Properties

Label 6336.2.b.x.2177.5
Level $6336$
Weight $2$
Character 6336.2177
Analytic conductor $50.593$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(2177,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.2177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,4,0,0,0,0,0,0,0,-26,0,0,0,8, 0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.12781568.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 17x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2177.5
Root \(0.810603i\) of defining polynomial
Character \(\chi\) \(=\) 6336.2177
Dual form 6336.2.b.x.2177.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.52039i q^{5} +4.72761i q^{7} +(0.146365 - 3.31339i) q^{11} -2.10617i q^{13} +4.68585 q^{17} +0.206992i q^{19} +4.52062i q^{23} -7.39312 q^{25} -7.66442 q^{29} +2.97858 q^{31} -16.6430 q^{35} -6.97858 q^{37} -5.27131 q^{41} +5.86385i q^{43} -7.76303i q^{47} -15.3503 q^{49} +6.34881i q^{53} +(11.6644 + 0.515263i) q^{55} -2.41444i q^{59} -14.3898i q^{61} +7.41454 q^{65} -13.3717 q^{67} +2.10617i q^{71} +13.1116i q^{73} +(15.6644 + 0.691959i) q^{77} +12.7383i q^{79} +10.3931 q^{83} +16.4960i q^{85} +4.24264i q^{89} +9.95715 q^{91} -0.728692 q^{95} -10.3503 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{11} + 4 q^{17} - 26 q^{25} + 8 q^{29} - 12 q^{31} - 16 q^{35} - 12 q^{37} + 4 q^{41} - 14 q^{49} + 16 q^{55} + 56 q^{65} - 32 q^{67} + 40 q^{77} + 44 q^{83} - 40 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.52039i 1.57436i 0.616721 + 0.787182i \(0.288461\pi\)
−0.616721 + 0.787182i \(0.711539\pi\)
\(6\) 0 0
\(7\) 4.72761i 1.78687i 0.449195 + 0.893434i \(0.351711\pi\)
−0.449195 + 0.893434i \(0.648289\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.146365 3.31339i 0.0441309 0.999026i
\(12\) 0 0
\(13\) 2.10617i 0.584147i −0.956396 0.292074i \(-0.905655\pi\)
0.956396 0.292074i \(-0.0943452\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.68585 1.13648 0.568242 0.822861i \(-0.307624\pi\)
0.568242 + 0.822861i \(0.307624\pi\)
\(18\) 0 0
\(19\) 0.206992i 0.0474872i 0.999718 + 0.0237436i \(0.00755854\pi\)
−0.999718 + 0.0237436i \(0.992441\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.52062i 0.942613i 0.881969 + 0.471307i \(0.156218\pi\)
−0.881969 + 0.471307i \(0.843782\pi\)
\(24\) 0 0
\(25\) −7.39312 −1.47862
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.66442 −1.42325 −0.711624 0.702561i \(-0.752040\pi\)
−0.711624 + 0.702561i \(0.752040\pi\)
\(30\) 0 0
\(31\) 2.97858 0.534968 0.267484 0.963562i \(-0.413808\pi\)
0.267484 + 0.963562i \(0.413808\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −16.6430 −2.81318
\(36\) 0 0
\(37\) −6.97858 −1.14727 −0.573636 0.819111i \(-0.694467\pi\)
−0.573636 + 0.819111i \(0.694467\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.27131 −0.823240 −0.411620 0.911356i \(-0.635037\pi\)
−0.411620 + 0.911356i \(0.635037\pi\)
\(42\) 0 0
\(43\) 5.86385i 0.894228i 0.894477 + 0.447114i \(0.147548\pi\)
−0.894477 + 0.447114i \(0.852452\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.76303i 1.13235i −0.824284 0.566177i \(-0.808422\pi\)
0.824284 0.566177i \(-0.191578\pi\)
\(48\) 0 0
\(49\) −15.3503 −2.19290
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.34881i 0.872077i 0.899928 + 0.436038i \(0.143619\pi\)
−0.899928 + 0.436038i \(0.856381\pi\)
\(54\) 0 0
\(55\) 11.6644 + 0.515263i 1.57283 + 0.0694780i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.41444i 0.314334i −0.987572 0.157167i \(-0.949764\pi\)
0.987572 0.157167i \(-0.0502360\pi\)
\(60\) 0 0
\(61\) 14.3898i 1.84243i −0.389058 0.921213i \(-0.627199\pi\)
0.389058 0.921213i \(-0.372801\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.41454 0.919660
\(66\) 0 0
\(67\) −13.3717 −1.63361 −0.816806 0.576912i \(-0.804257\pi\)
−0.816806 + 0.576912i \(0.804257\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.10617i 0.249957i 0.992159 + 0.124978i \(0.0398861\pi\)
−0.992159 + 0.124978i \(0.960114\pi\)
\(72\) 0 0
\(73\) 13.1116i 1.53460i 0.641290 + 0.767299i \(0.278400\pi\)
−0.641290 + 0.767299i \(0.721600\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.6644 + 0.691959i 1.78513 + 0.0788560i
\(78\) 0 0
\(79\) 12.7383i 1.43317i 0.697499 + 0.716586i \(0.254296\pi\)
−0.697499 + 0.716586i \(0.745704\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.3931 1.14079 0.570396 0.821370i \(-0.306790\pi\)
0.570396 + 0.821370i \(0.306790\pi\)
\(84\) 0 0
\(85\) 16.4960i 1.78924i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.24264i 0.449719i 0.974391 + 0.224860i \(0.0721923\pi\)
−0.974391 + 0.224860i \(0.927808\pi\)
\(90\) 0 0
\(91\) 9.95715 1.04379
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.728692 −0.0747622
\(96\) 0 0
\(97\) −10.3503 −1.05091 −0.525455 0.850821i \(-0.676105\pi\)
−0.525455 + 0.850821i \(0.676105\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.27131 −0.922530 −0.461265 0.887263i \(-0.652604\pi\)
−0.461265 + 0.887263i \(0.652604\pi\)
\(102\) 0 0
\(103\) −7.56404 −0.745307 −0.372653 0.927971i \(-0.621552\pi\)
−0.372653 + 0.927971i \(0.621552\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.95715 0.575900 0.287950 0.957645i \(-0.407026\pi\)
0.287950 + 0.957645i \(0.407026\pi\)
\(108\) 0 0
\(109\) 13.4199i 1.28539i 0.766122 + 0.642696i \(0.222184\pi\)
−0.766122 + 0.642696i \(0.777816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.97016i 0.185337i −0.995697 0.0926686i \(-0.970460\pi\)
0.995697 0.0926686i \(-0.0295397\pi\)
\(114\) 0 0
\(115\) −15.9143 −1.48402
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 22.1528i 2.03075i
\(120\) 0 0
\(121\) −10.9572 0.969933i −0.996105 0.0881757i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.42469i 0.753527i
\(126\) 0 0
\(127\) 12.7383i 1.13034i −0.824974 0.565171i \(-0.808810\pi\)
0.824974 0.565171i \(-0.191190\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.05754 0.703990 0.351995 0.936002i \(-0.385503\pi\)
0.351995 + 0.936002i \(0.385503\pi\)
\(132\) 0 0
\(133\) −0.978577 −0.0848534
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.4962i 1.49480i −0.664373 0.747401i \(-0.731301\pi\)
0.664373 0.747401i \(-0.268699\pi\)
\(138\) 0 0
\(139\) 7.30836i 0.619887i −0.950755 0.309943i \(-0.899690\pi\)
0.950755 0.309943i \(-0.100310\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.97858 0.308271i −0.583578 0.0257789i
\(144\) 0 0
\(145\) 26.9817i 2.24071i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.68585 −0.383879 −0.191940 0.981407i \(-0.561478\pi\)
−0.191940 + 0.981407i \(0.561478\pi\)
\(150\) 0 0
\(151\) 5.14159i 0.418417i −0.977871 0.209208i \(-0.932911\pi\)
0.977871 0.209208i \(-0.0670887\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.4857i 0.842235i
\(156\) 0 0
\(157\) −16.7434 −1.33627 −0.668134 0.744041i \(-0.732907\pi\)
−0.668134 + 0.744041i \(0.732907\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −21.3717 −1.68433
\(162\) 0 0
\(163\) 4.58546 0.359161 0.179581 0.983743i \(-0.442526\pi\)
0.179581 + 0.983743i \(0.442526\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.31415 0.720751 0.360375 0.932807i \(-0.382649\pi\)
0.360375 + 0.932807i \(0.382649\pi\)
\(168\) 0 0
\(169\) 8.56404 0.658772
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.4507 1.55483 0.777417 0.628985i \(-0.216529\pi\)
0.777417 + 0.628985i \(0.216529\pi\)
\(174\) 0 0
\(175\) 34.9517i 2.64210i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.86920i 0.737659i 0.929497 + 0.368829i \(0.120241\pi\)
−0.929497 + 0.368829i \(0.879759\pi\)
\(180\) 0 0
\(181\) −5.80765 −0.431679 −0.215840 0.976429i \(-0.569249\pi\)
−0.215840 + 0.976429i \(0.569249\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 24.5673i 1.80622i
\(186\) 0 0
\(187\) 0.685846 15.5261i 0.0501540 1.13538i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.70289i 0.702077i −0.936361 0.351038i \(-0.885829\pi\)
0.936361 0.351038i \(-0.114171\pi\)
\(192\) 0 0
\(193\) 2.27248i 0.163577i 0.996650 + 0.0817883i \(0.0260631\pi\)
−0.996650 + 0.0817883i \(0.973937\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.89962 −0.562824 −0.281412 0.959587i \(-0.590803\pi\)
−0.281412 + 0.959587i \(0.590803\pi\)
\(198\) 0 0
\(199\) −23.3288 −1.65374 −0.826869 0.562395i \(-0.809880\pi\)
−0.826869 + 0.562395i \(0.809880\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 36.2344i 2.54316i
\(204\) 0 0
\(205\) 18.5570i 1.29608i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.685846 + 0.0302965i 0.0474410 + 0.00209565i
\(210\) 0 0
\(211\) 24.7743i 1.70553i 0.522294 + 0.852766i \(0.325076\pi\)
−0.522294 + 0.852766i \(0.674924\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −20.6430 −1.40784
\(216\) 0 0
\(217\) 14.0815i 0.955917i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.86920i 0.663874i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.9572 1.45735 0.728674 0.684861i \(-0.240137\pi\)
0.728674 + 0.684861i \(0.240137\pi\)
\(228\) 0 0
\(229\) −18.7862 −1.24143 −0.620715 0.784037i \(-0.713157\pi\)
−0.620715 + 0.784037i \(0.713157\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −24.0147 −1.57325 −0.786627 0.617428i \(-0.788175\pi\)
−0.786627 + 0.617428i \(0.788175\pi\)
\(234\) 0 0
\(235\) 27.3288 1.78274
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.6430 0.817808 0.408904 0.912577i \(-0.365911\pi\)
0.408904 + 0.912577i \(0.365911\pi\)
\(240\) 0 0
\(241\) 6.13143i 0.394960i −0.980307 0.197480i \(-0.936724\pi\)
0.980307 0.197480i \(-0.0632758\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 54.0389i 3.45242i
\(246\) 0 0
\(247\) 0.435961 0.0277395
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.15221i 0.388324i 0.980969 + 0.194162i \(0.0621988\pi\)
−0.980969 + 0.194162i \(0.937801\pi\)
\(252\) 0 0
\(253\) 14.9786 + 0.661662i 0.941695 + 0.0415983i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.1123i 1.00506i −0.864560 0.502529i \(-0.832403\pi\)
0.864560 0.502529i \(-0.167597\pi\)
\(258\) 0 0
\(259\) 32.9920i 2.05002i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.6858 1.39887 0.699435 0.714697i \(-0.253435\pi\)
0.699435 + 0.714697i \(0.253435\pi\)
\(264\) 0 0
\(265\) −22.3503 −1.37297
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.7744i 1.14470i −0.820011 0.572348i \(-0.806033\pi\)
0.820011 0.572348i \(-0.193967\pi\)
\(270\) 0 0
\(271\) 17.2833i 1.04988i 0.851138 + 0.524942i \(0.175913\pi\)
−0.851138 + 0.524942i \(0.824087\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.08210 + 24.4963i −0.0652529 + 1.47718i
\(276\) 0 0
\(277\) 0.994274i 0.0597402i 0.999554 + 0.0298701i \(0.00950936\pi\)
−0.999554 + 0.0298701i \(0.990491\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.6858 −0.756774 −0.378387 0.925647i \(-0.623521\pi\)
−0.378387 + 0.925647i \(0.623521\pi\)
\(282\) 0 0
\(283\) 8.83424i 0.525141i 0.964913 + 0.262570i \(0.0845702\pi\)
−0.964913 + 0.262570i \(0.915430\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.9207i 1.47102i
\(288\) 0 0
\(289\) 4.95715 0.291597
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.2499 0.715646 0.357823 0.933789i \(-0.383519\pi\)
0.357823 + 0.933789i \(0.383519\pi\)
\(294\) 0 0
\(295\) 8.49977 0.494876
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.52119 0.550625
\(300\) 0 0
\(301\) −27.7220 −1.59787
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 50.6577 2.90065
\(306\) 0 0
\(307\) 3.09601i 0.176699i 0.996090 + 0.0883494i \(0.0281592\pi\)
−0.996090 + 0.0883494i \(0.971841\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.02526i 0.228252i −0.993466 0.114126i \(-0.963593\pi\)
0.993466 0.114126i \(-0.0364067\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.8854i 0.892213i −0.894980 0.446106i \(-0.852810\pi\)
0.894980 0.446106i \(-0.147190\pi\)
\(318\) 0 0
\(319\) −1.12181 + 25.3953i −0.0628091 + 1.42186i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.969933i 0.0539685i
\(324\) 0 0
\(325\) 15.5712i 0.863733i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 36.7005 2.02337
\(330\) 0 0
\(331\) 0.200768 0.0110352 0.00551762 0.999985i \(-0.498244\pi\)
0.00551762 + 0.999985i \(0.498244\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 47.0735i 2.57190i
\(336\) 0 0
\(337\) 22.6482i 1.23373i −0.787071 0.616863i \(-0.788403\pi\)
0.787071 0.616863i \(-0.211597\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.435961 9.86920i 0.0236086 0.534447i
\(342\) 0 0
\(343\) 39.4768i 2.13155i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.35027 −0.448266 −0.224133 0.974559i \(-0.571955\pi\)
−0.224133 + 0.974559i \(0.571955\pi\)
\(348\) 0 0
\(349\) 6.46048i 0.345822i −0.984937 0.172911i \(-0.944683\pi\)
0.984937 0.172911i \(-0.0553172\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.7086i 1.15543i −0.816239 0.577715i \(-0.803945\pi\)
0.816239 0.577715i \(-0.196055\pi\)
\(354\) 0 0
\(355\) −7.41454 −0.393523
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.2138 −0.591840 −0.295920 0.955213i \(-0.595626\pi\)
−0.295920 + 0.955213i \(0.595626\pi\)
\(360\) 0 0
\(361\) 18.9572 0.997745
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −46.1579 −2.41602
\(366\) 0 0
\(367\) −30.1579 −1.57423 −0.787115 0.616806i \(-0.788426\pi\)
−0.787115 + 0.616806i \(0.788426\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −30.0147 −1.55829
\(372\) 0 0
\(373\) 18.1068i 0.937535i 0.883322 + 0.468767i \(0.155302\pi\)
−0.883322 + 0.468767i \(0.844698\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.1426i 0.831386i
\(378\) 0 0
\(379\) −10.5426 −0.541538 −0.270769 0.962644i \(-0.587278\pi\)
−0.270769 + 0.962644i \(0.587278\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.8746i 1.06664i 0.845912 + 0.533322i \(0.179057\pi\)
−0.845912 + 0.533322i \(0.820943\pi\)
\(384\) 0 0
\(385\) −2.43596 + 55.1448i −0.124148 + 2.81044i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.44926i 0.479096i 0.970884 + 0.239548i \(0.0769993\pi\)
−0.970884 + 0.239548i \(0.923001\pi\)
\(390\) 0 0
\(391\) 21.1829i 1.07127i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −44.8438 −2.25633
\(396\) 0 0
\(397\) −11.7648 −0.590459 −0.295229 0.955426i \(-0.595396\pi\)
−0.295229 + 0.955426i \(0.595396\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.24310i 0.311766i 0.987776 + 0.155883i \(0.0498222\pi\)
−0.987776 + 0.155883i \(0.950178\pi\)
\(402\) 0 0
\(403\) 6.27340i 0.312500i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.02142 + 23.1228i −0.0506301 + 1.14615i
\(408\) 0 0
\(409\) 14.5561i 0.719754i −0.933000 0.359877i \(-0.882819\pi\)
0.933000 0.359877i \(-0.117181\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.4145 0.561673
\(414\) 0 0
\(415\) 36.5878i 1.79602i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.32424i 0.260106i −0.991507 0.130053i \(-0.958485\pi\)
0.991507 0.130053i \(-0.0415148\pi\)
\(420\) 0 0
\(421\) 3.06427 0.149343 0.0746717 0.997208i \(-0.476209\pi\)
0.0746717 + 0.997208i \(0.476209\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −34.6430 −1.68043
\(426\) 0 0
\(427\) 68.0294 3.29217
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −27.1856 −1.30949 −0.654743 0.755852i \(-0.727223\pi\)
−0.654743 + 0.755852i \(0.727223\pi\)
\(432\) 0 0
\(433\) −3.91431 −0.188110 −0.0940548 0.995567i \(-0.529983\pi\)
−0.0940548 + 0.995567i \(0.529983\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.935731 −0.0447621
\(438\) 0 0
\(439\) 19.9210i 0.950780i 0.879775 + 0.475390i \(0.157693\pi\)
−0.879775 + 0.475390i \(0.842307\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.5775i 1.45278i 0.687282 + 0.726391i \(0.258804\pi\)
−0.687282 + 0.726391i \(0.741196\pi\)
\(444\) 0 0
\(445\) −14.9357 −0.708022
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.2127i 0.906705i −0.891331 0.453353i \(-0.850228\pi\)
0.891331 0.453353i \(-0.149772\pi\)
\(450\) 0 0
\(451\) −0.771538 + 17.4659i −0.0363303 + 0.822438i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 35.0530i 1.64331i
\(456\) 0 0
\(457\) 30.5775i 1.43036i 0.698942 + 0.715178i \(0.253654\pi\)
−0.698942 + 0.715178i \(0.746346\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.46365 −0.347617 −0.173809 0.984779i \(-0.555607\pi\)
−0.173809 + 0.984779i \(0.555607\pi\)
\(462\) 0 0
\(463\) −13.5212 −0.628383 −0.314192 0.949360i \(-0.601733\pi\)
−0.314192 + 0.949360i \(0.601733\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.7685i 0.868501i −0.900792 0.434250i \(-0.857013\pi\)
0.900792 0.434250i \(-0.142987\pi\)
\(468\) 0 0
\(469\) 63.2161i 2.91905i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19.4292 + 0.858265i 0.893357 + 0.0394631i
\(474\) 0 0
\(475\) 1.53032i 0.0702157i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 38.2155 1.74611 0.873054 0.487623i \(-0.162136\pi\)
0.873054 + 0.487623i \(0.162136\pi\)
\(480\) 0 0
\(481\) 14.6981i 0.670175i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 36.4369i 1.65452i
\(486\) 0 0
\(487\) 35.9143 1.62743 0.813716 0.581262i \(-0.197441\pi\)
0.813716 + 0.581262i \(0.197441\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.95715 0.268843 0.134421 0.990924i \(-0.457082\pi\)
0.134421 + 0.990924i \(0.457082\pi\)
\(492\) 0 0
\(493\) −35.9143 −1.61750
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.95715 −0.446639
\(498\) 0 0
\(499\) −29.2860 −1.31102 −0.655511 0.755186i \(-0.727547\pi\)
−0.655511 + 0.755186i \(0.727547\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.4721 −0.511515 −0.255757 0.966741i \(-0.582325\pi\)
−0.255757 + 0.966741i \(0.582325\pi\)
\(504\) 0 0
\(505\) 32.6386i 1.45240i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 42.6646i 1.89107i 0.325515 + 0.945537i \(0.394462\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(510\) 0 0
\(511\) −61.9865 −2.74212
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 26.6283i 1.17338i
\(516\) 0 0
\(517\) −25.7220 1.13624i −1.13125 0.0499717i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.30277i 0.100886i −0.998727 0.0504432i \(-0.983937\pi\)
0.998727 0.0504432i \(-0.0160634\pi\)
\(522\) 0 0
\(523\) 25.6836i 1.12307i 0.827454 + 0.561533i \(0.189788\pi\)
−0.827454 + 0.561533i \(0.810212\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.9572 0.607983
\(528\) 0 0
\(529\) 2.56404 0.111480
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.1023i 0.480893i
\(534\) 0 0
\(535\) 20.9715i 0.906676i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.24675 + 50.8615i −0.0967744 + 2.19076i
\(540\) 0 0
\(541\) 12.8033i 0.550459i 0.961379 + 0.275229i \(0.0887538\pi\)
−0.961379 + 0.275229i \(0.911246\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −47.2432 −2.02367
\(546\) 0 0
\(547\) 5.24730i 0.224359i 0.993688 + 0.112179i \(0.0357831\pi\)
−0.993688 + 0.112179i \(0.964217\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.58647i 0.0675861i
\(552\) 0 0
\(553\) −60.2217 −2.56089
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.62158 −0.238194 −0.119097 0.992883i \(-0.538000\pi\)
−0.119097 + 0.992883i \(0.538000\pi\)
\(558\) 0 0
\(559\) 12.3503 0.522361
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.86519 0.0786085 0.0393042 0.999227i \(-0.487486\pi\)
0.0393042 + 0.999227i \(0.487486\pi\)
\(564\) 0 0
\(565\) 6.93573 0.291788
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.8438 1.79610 0.898052 0.439889i \(-0.144982\pi\)
0.898052 + 0.439889i \(0.144982\pi\)
\(570\) 0 0
\(571\) 30.0171i 1.25618i 0.778141 + 0.628089i \(0.216163\pi\)
−0.778141 + 0.628089i \(0.783837\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 33.4214i 1.39377i
\(576\) 0 0
\(577\) −6.43596 −0.267933 −0.133966 0.990986i \(-0.542771\pi\)
−0.133966 + 0.990986i \(0.542771\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 49.1346i 2.03845i
\(582\) 0 0
\(583\) 21.0361 + 0.929247i 0.871227 + 0.0384855i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.1519i 0.749210i −0.927184 0.374605i \(-0.877778\pi\)
0.927184 0.374605i \(-0.122222\pi\)
\(588\) 0 0
\(589\) 0.616542i 0.0254042i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.3864 −0.549713 −0.274856 0.961485i \(-0.588630\pi\)
−0.274856 + 0.961485i \(0.588630\pi\)
\(594\) 0 0
\(595\) −77.9865 −3.19714
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.42017i 0.0580265i 0.999579 + 0.0290133i \(0.00923650\pi\)
−0.999579 + 0.0290133i \(0.990763\pi\)
\(600\) 0 0
\(601\) 21.6783i 0.884275i −0.896947 0.442137i \(-0.854220\pi\)
0.896947 0.442137i \(-0.145780\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.41454 38.5734i 0.138821 1.56823i
\(606\) 0 0
\(607\) 42.1345i 1.71019i −0.518475 0.855093i \(-0.673500\pi\)
0.518475 0.855093i \(-0.326500\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.3503 −0.661461
\(612\) 0 0
\(613\) 16.9462i 0.684451i 0.939618 + 0.342226i \(0.111181\pi\)
−0.939618 + 0.342226i \(0.888819\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.2947i 1.42091i 0.703741 + 0.710456i \(0.251511\pi\)
−0.703741 + 0.710456i \(0.748489\pi\)
\(618\) 0 0
\(619\) 35.5296 1.42806 0.714028 0.700117i \(-0.246869\pi\)
0.714028 + 0.700117i \(0.246869\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20.0575 −0.803588
\(624\) 0 0
\(625\) −7.30742 −0.292297
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −32.7005 −1.30386
\(630\) 0 0
\(631\) 21.0508 0.838019 0.419010 0.907982i \(-0.362377\pi\)
0.419010 + 0.907982i \(0.362377\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 44.8438 1.77957
\(636\) 0 0
\(637\) 32.3303i 1.28097i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.6374i 1.09161i 0.837911 + 0.545806i \(0.183777\pi\)
−0.837911 + 0.545806i \(0.816223\pi\)
\(642\) 0 0
\(643\) −4.70054 −0.185371 −0.0926856 0.995695i \(-0.529545\pi\)
−0.0926856 + 0.995695i \(0.529545\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.40872i 0.134011i 0.997753 + 0.0670053i \(0.0213444\pi\)
−0.997753 + 0.0670053i \(0.978656\pi\)
\(648\) 0 0
\(649\) −8.00000 0.353391i −0.314027 0.0138718i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 28.6436i 1.12091i 0.828184 + 0.560456i \(0.189374\pi\)
−0.828184 + 0.560456i \(0.810626\pi\)
\(654\) 0 0
\(655\) 28.3656i 1.10834i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.878193 −0.0342095 −0.0171048 0.999854i \(-0.505445\pi\)
−0.0171048 + 0.999854i \(0.505445\pi\)
\(660\) 0 0
\(661\) −12.7434 −0.495660 −0.247830 0.968804i \(-0.579717\pi\)
−0.247830 + 0.968804i \(0.579717\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.44497i 0.133590i
\(666\) 0 0
\(667\) 34.6479i 1.34157i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −47.6791 2.10617i −1.84063 0.0813079i
\(672\) 0 0
\(673\) 8.21326i 0.316598i −0.987391 0.158299i \(-0.949399\pi\)
0.987391 0.158299i \(-0.0506010\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.4721 0.671506 0.335753 0.941950i \(-0.391009\pi\)
0.335753 + 0.941950i \(0.391009\pi\)
\(678\) 0 0
\(679\) 48.9320i 1.87784i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.32332i 0.0506356i −0.999679 0.0253178i \(-0.991940\pi\)
0.999679 0.0253178i \(-0.00805977\pi\)
\(684\) 0 0
\(685\) 61.5934 2.35336
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13.3717 0.509421
\(690\) 0 0
\(691\) 37.6707 1.43306 0.716530 0.697556i \(-0.245729\pi\)
0.716530 + 0.697556i \(0.245729\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 25.7282 0.975928
\(696\) 0 0
\(697\) −24.7005 −0.935600
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.3221 1.44741 0.723703 0.690111i \(-0.242438\pi\)
0.723703 + 0.690111i \(0.242438\pi\)
\(702\) 0 0
\(703\) 1.44451i 0.0544807i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 43.8311i 1.64844i
\(708\) 0 0
\(709\) −7.17092 −0.269310 −0.134655 0.990893i \(-0.542993\pi\)
−0.134655 + 0.990893i \(0.542993\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.4650i 0.504268i
\(714\) 0 0
\(715\) 1.08523 24.5673i 0.0405854 0.918764i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 44.4720i 1.65853i 0.558859 + 0.829263i \(0.311239\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(720\) 0 0
\(721\) 35.7598i 1.33176i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 56.6640 2.10445
\(726\) 0 0
\(727\) 17.5725 0.651726 0.325863 0.945417i \(-0.394345\pi\)
0.325863 + 0.945417i \(0.394345\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 27.4771i 1.01628i
\(732\) 0 0
\(733\) 38.2711i 1.41358i 0.707426 + 0.706788i \(0.249856\pi\)
−0.707426 + 0.706788i \(0.750144\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.95715 + 44.3057i −0.0720927 + 1.63202i
\(738\) 0 0
\(739\) 11.8046i 0.434240i −0.976145 0.217120i \(-0.930334\pi\)
0.976145 0.217120i \(-0.0696663\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.3587 −1.11375 −0.556876 0.830596i \(-0.688000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(744\) 0 0
\(745\) 16.4960i 0.604366i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 28.1631i 1.02906i
\(750\) 0 0
\(751\) 28.1495 1.02719 0.513595 0.858033i \(-0.328313\pi\)
0.513595 + 0.858033i \(0.328313\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.1004 0.658740
\(756\) 0 0
\(757\) 31.6791 1.15140 0.575699 0.817662i \(-0.304730\pi\)
0.575699 + 0.817662i \(0.304730\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.570769 0.0206904 0.0103452 0.999946i \(-0.496707\pi\)
0.0103452 + 0.999946i \(0.496707\pi\)
\(762\) 0 0
\(763\) −63.4439 −2.29682
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.08523 −0.183617
\(768\) 0 0
\(769\) 26.0118i 0.938009i 0.883196 + 0.469005i \(0.155387\pi\)
−0.883196 + 0.469005i \(0.844613\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.84463i 0.318119i 0.987269 + 0.159060i \(0.0508462\pi\)
−0.987269 + 0.159060i \(0.949154\pi\)
\(774\) 0 0
\(775\) −22.0210 −0.791016
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.09112i 0.0390934i
\(780\) 0 0
\(781\) 6.97858 + 0.308271i 0.249713 + 0.0110308i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 58.9432i 2.10377i
\(786\) 0 0
\(787\) 24.3603i 0.868351i −0.900828 0.434175i \(-0.857040\pi\)
0.900828 0.434175i \(-0.142960\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.31415 0.331173
\(792\) 0 0
\(793\) −30.3074 −1.07625
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.3299i 0.613857i 0.951733 + 0.306928i \(0.0993012\pi\)
−0.951733 + 0.306928i \(0.900699\pi\)
\(798\) 0 0
\(799\) 36.3763i 1.28690i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 43.4439 + 1.91909i 1.53310 + 0.0677231i
\(804\) 0 0
\(805\) 75.2366i 2.65174i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.1856 0.604214 0.302107 0.953274i \(-0.402310\pi\)
0.302107 + 0.953274i \(0.402310\pi\)
\(810\) 0 0
\(811\) 8.83424i 0.310212i 0.987898 + 0.155106i \(0.0495719\pi\)
−0.987898 + 0.155106i \(0.950428\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.1426i 0.565450i
\(816\) 0 0
\(817\) −1.21377 −0.0424644
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.8139 −0.412309 −0.206154 0.978519i \(-0.566095\pi\)
−0.206154 + 0.978519i \(0.566095\pi\)
\(822\) 0 0
\(823\) 44.8156 1.56217 0.781087 0.624422i \(-0.214665\pi\)
0.781087 + 0.624422i \(0.214665\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.4360 0.432441 0.216220 0.976345i \(-0.430627\pi\)
0.216220 + 0.976345i \(0.430627\pi\)
\(828\) 0 0
\(829\) −12.0428 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −71.9290 −2.49219
\(834\) 0 0
\(835\) 32.7894i 1.13472i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 44.9466i 1.55173i −0.630900 0.775864i \(-0.717314\pi\)
0.630900 0.775864i \(-0.282686\pi\)
\(840\) 0 0
\(841\) 29.7434 1.02563
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 30.1487i 1.03715i
\(846\) 0 0
\(847\) 4.58546 51.8011i 0.157558 1.77991i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 31.5475i 1.08143i
\(852\) 0 0
\(853\) 18.3182i 0.627204i −0.949554 0.313602i \(-0.898464\pi\)
0.949554 0.313602i \(-0.101536\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.68585 0.296703 0.148351 0.988935i \(-0.452603\pi\)
0.148351 + 0.988935i \(0.452603\pi\)
\(858\) 0 0
\(859\) −17.1709 −0.585864 −0.292932 0.956133i \(-0.594631\pi\)
−0.292932 + 0.956133i \(0.594631\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.2590i 0.825786i −0.910779 0.412893i \(-0.864518\pi\)
0.910779 0.412893i \(-0.135482\pi\)
\(864\) 0 0
\(865\) 71.9942i 2.44788i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 42.2070 + 1.86445i 1.43178 + 0.0632471i
\(870\) 0 0
\(871\) 28.1631i 0.954270i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 39.8286 1.34645
\(876\) 0 0
\(877\) 22.8145i 0.770391i 0.922835 + 0.385195i \(0.125866\pi\)
−0.922835 + 0.385195i \(0.874134\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.7489i 0.901192i 0.892728 + 0.450596i \(0.148789\pi\)
−0.892728 + 0.450596i \(0.851211\pi\)
\(882\) 0 0
\(883\) −11.5296 −0.388002 −0.194001 0.981001i \(-0.562147\pi\)
−0.194001 + 0.981001i \(0.562147\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 39.1281 1.31379 0.656896 0.753981i \(-0.271869\pi\)
0.656896 + 0.753981i \(0.271869\pi\)
\(888\) 0 0
\(889\) 60.2217 2.01977
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.60688 0.0537723
\(894\) 0 0
\(895\) −34.7434 −1.16134
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22.8291 −0.761392
\(900\) 0 0
\(901\) 29.7496i 0.991102i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.4452i 0.679621i
\(906\) 0 0
\(907\) 2.62831 0.0872715 0.0436358 0.999048i \(-0.486106\pi\)
0.0436358 + 0.999048i \(0.486106\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 38.8151i 1.28600i 0.765865 + 0.643001i \(0.222311\pi\)
−0.765865 + 0.643001i \(0.777689\pi\)
\(912\) 0 0
\(913\) 1.52119 34.4365i 0.0503442 1.13968i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 38.0929i 1.25794i
\(918\) 0 0
\(919\) 19.1418i 0.631428i −0.948854 0.315714i \(-0.897756\pi\)
0.948854 0.315714i \(-0.102244\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.43596 0.146011
\(924\) 0 0
\(925\) 51.5934 1.69638
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 31.5778i 1.03603i 0.855371 + 0.518016i \(0.173329\pi\)
−0.855371 + 0.518016i \(0.826671\pi\)
\(930\) 0 0
\(931\) 3.17738i 0.104135i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 54.6577 + 2.41444i 1.78750 + 0.0789607i
\(936\) 0 0
\(937\) 18.9104i 0.617777i −0.951098 0.308888i \(-0.900043\pi\)
0.951098 0.308888i \(-0.0999570\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −40.8009 −1.33007 −0.665036 0.746811i \(-0.731584\pi\)
−0.665036 + 0.746811i \(0.731584\pi\)
\(942\) 0 0
\(943\) 23.8296i 0.775997i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.949154i 0.0308434i 0.999881 + 0.0154217i \(0.00490907\pi\)
−0.999881 + 0.0154217i \(0.995091\pi\)
\(948\) 0 0
\(949\) 27.6153 0.896431
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.4721 −0.695549 −0.347774 0.937578i \(-0.613062\pi\)
−0.347774 + 0.937578i \(0.613062\pi\)
\(954\) 0 0
\(955\) 34.1579 1.10532
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 82.7152 2.67101
\(960\) 0 0
\(961\) −22.1281 −0.713809
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.00000 −0.257529
\(966\) 0 0
\(967\) 5.14159i 0.165342i −0.996577 0.0826712i \(-0.973655\pi\)
0.996577 0.0826712i \(-0.0263451\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.3841i 0.493699i −0.969054 0.246849i \(-0.920605\pi\)
0.969054 0.246849i \(-0.0793953\pi\)
\(972\) 0 0
\(973\) 34.5510 1.10766
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.8208i 1.62590i −0.582333 0.812951i \(-0.697860\pi\)
0.582333 0.812951i \(-0.302140\pi\)
\(978\) 0 0
\(979\) 14.0575 + 0.620976i 0.449281 + 0.0198465i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 54.4831i 1.73774i 0.495038 + 0.868871i \(0.335154\pi\)
−0.495038 + 0.868871i \(0.664846\pi\)
\(984\) 0 0
\(985\) 27.8097i 0.886091i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −26.5082 −0.842911
\(990\) 0 0
\(991\) −61.0508 −1.93934 −0.969671 0.244412i \(-0.921405\pi\)
−0.969671 + 0.244412i \(0.921405\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 82.1265i 2.60359i
\(996\) 0 0
\(997\) 3.69265i 0.116947i −0.998289 0.0584736i \(-0.981377\pi\)
0.998289 0.0584736i \(-0.0186234\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.b.x.2177.5 6
3.2 odd 2 6336.2.b.y.2177.2 6
4.3 odd 2 6336.2.b.z.2177.5 6
8.3 odd 2 1584.2.b.f.593.2 6
8.5 even 2 792.2.b.b.593.2 yes 6
11.10 odd 2 6336.2.b.y.2177.5 6
12.11 even 2 6336.2.b.w.2177.2 6
24.5 odd 2 792.2.b.a.593.5 yes 6
24.11 even 2 1584.2.b.g.593.5 6
33.32 even 2 inner 6336.2.b.x.2177.2 6
44.43 even 2 6336.2.b.w.2177.5 6
88.21 odd 2 792.2.b.a.593.2 6
88.43 even 2 1584.2.b.g.593.2 6
132.131 odd 2 6336.2.b.z.2177.2 6
264.131 odd 2 1584.2.b.f.593.5 6
264.197 even 2 792.2.b.b.593.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.b.a.593.2 6 88.21 odd 2
792.2.b.a.593.5 yes 6 24.5 odd 2
792.2.b.b.593.2 yes 6 8.5 even 2
792.2.b.b.593.5 yes 6 264.197 even 2
1584.2.b.f.593.2 6 8.3 odd 2
1584.2.b.f.593.5 6 264.131 odd 2
1584.2.b.g.593.2 6 88.43 even 2
1584.2.b.g.593.5 6 24.11 even 2
6336.2.b.w.2177.2 6 12.11 even 2
6336.2.b.w.2177.5 6 44.43 even 2
6336.2.b.x.2177.2 6 33.32 even 2 inner
6336.2.b.x.2177.5 6 1.1 even 1 trivial
6336.2.b.y.2177.2 6 3.2 odd 2
6336.2.b.y.2177.5 6 11.10 odd 2
6336.2.b.z.2177.2 6 132.131 odd 2
6336.2.b.z.2177.5 6 4.3 odd 2