Properties

Label 6336.2.b.d.2177.1
Level $6336$
Weight $2$
Character 6336.2177
Analytic conductor $50.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(2177,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.2177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,-4,0,0,0,0,0,0,0,10,0,0,0,8, 0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2177.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 6336.2177
Dual form 6336.2.b.d.2177.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843i q^{7} +(-3.00000 - 1.41421i) q^{11} -4.24264i q^{13} -2.00000 q^{17} -1.41421i q^{19} +1.41421i q^{23} +5.00000 q^{25} +4.00000 q^{29} +6.00000 q^{31} +6.00000 q^{37} +2.00000 q^{41} -1.41421i q^{43} +4.24264i q^{47} -1.00000 q^{49} -8.48528i q^{53} -11.3137i q^{59} +4.24264i q^{61} -12.0000 q^{67} +12.7279i q^{71} -8.48528i q^{73} +(-4.00000 + 8.48528i) q^{77} -11.3137i q^{79} -6.00000 q^{83} -4.24264i q^{89} -12.0000 q^{91} -12.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{11} - 4 q^{17} + 10 q^{25} + 8 q^{29} + 12 q^{31} + 12 q^{37} + 4 q^{41} - 2 q^{49} - 24 q^{67} - 8 q^{77} - 12 q^{83} - 24 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 2.82843i 1.06904i −0.845154 0.534522i \(-0.820491\pi\)
0.845154 0.534522i \(-0.179509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 1.41421i −0.904534 0.426401i
\(12\) 0 0
\(13\) 4.24264i 1.17670i −0.808608 0.588348i \(-0.799778\pi\)
0.808608 0.588348i \(-0.200222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 1.41421i 0.324443i −0.986754 0.162221i \(-0.948134\pi\)
0.986754 0.162221i \(-0.0518659\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.41421i 0.294884i 0.989071 + 0.147442i \(0.0471040\pi\)
−0.989071 + 0.147442i \(0.952896\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 1.41421i 0.215666i −0.994169 0.107833i \(-0.965609\pi\)
0.994169 0.107833i \(-0.0343911\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.24264i 0.618853i 0.950923 + 0.309426i \(0.100137\pi\)
−0.950923 + 0.309426i \(0.899863\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.48528i 1.16554i −0.812636 0.582772i \(-0.801968\pi\)
0.812636 0.582772i \(-0.198032\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3137i 1.47292i −0.676481 0.736460i \(-0.736496\pi\)
0.676481 0.736460i \(-0.263504\pi\)
\(60\) 0 0
\(61\) 4.24264i 0.543214i 0.962408 + 0.271607i \(0.0875552\pi\)
−0.962408 + 0.271607i \(0.912445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.7279i 1.51053i 0.655422 + 0.755263i \(0.272491\pi\)
−0.655422 + 0.755263i \(0.727509\pi\)
\(72\) 0 0
\(73\) 8.48528i 0.993127i −0.868000 0.496564i \(-0.834595\pi\)
0.868000 0.496564i \(-0.165405\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.00000 + 8.48528i −0.455842 + 0.966988i
\(78\) 0 0
\(79\) 11.3137i 1.27289i −0.771321 0.636446i \(-0.780404\pi\)
0.771321 0.636446i \(-0.219596\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.24264i 0.449719i −0.974391 0.224860i \(-0.927808\pi\)
0.974391 0.224860i \(-0.0721923\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 4.24264i 0.406371i 0.979140 + 0.203186i \(0.0651295\pi\)
−0.979140 + 0.203186i \(0.934871\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.24264i 0.399114i −0.979886 0.199557i \(-0.936050\pi\)
0.979886 0.199557i \(-0.0639503\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.65685i 0.518563i
\(120\) 0 0
\(121\) 7.00000 + 8.48528i 0.636364 + 0.771389i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.3137i 1.00393i −0.864888 0.501965i \(-0.832611\pi\)
0.864888 0.501965i \(-0.167389\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.24264i 0.362473i 0.983440 + 0.181237i \(0.0580100\pi\)
−0.983440 + 0.181237i \(0.941990\pi\)
\(138\) 0 0
\(139\) 7.07107i 0.599760i −0.953977 0.299880i \(-0.903053\pi\)
0.953977 0.299880i \(-0.0969467\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.00000 + 12.7279i −0.501745 + 1.06436i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 5.65685i 0.460348i −0.973149 0.230174i \(-0.926070\pi\)
0.973149 0.230174i \(-0.0739296\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.0000 1.21646 0.608229 0.793762i \(-0.291880\pi\)
0.608229 + 0.793762i \(0.291880\pi\)
\(174\) 0 0
\(175\) 14.1421i 1.06904i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.48528i 0.634220i −0.948389 0.317110i \(-0.897288\pi\)
0.948389 0.317110i \(-0.102712\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.00000 + 2.82843i 0.438763 + 0.206835i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.2132i 1.53493i 0.641089 + 0.767467i \(0.278483\pi\)
−0.641089 + 0.767467i \(0.721517\pi\)
\(192\) 0 0
\(193\) 25.4558i 1.83235i 0.400776 + 0.916176i \(0.368740\pi\)
−0.400776 + 0.916176i \(0.631260\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 11.3137i 0.794067i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 + 4.24264i −0.138343 + 0.293470i
\(210\) 0 0
\(211\) 24.0416i 1.65509i −0.561396 0.827547i \(-0.689736\pi\)
0.561396 0.827547i \(-0.310264\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.9706i 1.15204i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.48528i 0.570782i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.48528i 0.535586i 0.963476 + 0.267793i \(0.0862944\pi\)
−0.963476 + 0.267793i \(0.913706\pi\)
\(252\) 0 0
\(253\) 2.00000 4.24264i 0.125739 0.266733i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.2132i 1.32324i 0.749838 + 0.661622i \(0.230131\pi\)
−0.749838 + 0.661622i \(0.769869\pi\)
\(258\) 0 0
\(259\) 16.9706i 1.05450i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.48528i 0.517357i −0.965964 0.258678i \(-0.916713\pi\)
0.965964 0.258678i \(-0.0832870\pi\)
\(270\) 0 0
\(271\) 22.6274i 1.37452i −0.726413 0.687259i \(-0.758814\pi\)
0.726413 0.687259i \(-0.241186\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.0000 7.07107i −0.904534 0.426401i
\(276\) 0 0
\(277\) 4.24264i 0.254916i 0.991844 + 0.127458i \(0.0406817\pi\)
−0.991844 + 0.127458i \(0.959318\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 9.89949i 0.588464i 0.955734 + 0.294232i \(0.0950638\pi\)
−0.955734 + 0.294232i \(0.904936\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.65685i 0.333914i
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.0000 1.63578 0.817889 0.575376i \(-0.195144\pi\)
0.817889 + 0.575376i \(0.195144\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.07107i 0.403567i −0.979430 0.201784i \(-0.935326\pi\)
0.979430 0.201784i \(-0.0646738\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.41421i 0.0801927i 0.999196 + 0.0400963i \(0.0127665\pi\)
−0.999196 + 0.0400963i \(0.987234\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.48528i 0.476581i 0.971194 + 0.238290i \(0.0765870\pi\)
−0.971194 + 0.238290i \(0.923413\pi\)
\(318\) 0 0
\(319\) −12.0000 5.65685i −0.671871 0.316723i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.82843i 0.157378i
\(324\) 0 0
\(325\) 21.2132i 1.17670i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 25.4558i 1.38667i −0.720616 0.693334i \(-0.756141\pi\)
0.720616 0.693334i \(-0.243859\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −18.0000 8.48528i −0.974755 0.459504i
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 −0.322097 −0.161048 0.986947i \(-0.551488\pi\)
−0.161048 + 0.986947i \(0.551488\pi\)
\(348\) 0 0
\(349\) 12.7279i 0.681310i 0.940188 + 0.340655i \(0.110649\pi\)
−0.940188 + 0.340655i \(0.889351\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.7279i 0.677439i 0.940887 + 0.338719i \(0.109994\pi\)
−0.940887 + 0.338719i \(0.890006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 4.24264i 0.219676i −0.993950 0.109838i \(-0.964967\pi\)
0.993950 0.109838i \(-0.0350331\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.9706i 0.874028i
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.41421i 0.0722629i −0.999347 0.0361315i \(-0.988496\pi\)
0.999347 0.0361315i \(-0.0115035\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.9706i 0.860442i 0.902724 + 0.430221i \(0.141564\pi\)
−0.902724 + 0.430221i \(0.858436\pi\)
\(390\) 0 0
\(391\) 2.82843i 0.143040i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.6985i 1.48307i −0.670913 0.741536i \(-0.734098\pi\)
0.670913 0.741536i \(-0.265902\pi\)
\(402\) 0 0
\(403\) 25.4558i 1.26805i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −18.0000 8.48528i −0.892227 0.420600i
\(408\) 0 0
\(409\) 16.9706i 0.839140i 0.907723 + 0.419570i \(0.137819\pi\)
−0.907723 + 0.419570i \(0.862181\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −32.0000 −1.57462
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 25.4558i 1.24360i 0.783176 + 0.621800i \(0.213598\pi\)
−0.783176 + 0.621800i \(0.786402\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.0000 −0.485071
\(426\) 0 0
\(427\) 12.0000 0.580721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 24.0000 1.15337 0.576683 0.816968i \(-0.304347\pi\)
0.576683 + 0.816968i \(0.304347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.00000 0.0956730
\(438\) 0 0
\(439\) 14.1421i 0.674967i 0.941331 + 0.337484i \(0.109576\pi\)
−0.941331 + 0.337484i \(0.890424\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.6274i 1.07506i 0.843244 + 0.537531i \(0.180643\pi\)
−0.843244 + 0.537531i \(0.819357\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.24264i 0.200223i −0.994976 0.100111i \(-0.968080\pi\)
0.994976 0.100111i \(-0.0319199\pi\)
\(450\) 0 0
\(451\) −6.00000 2.82843i −0.282529 0.133185i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.9706i 0.793849i 0.917851 + 0.396925i \(0.129923\pi\)
−0.917851 + 0.396925i \(0.870077\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.0000 −0.745194 −0.372597 0.927993i \(-0.621533\pi\)
−0.372597 + 0.927993i \(0.621533\pi\)
\(462\) 0 0
\(463\) −18.0000 −0.836531 −0.418265 0.908325i \(-0.637362\pi\)
−0.418265 + 0.908325i \(0.637362\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.7990i 0.916188i 0.888904 + 0.458094i \(0.151468\pi\)
−0.888904 + 0.458094i \(0.848532\pi\)
\(468\) 0 0
\(469\) 33.9411i 1.56726i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.00000 + 4.24264i −0.0919601 + 0.195077i
\(474\) 0 0
\(475\) 7.07107i 0.324443i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 25.4558i 1.16069i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) −8.00000 −0.360302
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 36.0000 1.61482
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 42.4264i 1.88052i −0.340461 0.940259i \(-0.610583\pi\)
0.340461 0.940259i \(-0.389417\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.00000 12.7279i 0.263880 0.559773i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 29.6985i 1.30111i −0.759457 0.650557i \(-0.774535\pi\)
0.759457 0.650557i \(-0.225465\pi\)
\(522\) 0 0
\(523\) 9.89949i 0.432875i 0.976297 + 0.216437i \(0.0694437\pi\)
−0.976297 + 0.216437i \(0.930556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) 21.0000 0.913043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.48528i 0.367538i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 + 1.41421i 0.129219 + 0.0609145i
\(540\) 0 0
\(541\) 21.2132i 0.912027i −0.889973 0.456013i \(-0.849277\pi\)
0.889973 0.456013i \(-0.150723\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.8701i 1.14888i −0.818546 0.574440i \(-0.805220\pi\)
0.818546 0.574440i \(-0.194780\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.65685i 0.240990i
\(552\) 0 0
\(553\) −32.0000 −1.36078
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.0000 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(558\) 0 0
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −34.0000 −1.42535 −0.712677 0.701492i \(-0.752517\pi\)
−0.712677 + 0.701492i \(0.752517\pi\)
\(570\) 0 0
\(571\) 1.41421i 0.0591830i 0.999562 + 0.0295915i \(0.00942064\pi\)
−0.999562 + 0.0295915i \(0.990579\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.07107i 0.294884i
\(576\) 0 0
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.9706i 0.704058i
\(582\) 0 0
\(583\) −12.0000 + 25.4558i −0.496989 + 1.05427i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.2843i 1.16742i 0.811963 + 0.583708i \(0.198399\pi\)
−0.811963 + 0.583708i \(0.801601\pi\)
\(588\) 0 0
\(589\) 8.48528i 0.349630i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.0416i 0.982314i −0.871071 0.491157i \(-0.836574\pi\)
0.871071 0.491157i \(-0.163426\pi\)
\(600\) 0 0
\(601\) 33.9411i 1.38449i −0.721664 0.692244i \(-0.756622\pi\)
0.721664 0.692244i \(-0.243378\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22.6274i 0.918419i −0.888328 0.459209i \(-0.848133\pi\)
0.888328 0.459209i \(-0.151867\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.0000 0.728202
\(612\) 0 0
\(613\) 4.24264i 0.171359i 0.996323 + 0.0856793i \(0.0273061\pi\)
−0.996323 + 0.0856793i \(0.972694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 46.6690i 1.87883i 0.342789 + 0.939413i \(0.388629\pi\)
−0.342789 + 0.939413i \(0.611371\pi\)
\(618\) 0 0
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 30.0000 1.19428 0.597141 0.802137i \(-0.296303\pi\)
0.597141 + 0.802137i \(0.296303\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.24264i 0.168100i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.7279i 0.502723i −0.967893 0.251361i \(-0.919122\pi\)
0.967893 0.251361i \(-0.0808782\pi\)
\(642\) 0 0
\(643\) 12.0000 0.473234 0.236617 0.971603i \(-0.423961\pi\)
0.236617 + 0.971603i \(0.423961\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 43.8406i 1.72355i −0.507288 0.861776i \(-0.669352\pi\)
0.507288 0.861776i \(-0.330648\pi\)
\(648\) 0 0
\(649\) −16.0000 + 33.9411i −0.628055 + 1.33231i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.9706i 0.664109i −0.943260 0.332055i \(-0.892258\pi\)
0.943260 0.332055i \(-0.107742\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.65685i 0.219034i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000 12.7279i 0.231627 0.491356i
\(672\) 0 0
\(673\) 25.4558i 0.981251i 0.871371 + 0.490625i \(0.163232\pi\)
−0.871371 + 0.490625i \(0.836768\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) 0 0
\(679\) 33.9411i 1.30254i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.48528i 0.324680i −0.986735 0.162340i \(-0.948096\pi\)
0.986735 0.162340i \(-0.0519042\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −36.0000 −1.37149
\(690\) 0 0
\(691\) 24.0000 0.913003 0.456502 0.889723i \(-0.349102\pi\)
0.456502 + 0.889723i \(0.349102\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.0000 0.755390 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(702\) 0 0
\(703\) 8.48528i 0.320028i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 28.2843i 1.06374i
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.48528i 0.317776i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 38.1838i 1.42401i −0.702172 0.712007i \(-0.747786\pi\)
0.702172 0.712007i \(-0.252214\pi\)
\(720\) 0 0
\(721\) 16.9706i 0.632017i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 20.0000 0.742781
\(726\) 0 0
\(727\) −48.0000 −1.78022 −0.890111 0.455744i \(-0.849373\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.82843i 0.104613i
\(732\) 0 0
\(733\) 38.1838i 1.41035i 0.709034 + 0.705175i \(0.249131\pi\)
−0.709034 + 0.705175i \(0.750869\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 36.0000 + 16.9706i 1.32608 + 0.625119i
\(738\) 0 0
\(739\) 9.89949i 0.364159i −0.983284 0.182079i \(-0.941717\pi\)
0.983284 0.182079i \(-0.0582828\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.9411i 1.24018i
\(750\) 0 0
\(751\) −18.0000 −0.656829 −0.328415 0.944534i \(-0.606514\pi\)
−0.328415 + 0.944534i \(0.606514\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 12.0000 0.434429
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −48.0000 −1.73318
\(768\) 0 0
\(769\) 25.4558i 0.917961i −0.888446 0.458981i \(-0.848215\pi\)
0.888446 0.458981i \(-0.151785\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.48528i 0.305194i −0.988288 0.152597i \(-0.951236\pi\)
0.988288 0.152597i \(-0.0487637\pi\)
\(774\) 0 0
\(775\) 30.0000 1.07763
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.82843i 0.101339i
\(780\) 0 0
\(781\) 18.0000 38.1838i 0.644091 1.36632i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 35.3553i 1.26028i −0.776481 0.630141i \(-0.782997\pi\)
0.776481 0.630141i \(-0.217003\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 8.48528i 0.300188i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −12.0000 + 25.4558i −0.423471 + 0.898317i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 46.0000 1.61727 0.808637 0.588308i \(-0.200206\pi\)
0.808637 + 0.588308i \(0.200206\pi\)
\(810\) 0 0
\(811\) 43.8406i 1.53945i 0.638374 + 0.769726i \(0.279607\pi\)
−0.638374 + 0.769726i \(0.720393\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.00000 −0.0699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 35.3553i 1.22060i −0.792170 0.610301i \(-0.791049\pi\)
0.792170 0.610301i \(-0.208951\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 24.0000 19.7990i 0.824650 0.680301i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.48528i 0.290872i
\(852\) 0 0
\(853\) 55.1543i 1.88845i −0.329304 0.944224i \(-0.606814\pi\)
0.329304 0.944224i \(-0.393186\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.0000 0.478231 0.239115 0.970991i \(-0.423143\pi\)
0.239115 + 0.970991i \(0.423143\pi\)
\(858\) 0 0
\(859\) 48.0000 1.63774 0.818869 0.573980i \(-0.194601\pi\)
0.818869 + 0.573980i \(0.194601\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.3848i 0.625825i −0.949782 0.312913i \(-0.898695\pi\)
0.949782 0.312913i \(-0.101305\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −16.0000 + 33.9411i −0.542763 + 1.15137i
\(870\) 0 0
\(871\) 50.9117i 1.72508i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 46.6690i 1.57590i 0.615738 + 0.787951i \(0.288858\pi\)
−0.615738 + 0.787951i \(0.711142\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.7279i 0.428815i 0.976744 + 0.214407i \(0.0687820\pi\)
−0.976744 + 0.214407i \(0.931218\pi\)
\(882\) 0 0
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.00000 0.200782
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 16.9706i 0.565371i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 36.0000 1.19536 0.597680 0.801735i \(-0.296089\pi\)
0.597680 + 0.801735i \(0.296089\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 46.6690i 1.54621i 0.634275 + 0.773107i \(0.281299\pi\)
−0.634275 + 0.773107i \(0.718701\pi\)
\(912\) 0 0
\(913\) 18.0000 + 8.48528i 0.595713 + 0.280822i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 33.9411i 1.12083i
\(918\) 0 0
\(919\) 5.65685i 0.186602i 0.995638 + 0.0933012i \(0.0297420\pi\)
−0.995638 + 0.0933012i \(0.970258\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 54.0000 1.77743
\(924\) 0 0
\(925\) 30.0000 0.986394
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.24264i 0.139197i −0.997575 0.0695983i \(-0.977828\pi\)
0.997575 0.0695983i \(-0.0221717\pi\)
\(930\) 0 0
\(931\) 1.41421i 0.0463490i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.9706i 0.554404i 0.960812 + 0.277202i \(0.0894071\pi\)
−0.960812 + 0.277202i \(0.910593\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 0 0
\(943\) 2.82843i 0.0921063i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −36.0000 −1.16861
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 56.5685i 1.81912i 0.415571 + 0.909561i \(0.363582\pi\)
−0.415571 + 0.909561i \(0.636418\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 56.5685i 1.81537i −0.419651 0.907685i \(-0.637848\pi\)
0.419651 0.907685i \(-0.362152\pi\)
\(972\) 0 0
\(973\) −20.0000 −0.641171
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38.1838i 1.22161i −0.791782 0.610803i \(-0.790847\pi\)
0.791782 0.610803i \(-0.209153\pi\)
\(978\) 0 0
\(979\) −6.00000 + 12.7279i −0.191761 + 0.406786i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.5563i 0.496170i −0.968738 0.248085i \(-0.920199\pi\)
0.968738 0.248085i \(-0.0798013\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.00000 0.0635963
\(990\) 0 0
\(991\) 18.0000 0.571789 0.285894 0.958261i \(-0.407709\pi\)
0.285894 + 0.958261i \(0.407709\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 46.6690i 1.47802i 0.673693 + 0.739012i \(0.264707\pi\)
−0.673693 + 0.739012i \(0.735293\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.b.d.2177.1 2
3.2 odd 2 6336.2.b.m.2177.1 2
4.3 odd 2 6336.2.b.l.2177.2 2
8.3 odd 2 3168.2.b.b.2177.2 yes 2
8.5 even 2 3168.2.b.f.2177.1 yes 2
11.10 odd 2 6336.2.b.m.2177.2 2
12.11 even 2 6336.2.b.e.2177.2 2
24.5 odd 2 3168.2.b.c.2177.1 yes 2
24.11 even 2 3168.2.b.g.2177.2 yes 2
33.32 even 2 inner 6336.2.b.d.2177.2 2
44.43 even 2 6336.2.b.e.2177.1 2
88.21 odd 2 3168.2.b.c.2177.2 yes 2
88.43 even 2 3168.2.b.g.2177.1 yes 2
132.131 odd 2 6336.2.b.l.2177.1 2
264.131 odd 2 3168.2.b.b.2177.1 2
264.197 even 2 3168.2.b.f.2177.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3168.2.b.b.2177.1 2 264.131 odd 2
3168.2.b.b.2177.2 yes 2 8.3 odd 2
3168.2.b.c.2177.1 yes 2 24.5 odd 2
3168.2.b.c.2177.2 yes 2 88.21 odd 2
3168.2.b.f.2177.1 yes 2 8.5 even 2
3168.2.b.f.2177.2 yes 2 264.197 even 2
3168.2.b.g.2177.1 yes 2 88.43 even 2
3168.2.b.g.2177.2 yes 2 24.11 even 2
6336.2.b.d.2177.1 2 1.1 even 1 trivial
6336.2.b.d.2177.2 2 33.32 even 2 inner
6336.2.b.e.2177.1 2 44.43 even 2
6336.2.b.e.2177.2 2 12.11 even 2
6336.2.b.l.2177.1 2 132.131 odd 2
6336.2.b.l.2177.2 2 4.3 odd 2
6336.2.b.m.2177.1 2 3.2 odd 2
6336.2.b.m.2177.2 2 11.10 odd 2