pi\)
−0.925556 + 0.378612i \(0.876402\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.5457 1.73209 0.866044 0.499968i \(-0.166655\pi\)
0.866044 + 0.499968i \(0.166655\pi\)
\(312\) 0 0
\(313\) −22.4019 −1.26623 −0.633115 0.774058i \(-0.718224\pi\)
−0.633115 + 0.774058i \(0.718224\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.0820i 1.18409i 0.805907 + 0.592043i \(0.201678\pi\)
−0.805907 + 0.592043i \(0.798322\pi\)
\(318\) 0 0
\(319\) 3.46410i 0.193952i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.0834 1.34004
\(324\) 0 0
\(325\) −7.38436 −0.409611
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 26.3878i 1.45480i
\(330\) 0 0
\(331\) − 33.9275i − 1.86482i −0.361397 0.932412i \(-0.617700\pi\)
0.361397 0.932412i \(-0.382300\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.90388 −0.541107
\(336\) 0 0
\(337\) 12.1828 0.663638 0.331819 0.943343i \(-0.392338\pi\)
0.331819 + 0.943343i \(0.392338\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 8.77627i − 0.475262i
\(342\) 0 0
\(343\) − 19.9403i − 1.07667i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.11756 −0.489456 −0.244728 0.969592i \(-0.578699\pi\)
−0.244728 + 0.969592i \(0.578699\pi\)
\(348\) 0 0
\(349\) −6.43614 −0.344519 −0.172259 0.985052i \(-0.555107\pi\)
−0.172259 + 0.985052i \(0.555107\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.297798i 0.0158502i 0.999969 + 0.00792510i \(0.00252267\pi\)
−0.999969 + 0.00792510i \(0.997477\pi\)
\(354\) 0 0
\(355\) 12.9109i 0.685238i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.12772 0.165075 0.0825374 0.996588i \(-0.473698\pi\)
0.0825374 + 0.996588i \(0.473698\pi\)
\(360\) 0 0
\(361\) −1.55377 −0.0817776
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.7218i 0.875262i
\(366\) 0 0
\(367\) 27.3629i 1.42833i 0.699977 + 0.714165i \(0.253193\pi\)
−0.699977 + 0.714165i \(0.746807\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.77489 0.507487
\(372\) 0 0
\(373\) −11.7466 −0.608218 −0.304109 0.952637i \(-0.598359\pi\)
−0.304109 + 0.952637i \(0.598359\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 23.0545i − 1.18736i
\(378\) 0 0
\(379\) − 8.48528i − 0.435860i −0.975964 0.217930i \(-0.930070\pi\)
0.975964 0.217930i \(-0.0699304\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.7205 1.62084 0.810420 0.585849i \(-0.199239\pi\)
0.810420 + 0.585849i \(0.199239\pi\)
\(384\) 0 0
\(385\) 3.89045 0.198275
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 29.7834i − 1.51008i −0.655680 0.755039i \(-0.727618\pi\)
0.655680 0.755039i \(-0.272382\pi\)
\(390\) 0 0
\(391\) 34.7718i 1.75849i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −17.0652 −0.858644
\(396\) 0 0
\(397\) −3.07795 −0.154478 −0.0772390 0.997013i \(-0.524610\pi\)
−0.0772390 + 0.997013i \(0.524610\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.7394i 1.58499i 0.609880 + 0.792494i \(0.291218\pi\)
−0.609880 + 0.792494i \(0.708782\pi\)
\(402\) 0 0
\(403\) 58.4082i 2.90952i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.72311 0.134980
\(408\) 0 0
\(409\) −3.03160 −0.149903 −0.0749516 0.997187i \(-0.523880\pi\)
−0.0749516 + 0.997187i \(0.523880\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 20.6667i − 1.01694i
\(414\) 0 0
\(415\) 15.9955i 0.785186i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.9557 1.02375 0.511875 0.859060i \(-0.328951\pi\)
0.511875 + 0.859060i \(0.328951\pi\)
\(420\) 0 0
\(421\) 29.3441 1.43014 0.715072 0.699051i \(-0.246394\pi\)
0.715072 + 0.699051i \(0.246394\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.89414i 0.285908i
\(426\) 0 0
\(427\) 21.0166i 1.01707i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.4517 0.985122 0.492561 0.870278i \(-0.336061\pi\)
0.492561 + 0.870278i \(0.336061\pi\)
\(432\) 0 0
\(433\) −6.18277 −0.297125 −0.148563 0.988903i \(-0.547465\pi\)
−0.148563 + 0.988903i \(0.547465\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 29.6757i − 1.41958i
\(438\) 0 0
\(439\) − 5.32167i − 0.253989i −0.991903 0.126995i \(-0.959467\pi\)
0.991903 0.126995i \(-0.0405331\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.4933 1.49629 0.748145 0.663535i \(-0.230945\pi\)
0.748145 + 0.663535i \(0.230945\pi\)
\(444\) 0 0
\(445\) 13.0780 0.619954
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0227i 0.661770i 0.943671 + 0.330885i \(0.107347\pi\)
−0.943671 + 0.330885i \(0.892653\pi\)
\(450\) 0 0
\(451\) − 8.77627i − 0.413258i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −25.8919 −1.21383
\(456\) 0 0
\(457\) −24.6210 −1.15172 −0.575861 0.817548i \(-0.695333\pi\)
−0.575861 + 0.817548i \(0.695333\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 23.1883i 1.07999i 0.841669 + 0.539994i \(0.181573\pi\)
−0.841669 + 0.539994i \(0.818427\pi\)
\(462\) 0 0
\(463\) 27.1595i 1.26221i 0.775698 + 0.631104i \(0.217398\pi\)
−0.775698 + 0.631104i \(0.782602\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.74128 0.265675 0.132837 0.991138i \(-0.457591\pi\)
0.132837 + 0.991138i \(0.457591\pi\)
\(468\) 0 0
\(469\) 9.90388 0.457319
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.07407i 0.417226i
\(474\) 0 0
\(475\) − 5.03031i − 0.230806i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.7151 −0.718042 −0.359021 0.933330i \(-0.616889\pi\)
−0.359021 + 0.933330i \(0.616889\pi\)
\(480\) 0 0
\(481\) −18.1230 −0.826337
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.216088i 0.00981205i
\(486\) 0 0
\(487\) 13.2577i 0.600766i 0.953819 + 0.300383i \(0.0971145\pi\)
−0.953819 + 0.300383i \(0.902886\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −24.3421 −1.09854 −0.549272 0.835644i \(-0.685095\pi\)
−0.549272 + 0.835644i \(0.685095\pi\)
\(492\) 0 0
\(493\) −18.4019 −0.828779
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 12.9109i − 0.579131i
\(498\) 0 0
\(499\) 14.3205i 0.641072i 0.947236 + 0.320536i \(0.103863\pi\)
−0.947236 + 0.320536i \(0.896137\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 26.7702 1.19362 0.596811 0.802382i \(-0.296434\pi\)
0.596811 + 0.802382i \(0.296434\pi\)
\(504\) 0 0
\(505\) −7.20694 −0.320705
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 14.8673i − 0.658984i −0.944158 0.329492i \(-0.893123\pi\)
0.944158 0.329492i \(-0.106877\pi\)
\(510\) 0 0
\(511\) − 16.7218i − 0.739731i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −23.1949 −1.02209
\(516\) 0 0
\(517\) −13.3784 −0.588380
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.8761i 1.35270i 0.736578 + 0.676352i \(0.236440\pi\)
−0.736578 + 0.676352i \(0.763560\pi\)
\(522\) 0 0
\(523\) − 9.32278i − 0.407657i −0.979007 0.203828i \(-0.934662\pi\)
0.979007 0.203828i \(-0.0653384\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 46.6210 2.03084
\(528\) 0 0
\(529\) 19.8461 0.862874
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 58.4082i 2.52994i
\(534\) 0 0
\(535\) − 1.64237i − 0.0710059i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.10955 0.133938
\(540\) 0 0
\(541\) 16.3965 0.704942 0.352471 0.935823i \(-0.385342\pi\)
0.352471 + 0.935823i \(0.385342\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.1717i 1.12107i
\(546\) 0 0
\(547\) − 0.954670i − 0.0408187i −0.999792 0.0204094i \(-0.993503\pi\)
0.999792 0.0204094i \(-0.00649695\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.7049 0.669053
\(552\) 0 0
\(553\) 17.0652 0.725687
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 5.13835i − 0.217719i −0.994057 0.108859i \(-0.965280\pi\)
0.994057 0.108859i \(-0.0347198\pi\)
\(558\) 0 0
\(559\) − 60.3902i − 2.55423i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.6733 0.618408 0.309204 0.950996i \(-0.399937\pi\)
0.309204 + 0.950996i \(0.399937\pi\)
\(564\) 0 0
\(565\) −26.2527 −1.10446
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.12097i 0.172760i 0.996262 + 0.0863801i \(0.0275299\pi\)
−0.996262 + 0.0863801i \(0.972470\pi\)
\(570\) 0 0
\(571\) − 11.8087i − 0.494179i −0.968993 0.247090i \(-0.920526\pi\)
0.968993 0.247090i \(-0.0794742\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.26281 0.302880
\(576\) 0 0
\(577\) 21.3367 0.888257 0.444129 0.895963i \(-0.353513\pi\)
0.444129 + 0.895963i \(0.353513\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 15.9955i − 0.663603i
\(582\) 0 0
\(583\) 4.95578i 0.205248i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 47.7958 1.97274 0.986371 0.164536i \(-0.0526127\pi\)
0.986371 + 0.164536i \(0.0526127\pi\)
\(588\) 0 0
\(589\) −39.7883 −1.63945
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 32.8089i − 1.34730i −0.739051 0.673650i \(-0.764726\pi\)
0.739051 0.673650i \(-0.235274\pi\)
\(594\) 0 0
\(595\) 20.6667i 0.847252i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −23.9994 −0.980587 −0.490294 0.871557i \(-0.663110\pi\)
−0.490294 + 0.871557i \(0.663110\pi\)
\(600\) 0 0
\(601\) −47.2346 −1.92674 −0.963369 0.268180i \(-0.913578\pi\)
−0.963369 + 0.268180i \(0.913578\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.97242i 0.0801903i
\(606\) 0 0
\(607\) − 35.1872i − 1.42820i −0.700042 0.714101i \(-0.746836\pi\)
0.700042 0.714101i \(-0.253164\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 89.0363 3.60202
\(612\) 0 0
\(613\) −44.1849 −1.78461 −0.892305 0.451434i \(-0.850913\pi\)
−0.892305 + 0.451434i \(0.850913\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 37.9078i − 1.52611i −0.646333 0.763055i \(-0.723698\pi\)
0.646333 0.763055i \(-0.276302\pi\)
\(618\) 0 0
\(619\) − 48.2320i − 1.93861i −0.245864 0.969304i \(-0.579072\pi\)
0.245864 0.969304i \(-0.420928\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.0780 −0.523957
\(624\) 0 0
\(625\) −18.2211 −0.728845
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.4656i 0.576782i
\(630\) 0 0
\(631\) 0.422528i 0.0168206i 0.999965 + 0.00841029i \(0.00267711\pi\)
−0.999965 + 0.00841029i \(0.997323\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.77489 −0.387905
\(636\) 0 0
\(637\) −20.6949 −0.819960
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 19.6561i − 0.776370i −0.921581 0.388185i \(-0.873102\pi\)
0.921581 0.388185i \(-0.126898\pi\)
\(642\) 0 0
\(643\) − 5.00756i − 0.197479i −0.995113 0.0987394i \(-0.968519\pi\)
0.995113 0.0987394i \(-0.0314810\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27.9321 1.09813 0.549063 0.835781i \(-0.314985\pi\)
0.549063 + 0.835781i \(0.314985\pi\)
\(648\) 0 0
\(649\) 10.4778 0.411291
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 13.2250i − 0.517533i −0.965940 0.258767i \(-0.916684\pi\)
0.965940 0.258767i \(-0.0833161\pi\)
\(654\) 0 0
\(655\) 9.31597i 0.364005i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −34.6210 −1.34864 −0.674321 0.738438i \(-0.735564\pi\)
−0.674321 + 0.738438i \(0.735564\pi\)
\(660\) 0 0
\(661\) 47.3777 1.84278 0.921390 0.388640i \(-0.127055\pi\)
0.921390 + 0.388640i \(0.127055\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 17.6378i − 0.683966i
\(666\) 0 0
\(667\) 22.6749i 0.877977i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.6552 −0.411341
\(672\) 0 0
\(673\) 12.5612 0.484199 0.242100 0.970251i \(-0.422164\pi\)
0.242100 + 0.970251i \(0.422164\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.7460i 0.451436i 0.974193 + 0.225718i \(0.0724727\pi\)
−0.974193 + 0.225718i \(0.927527\pi\)
\(678\) 0 0
\(679\) − 0.216088i − 0.00829270i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13.1512 −0.503216 −0.251608 0.967829i \(-0.580959\pi\)
−0.251608 + 0.967829i \(0.580959\pi\)
\(684\) 0 0
\(685\) −21.5430 −0.823117
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 32.9820i − 1.25651i
\(690\) 0 0
\(691\) − 25.6742i − 0.976694i −0.872649 0.488347i \(-0.837600\pi\)
0.872649 0.488347i \(-0.162400\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.3361 0.543799
\(696\) 0 0
\(697\) 46.6210 1.76590
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.8088i 0.861477i 0.902477 + 0.430738i \(0.141747\pi\)
−0.902477 + 0.430738i \(0.858253\pi\)
\(702\) 0 0
\(703\) − 12.3456i − 0.465622i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.20694 0.271045
\(708\) 0 0
\(709\) 28.7567 1.07998 0.539991 0.841671i \(-0.318428\pi\)
0.539991 + 0.841671i \(0.318428\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 57.4468i − 2.15140i
\(714\) 0 0
\(715\) − 13.1270i − 0.490920i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −43.2030 −1.61120 −0.805600 0.592459i \(-0.798157\pi\)
−0.805600 + 0.592459i \(0.798157\pi\)
\(720\) 0 0
\(721\) 23.1949 0.863825
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.84361i 0.142748i
\(726\) 0 0
\(727\) − 1.44222i − 0.0534891i −0.999642 0.0267445i \(-0.991486\pi\)
0.999642 0.0267445i \(-0.00851406\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −48.2029 −1.78285
\(732\) 0 0
\(733\) 4.83059 0.178422 0.0892109 0.996013i \(-0.471565\pi\)
0.0892109 + 0.996013i \(0.471565\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.02118i 0.184958i
\(738\) 0 0
\(739\) − 14.9282i − 0.549144i −0.961566 0.274572i \(-0.911464\pi\)
0.961566 0.274572i \(-0.0885362\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.6008 −0.902517 −0.451258 0.892393i \(-0.649025\pi\)
−0.451258 + 0.892393i \(0.649025\pi\)
\(744\) 0 0
\(745\) −2.47039 −0.0905082
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.64237i 0.0600109i
\(750\) 0 0
\(751\) 10.5494i 0.384954i 0.981301 + 0.192477i \(0.0616521\pi\)
−0.981301 + 0.192477i \(0.938348\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5.06521 −0.184342
\(756\) 0 0
\(757\) 32.9059 1.19598 0.597992 0.801502i \(-0.295965\pi\)
0.597992 + 0.801502i \(0.295965\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 52.5005i 1.90314i 0.307431 + 0.951570i \(0.400531\pi\)
−0.307431 + 0.951570i \(0.599469\pi\)
\(762\) 0 0
\(763\) − 26.1717i − 0.947478i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −69.7326 −2.51790
\(768\) 0 0
\(769\) −21.1116 −0.761302 −0.380651 0.924719i \(-0.624300\pi\)
−0.380651 + 0.924719i \(0.624300\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 0.297425i − 0.0106976i −0.999986 0.00534882i \(-0.998297\pi\)
0.999986 0.00534882i \(-0.00170259\pi\)
\(774\) 0 0
\(775\) − 9.73775i − 0.349790i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −39.7883 −1.42556
\(780\) 0 0
\(781\) 6.54569 0.234223
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.24495i 0.115817i
\(786\) 0 0
\(787\) − 12.8881i − 0.459412i −0.973260 0.229706i \(-0.926224\pi\)
0.973260 0.229706i \(-0.0737764\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.2527 0.933439
\(792\) 0 0
\(793\) 70.9133 2.51821
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 30.1357i − 1.06746i −0.845655 0.533730i \(-0.820790\pi\)
0.845655 0.533730i \(-0.179210\pi\)
\(798\) 0 0
\(799\) − 71.0681i − 2.51421i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.47783 0.299176
\(804\) 0 0
\(805\) 25.4657 0.897547
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 32.6614i − 1.14831i −0.818745 0.574157i \(-0.805330\pi\)
0.818745 0.574157i \(-0.194670\pi\)
\(810\) 0 0
\(811\) 27.9213i 0.980451i 0.871596 + 0.490225i \(0.163086\pi\)
−0.871596 + 0.490225i \(0.836914\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −14.8401 −0.519826
\(816\) 0 0
\(817\) 41.1384 1.43925
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 16.3191i − 0.569539i −0.958596 0.284770i \(-0.908083\pi\)
0.958596 0.284770i \(-0.0919171\pi\)
\(822\) 0 0
\(823\) 5.58953i 0.194839i 0.995243 + 0.0974194i \(0.0310588\pi\)
−0.995243 + 0.0974194i \(0.968941\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.7829 0.374958 0.187479 0.982269i \(-0.439968\pi\)
0.187479 + 0.982269i \(0.439968\pi\)
\(828\) 0 0
\(829\) −33.1116 −1.15001 −0.575006 0.818149i \(-0.695000\pi\)
−0.575006 + 0.818149i \(0.695000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16.5185i 0.572331i
\(834\) 0 0
\(835\) 48.4967i 1.67830i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.50135 0.120880 0.0604400 0.998172i \(-0.480750\pi\)
0.0604400 + 0.998172i \(0.480750\pi\)
\(840\) 0 0
\(841\) 17.0000 0.586207
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 61.7217i 2.12329i
\(846\) 0 0
\(847\) − 1.97242i − 0.0677732i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17.8247 0.611022
\(852\) 0 0
\(853\) −31.5511 −1.08029 −0.540145 0.841572i \(-0.681631\pi\)
−0.540145 + 0.841572i \(0.681631\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.3575i 1.24195i 0.783830 + 0.620975i \(0.213263\pi\)
−0.783830 + 0.620975i \(0.786737\pi\)
\(858\) 0 0
\(859\) 13.3454i 0.455338i 0.973739 + 0.227669i \(0.0731104\pi\)
−0.973739 + 0.227669i \(0.926890\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37.3784 −1.27237 −0.636187 0.771535i \(-0.719489\pi\)
−0.636187 + 0.771535i \(0.719489\pi\)
\(864\) 0 0
\(865\) 27.7883 0.944831
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8.65191i 0.293496i
\(870\) 0 0
\(871\) − 33.4172i − 1.13230i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 23.7689 0.803535
\(876\) 0 0
\(877\) 11.9657 0.404054 0.202027 0.979380i \(-0.435247\pi\)
0.202027 + 0.979380i \(0.435247\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.2221i 0.580228i 0.956992 + 0.290114i \(0.0936932\pi\)
−0.956992 + 0.290114i \(0.906307\pi\)
\(882\) 0 0
\(883\) 23.0711i 0.776406i 0.921574 + 0.388203i \(0.126904\pi\)
−0.921574 + 0.388203i \(0.873096\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.5296 1.12581 0.562907 0.826520i \(-0.309683\pi\)
0.562907 + 0.826520i \(0.309683\pi\)
\(888\) 0 0
\(889\) 9.77489 0.327839
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 60.6525i 2.02966i
\(894\) 0 0
\(895\) − 22.8194i − 0.762767i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.4019 1.01396
\(900\) 0 0
\(901\) −26.3259 −0.877044
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 31.1929i − 1.03689i
\(906\) 0 0
\(907\) 14.6704i 0.487123i 0.969885 + 0.243561i \(0.0783157\pi\)
−0.969885 + 0.243561i \(0.921684\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.37093 −0.177947 −0.0889734 0.996034i \(-0.528359\pi\)
−0.0889734 + 0.996034i \(0.528359\pi\)
\(912\) 0 0
\(913\) 8.10955 0.268387
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 9.31597i − 0.307640i
\(918\) 0 0
\(919\) 32.7858i 1.08150i 0.841183 + 0.540751i \(0.181860\pi\)
−0.841183 + 0.540751i \(0.818140\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −43.5632 −1.43390
\(924\) 0 0
\(925\) 3.02144 0.0993444
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25.9697i 0.852039i 0.904714 + 0.426020i \(0.140085\pi\)
−0.904714 + 0.426020i \(0.859915\pi\)
\(930\) 0 0
\(931\) − 14.0976i − 0.462029i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.4778 −0.342662
\(936\) 0 0
\(937\) −5.92405 −0.193530 −0.0967652 0.995307i \(-0.530850\pi\)
−0.0967652 + 0.995307i \(0.530850\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 50.1104i − 1.63355i −0.576955 0.816776i \(-0.695759\pi\)
0.576955 0.816776i \(-0.304241\pi\)
\(942\) 0 0
\(943\) − 57.4468i − 1.87072i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.4019 0.987928 0.493964 0.869482i \(-0.335547\pi\)
0.493964 + 0.869482i \(0.335547\pi\)
\(948\) 0 0
\(949\) −56.4221 −1.83154
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 54.6372i − 1.76987i −0.465712 0.884936i \(-0.654202\pi\)
0.465712 0.884936i \(-0.345798\pi\)
\(954\) 0 0
\(955\) − 2.60079i − 0.0841596i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 21.5430 0.695661
\(960\) 0 0
\(961\) −46.0229 −1.48461
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 8.39999i − 0.270405i
\(966\) 0 0
\(967\) 19.5250i 0.627880i 0.949443 + 0.313940i \(0.101649\pi\)
−0.949443 + 0.313940i \(0.898351\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −50.7567 −1.62886 −0.814430 0.580261i \(-0.802950\pi\)
−0.814430 + 0.580261i \(0.802950\pi\)
\(972\) 0 0
\(973\) −14.3361 −0.459594
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 30.0181i − 0.960365i −0.877169 0.480182i \(-0.840570\pi\)
0.877169 0.480182i \(-0.159430\pi\)
\(978\) 0 0
\(979\) − 6.63040i − 0.211909i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −28.9637 −0.923800 −0.461900 0.886932i \(-0.652832\pi\)
−0.461900 + 0.886932i \(0.652832\pi\)
\(984\) 0 0
\(985\) 8.35484 0.266207
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 59.3961i 1.88868i
\(990\) 0 0
\(991\) − 5.45965i − 0.173431i −0.996233 0.0867157i \(-0.972363\pi\)
0.996233 0.0867157i \(-0.0276372\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.09612 0.0664514
\(996\) 0 0
\(997\) −7.06987 −0.223905 −0.111953 0.993714i \(-0.535710\pi\)
−0.111953 + 0.993714i \(0.535710\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.d.e.3455.6 8
3.2 odd 2 6336.2.d.c.3455.3 8
4.3 odd 2 6336.2.d.c.3455.6 8
8.3 odd 2 1584.2.d.d.287.3 yes 8
8.5 even 2 1584.2.d.c.287.3 8
12.11 even 2 inner 6336.2.d.e.3455.3 8
24.5 odd 2 1584.2.d.d.287.6 yes 8
24.11 even 2 1584.2.d.c.287.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1584.2.d.c.287.3 8 8.5 even 2
1584.2.d.c.287.6 yes 8 24.11 even 2
1584.2.d.d.287.3 yes 8 8.3 odd 2
1584.2.d.d.287.6 yes 8 24.5 odd 2
6336.2.d.c.3455.3 8 3.2 odd 2
6336.2.d.c.3455.6 8 4.3 odd 2
6336.2.d.e.3455.3 8 12.11 even 2 inner
6336.2.d.e.3455.6 8 1.1 even 1 trivial