Properties

Label 6300.2.v.f.5993.5
Level $6300$
Weight $2$
Character 6300.5993
Analytic conductor $50.306$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6300,2,Mod(1457,6300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6300.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6x^{10} - 24x^{9} + 18x^{8} + 40x^{7} - 82x^{6} + 12x^{5} + 228x^{4} - 284x^{3} + 124x^{2} - 16x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5993.5
Root \(0.0572576 + 0.138232i\) of defining polynomial
Character \(\chi\) \(=\) 6300.5993
Dual form 6300.2.v.f.1457.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{7} +2.16195i q^{11} +(0.457310 + 0.457310i) q^{13} +(-0.704639 - 0.704639i) q^{17} +2.08189i q^{19} +(0.819154 - 0.819154i) q^{23} +5.75906 q^{29} -4.16978 q^{31} +(7.23073 - 7.23073i) q^{37} +4.82963i q^{41} +(3.98689 + 3.98689i) q^{43} +(-3.24035 - 3.24035i) q^{47} -1.00000i q^{49} +(-7.01566 + 7.01566i) q^{53} -4.69577 q^{59} +0.627320 q^{61} +(8.71058 - 8.71058i) q^{67} +10.3048i q^{71} +(0.228279 + 0.228279i) q^{73} +(1.52873 + 1.52873i) q^{77} +2.49466i q^{79} +(-2.75267 + 2.75267i) q^{83} +15.2684 q^{89} +0.646733 q^{91} +(-5.18100 + 5.18100i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{13} + 8 q^{17} - 8 q^{23} + 32 q^{29} + 16 q^{31} - 4 q^{37} - 8 q^{43} + 8 q^{47} - 8 q^{53} + 16 q^{59} + 12 q^{73} - 56 q^{83} + 72 q^{89} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.16195i 0.651852i 0.945395 + 0.325926i \(0.105676\pi\)
−0.945395 + 0.325926i \(0.894324\pi\)
\(12\) 0 0
\(13\) 0.457310 + 0.457310i 0.126835 + 0.126835i 0.767675 0.640840i \(-0.221414\pi\)
−0.640840 + 0.767675i \(0.721414\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.704639 0.704639i −0.170900 0.170900i 0.616475 0.787375i \(-0.288560\pi\)
−0.787375 + 0.616475i \(0.788560\pi\)
\(18\) 0 0
\(19\) 2.08189i 0.477619i 0.971066 + 0.238809i \(0.0767571\pi\)
−0.971066 + 0.238809i \(0.923243\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.819154 0.819154i 0.170805 0.170805i −0.616528 0.787333i \(-0.711461\pi\)
0.787333 + 0.616528i \(0.211461\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.75906 1.06943 0.534715 0.845033i \(-0.320419\pi\)
0.534715 + 0.845033i \(0.320419\pi\)
\(30\) 0 0
\(31\) −4.16978 −0.748914 −0.374457 0.927244i \(-0.622171\pi\)
−0.374457 + 0.927244i \(0.622171\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.23073 7.23073i 1.18872 1.18872i 0.211304 0.977420i \(-0.432229\pi\)
0.977420 0.211304i \(-0.0677709\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.82963i 0.754261i 0.926160 + 0.377130i \(0.123089\pi\)
−0.926160 + 0.377130i \(0.876911\pi\)
\(42\) 0 0
\(43\) 3.98689 + 3.98689i 0.607994 + 0.607994i 0.942422 0.334427i \(-0.108543\pi\)
−0.334427 + 0.942422i \(0.608543\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.24035 3.24035i −0.472654 0.472654i 0.430119 0.902772i \(-0.358472\pi\)
−0.902772 + 0.430119i \(0.858472\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.01566 + 7.01566i −0.963675 + 0.963675i −0.999363 0.0356883i \(-0.988638\pi\)
0.0356883 + 0.999363i \(0.488638\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.69577 −0.611337 −0.305668 0.952138i \(-0.598880\pi\)
−0.305668 + 0.952138i \(0.598880\pi\)
\(60\) 0 0
\(61\) 0.627320 0.0803201 0.0401601 0.999193i \(-0.487213\pi\)
0.0401601 + 0.999193i \(0.487213\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.71058 8.71058i 1.06417 1.06417i 0.0663712 0.997795i \(-0.478858\pi\)
0.997795 0.0663712i \(-0.0211421\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3048i 1.22295i 0.791263 + 0.611477i \(0.209424\pi\)
−0.791263 + 0.611477i \(0.790576\pi\)
\(72\) 0 0
\(73\) 0.228279 + 0.228279i 0.0267181 + 0.0267181i 0.720340 0.693622i \(-0.243986\pi\)
−0.693622 + 0.720340i \(0.743986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.52873 + 1.52873i 0.174215 + 0.174215i
\(78\) 0 0
\(79\) 2.49466i 0.280671i 0.990104 + 0.140336i \(0.0448181\pi\)
−0.990104 + 0.140336i \(0.955182\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.75267 + 2.75267i −0.302145 + 0.302145i −0.841853 0.539708i \(-0.818535\pi\)
0.539708 + 0.841853i \(0.318535\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2684 1.61845 0.809226 0.587498i \(-0.199887\pi\)
0.809226 + 0.587498i \(0.199887\pi\)
\(90\) 0 0
\(91\) 0.646733 0.0677961
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.18100 + 5.18100i −0.526051 + 0.526051i −0.919392 0.393342i \(-0.871319\pi\)
0.393342 + 0.919392i \(0.371319\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.107633i 0.0107099i −0.999986 0.00535494i \(-0.998295\pi\)
0.999986 0.00535494i \(-0.00170454\pi\)
\(102\) 0 0
\(103\) 3.11840 + 3.11840i 0.307266 + 0.307266i 0.843848 0.536582i \(-0.180285\pi\)
−0.536582 + 0.843848i \(0.680285\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.32368 + 3.32368i 0.321313 + 0.321313i 0.849271 0.527958i \(-0.177042\pi\)
−0.527958 + 0.849271i \(0.677042\pi\)
\(108\) 0 0
\(109\) 16.5587i 1.58604i 0.609197 + 0.793019i \(0.291492\pi\)
−0.609197 + 0.793019i \(0.708508\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.60144 1.60144i 0.150651 0.150651i −0.627758 0.778409i \(-0.716027\pi\)
0.778409 + 0.627758i \(0.216027\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.996510 −0.0913500
\(120\) 0 0
\(121\) 6.32598 0.575089
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.55293 + 2.55293i −0.226536 + 0.226536i −0.811244 0.584708i \(-0.801209\pi\)
0.584708 + 0.811244i \(0.301209\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 20.0896i 1.75524i 0.479361 + 0.877618i \(0.340868\pi\)
−0.479361 + 0.877618i \(0.659132\pi\)
\(132\) 0 0
\(133\) 1.47212 + 1.47212i 0.127649 + 0.127649i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.78161 3.78161i −0.323084 0.323084i 0.526865 0.849949i \(-0.323367\pi\)
−0.849949 + 0.526865i \(0.823367\pi\)
\(138\) 0 0
\(139\) 18.6382i 1.58087i −0.612544 0.790436i \(-0.709854\pi\)
0.612544 0.790436i \(-0.290146\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.988680 + 0.988680i −0.0826776 + 0.0826776i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.91874 0.648729 0.324364 0.945932i \(-0.394850\pi\)
0.324364 + 0.945932i \(0.394850\pi\)
\(150\) 0 0
\(151\) 2.97265 0.241911 0.120956 0.992658i \(-0.461404\pi\)
0.120956 + 0.992658i \(0.461404\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.29162 + 2.29162i −0.182892 + 0.182892i −0.792615 0.609723i \(-0.791281\pi\)
0.609723 + 0.792615i \(0.291281\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.15846i 0.0912994i
\(162\) 0 0
\(163\) −1.49547 1.49547i −0.117134 0.117134i 0.646110 0.763244i \(-0.276395\pi\)
−0.763244 + 0.646110i \(0.776395\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.95353 + 1.95353i 0.151169 + 0.151169i 0.778640 0.627471i \(-0.215910\pi\)
−0.627471 + 0.778640i \(0.715910\pi\)
\(168\) 0 0
\(169\) 12.5817i 0.967826i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.54559 + 8.54559i −0.649709 + 0.649709i −0.952923 0.303214i \(-0.901940\pi\)
0.303214 + 0.952923i \(0.401940\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.6139 1.16704 0.583519 0.812099i \(-0.301675\pi\)
0.583519 + 0.812099i \(0.301675\pi\)
\(180\) 0 0
\(181\) 1.76020 0.130835 0.0654174 0.997858i \(-0.479162\pi\)
0.0654174 + 0.997858i \(0.479162\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.52339 1.52339i 0.111402 0.111402i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.1718i 0.736007i 0.929824 + 0.368004i \(0.119959\pi\)
−0.929824 + 0.368004i \(0.880041\pi\)
\(192\) 0 0
\(193\) −11.4344 11.4344i −0.823068 0.823068i 0.163479 0.986547i \(-0.447728\pi\)
−0.986547 + 0.163479i \(0.947728\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.2591 + 10.2591i 0.730931 + 0.730931i 0.970804 0.239873i \(-0.0771058\pi\)
−0.239873 + 0.970804i \(0.577106\pi\)
\(198\) 0 0
\(199\) 21.3619i 1.51430i −0.653238 0.757152i \(-0.726590\pi\)
0.653238 0.757152i \(-0.273410\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.07227 4.07227i 0.285817 0.285817i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.50094 −0.311337
\(210\) 0 0
\(211\) 13.3621 0.919885 0.459943 0.887949i \(-0.347870\pi\)
0.459943 + 0.887949i \(0.347870\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.94848 + 2.94848i −0.200156 + 0.200156i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.644477i 0.0433522i
\(222\) 0 0
\(223\) 17.8563 + 17.8563i 1.19574 + 1.19574i 0.975429 + 0.220314i \(0.0707083\pi\)
0.220314 + 0.975429i \(0.429292\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.7375 + 10.7375i 0.712674 + 0.712674i 0.967094 0.254420i \(-0.0818845\pi\)
−0.254420 + 0.967094i \(0.581885\pi\)
\(228\) 0 0
\(229\) 1.70765i 0.112845i 0.998407 + 0.0564224i \(0.0179693\pi\)
−0.998407 + 0.0564224i \(0.982031\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.2261 + 11.2261i −0.735449 + 0.735449i −0.971694 0.236245i \(-0.924083\pi\)
0.236245 + 0.971694i \(0.424083\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −17.2424 −1.11532 −0.557658 0.830071i \(-0.688300\pi\)
−0.557658 + 0.830071i \(0.688300\pi\)
\(240\) 0 0
\(241\) 29.6047 1.90701 0.953503 0.301382i \(-0.0974480\pi\)
0.953503 + 0.301382i \(0.0974480\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.952069 + 0.952069i −0.0605787 + 0.0605787i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.1380i 0.955500i −0.878496 0.477750i \(-0.841452\pi\)
0.878496 0.477750i \(-0.158548\pi\)
\(252\) 0 0
\(253\) 1.77097 + 1.77097i 0.111340 + 0.111340i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0010 + 18.0010i 1.12287 + 1.12287i 0.991308 + 0.131564i \(0.0419999\pi\)
0.131564 + 0.991308i \(0.458000\pi\)
\(258\) 0 0
\(259\) 10.2258i 0.635400i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.2668 + 15.2668i −0.941390 + 0.941390i −0.998375 0.0569851i \(-0.981851\pi\)
0.0569851 + 0.998375i \(0.481851\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.38784 0.328502 0.164251 0.986419i \(-0.447479\pi\)
0.164251 + 0.986419i \(0.447479\pi\)
\(270\) 0 0
\(271\) 4.37925 0.266021 0.133010 0.991115i \(-0.457536\pi\)
0.133010 + 0.991115i \(0.457536\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.72854 8.72854i 0.524447 0.524447i −0.394464 0.918911i \(-0.629070\pi\)
0.918911 + 0.394464i \(0.129070\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.73523i 0.103515i −0.998660 0.0517575i \(-0.983518\pi\)
0.998660 0.0517575i \(-0.0164823\pi\)
\(282\) 0 0
\(283\) 21.4946 + 21.4946i 1.27772 + 1.27772i 0.941941 + 0.335778i \(0.108999\pi\)
0.335778 + 0.941941i \(0.391001\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.41506 + 3.41506i 0.201585 + 0.201585i
\(288\) 0 0
\(289\) 16.0070i 0.941586i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.87213 7.87213i 0.459895 0.459895i −0.438726 0.898621i \(-0.644570\pi\)
0.898621 + 0.438726i \(0.144570\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.749214 0.0433282
\(300\) 0 0
\(301\) 5.63831 0.324987
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −22.4429 + 22.4429i −1.28088 + 1.28088i −0.340719 + 0.940165i \(0.610671\pi\)
−0.940165 + 0.340719i \(0.889329\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 23.1376i 1.31202i 0.754754 + 0.656008i \(0.227756\pi\)
−0.754754 + 0.656008i \(0.772244\pi\)
\(312\) 0 0
\(313\) −12.3533 12.3533i −0.698249 0.698249i 0.265784 0.964033i \(-0.414369\pi\)
−0.964033 + 0.265784i \(0.914369\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.04030 + 2.04030i 0.114595 + 0.114595i 0.762079 0.647484i \(-0.224179\pi\)
−0.647484 + 0.762079i \(0.724179\pi\)
\(318\) 0 0
\(319\) 12.4508i 0.697110i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.46698 1.46698i 0.0816251 0.0816251i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.58255 −0.252644
\(330\) 0 0
\(331\) 28.8778 1.58727 0.793634 0.608395i \(-0.208186\pi\)
0.793634 + 0.608395i \(0.208186\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4.18958 + 4.18958i −0.228221 + 0.228221i −0.811949 0.583728i \(-0.801593\pi\)
0.583728 + 0.811949i \(0.301593\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.01485i 0.488181i
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.9891 22.9891i −1.23412 1.23412i −0.962368 0.271751i \(-0.912397\pi\)
−0.271751 0.962368i \(-0.587603\pi\)
\(348\) 0 0
\(349\) 0.0763218i 0.00408541i −0.999998 0.00204271i \(-0.999350\pi\)
0.999998 0.00204271i \(-0.000650214\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.69583 + 6.69583i −0.356383 + 0.356383i −0.862478 0.506095i \(-0.831089\pi\)
0.506095 + 0.862478i \(0.331089\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.2111 0.644480 0.322240 0.946658i \(-0.395564\pi\)
0.322240 + 0.946658i \(0.395564\pi\)
\(360\) 0 0
\(361\) 14.6657 0.771881
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −11.4045 + 11.4045i −0.595310 + 0.595310i −0.939061 0.343751i \(-0.888303\pi\)
0.343751 + 0.939061i \(0.388303\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.92164i 0.515106i
\(372\) 0 0
\(373\) −2.94462 2.94462i −0.152467 0.152467i 0.626752 0.779219i \(-0.284384\pi\)
−0.779219 + 0.626752i \(0.784384\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.63367 + 2.63367i 0.135641 + 0.135641i
\(378\) 0 0
\(379\) 15.3970i 0.790892i −0.918489 0.395446i \(-0.870590\pi\)
0.918489 0.395446i \(-0.129410\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.22336 7.22336i 0.369097 0.369097i −0.498051 0.867148i \(-0.665951\pi\)
0.867148 + 0.498051i \(0.165951\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 32.8823 1.66720 0.833599 0.552371i \(-0.186277\pi\)
0.833599 + 0.552371i \(0.186277\pi\)
\(390\) 0 0
\(391\) −1.15442 −0.0583814
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.4822 16.4822i 0.827216 0.827216i −0.159915 0.987131i \(-0.551122\pi\)
0.987131 + 0.159915i \(0.0511220\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.6094i 1.22894i 0.788942 + 0.614468i \(0.210629\pi\)
−0.788942 + 0.614468i \(0.789371\pi\)
\(402\) 0 0
\(403\) −1.90688 1.90688i −0.0949885 0.0949885i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.6325 + 15.6325i 0.774872 + 0.774872i
\(408\) 0 0
\(409\) 26.8405i 1.32718i −0.748098 0.663589i \(-0.769033\pi\)
0.748098 0.663589i \(-0.230967\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.32041 + 3.32041i −0.163387 + 0.163387i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −30.5542 −1.49267 −0.746336 0.665570i \(-0.768189\pi\)
−0.746336 + 0.665570i \(0.768189\pi\)
\(420\) 0 0
\(421\) −5.58675 −0.272282 −0.136141 0.990690i \(-0.543470\pi\)
−0.136141 + 0.990690i \(0.543470\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.443582 0.443582i 0.0214665 0.0214665i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.9160i 0.622141i 0.950387 + 0.311071i \(0.100688\pi\)
−0.950387 + 0.311071i \(0.899312\pi\)
\(432\) 0 0
\(433\) 22.6837 + 22.6837i 1.09011 + 1.09011i 0.995516 + 0.0945949i \(0.0301556\pi\)
0.0945949 + 0.995516i \(0.469844\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.70539 + 1.70539i 0.0815799 + 0.0815799i
\(438\) 0 0
\(439\) 28.3899i 1.35498i 0.735533 + 0.677489i \(0.236932\pi\)
−0.735533 + 0.677489i \(0.763068\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.98110 + 2.98110i −0.141636 + 0.141636i −0.774370 0.632733i \(-0.781933\pi\)
0.632733 + 0.774370i \(0.281933\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.5517 0.686735 0.343367 0.939201i \(-0.388432\pi\)
0.343367 + 0.939201i \(0.388432\pi\)
\(450\) 0 0
\(451\) −10.4414 −0.491667
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.1881 14.1881i 0.663690 0.663690i −0.292558 0.956248i \(-0.594506\pi\)
0.956248 + 0.292558i \(0.0945063\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.48749i 0.115854i 0.998321 + 0.0579270i \(0.0184491\pi\)
−0.998321 + 0.0579270i \(0.981551\pi\)
\(462\) 0 0
\(463\) 2.52717 + 2.52717i 0.117448 + 0.117448i 0.763388 0.645940i \(-0.223535\pi\)
−0.645940 + 0.763388i \(0.723535\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.34428 + 8.34428i 0.386127 + 0.386127i 0.873304 0.487176i \(-0.161973\pi\)
−0.487176 + 0.873304i \(0.661973\pi\)
\(468\) 0 0
\(469\) 12.3186i 0.568821i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.61944 + 8.61944i −0.396322 + 0.396322i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −18.5818 −0.849026 −0.424513 0.905422i \(-0.639555\pi\)
−0.424513 + 0.905422i \(0.639555\pi\)
\(480\) 0 0
\(481\) 6.61336 0.301543
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.95319 9.95319i 0.451022 0.451022i −0.444672 0.895694i \(-0.646680\pi\)
0.895694 + 0.444672i \(0.146680\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.3648i 0.964182i 0.876121 + 0.482091i \(0.160122\pi\)
−0.876121 + 0.482091i \(0.839878\pi\)
\(492\) 0 0
\(493\) −4.05806 4.05806i −0.182766 0.182766i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.28658 + 7.28658i 0.326848 + 0.326848i
\(498\) 0 0
\(499\) 12.7852i 0.572342i 0.958179 + 0.286171i \(0.0923826\pi\)
−0.958179 + 0.286171i \(0.907617\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −30.6628 + 30.6628i −1.36718 + 1.36718i −0.502757 + 0.864428i \(0.667681\pi\)
−0.864428 + 0.502757i \(0.832319\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.0914 0.668913 0.334456 0.942411i \(-0.391447\pi\)
0.334456 + 0.942411i \(0.391447\pi\)
\(510\) 0 0
\(511\) 0.322836 0.0142814
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7.00547 7.00547i 0.308100 0.308100i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.7185i 0.951506i −0.879579 0.475753i \(-0.842176\pi\)
0.879579 0.475753i \(-0.157824\pi\)
\(522\) 0 0
\(523\) 4.46406 + 4.46406i 0.195200 + 0.195200i 0.797938 0.602739i \(-0.205924\pi\)
−0.602739 + 0.797938i \(0.705924\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.93819 + 2.93819i 0.127990 + 0.127990i
\(528\) 0 0
\(529\) 21.6580i 0.941651i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.20863 + 2.20863i −0.0956666 + 0.0956666i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.16195 0.0931217
\(540\) 0 0
\(541\) −34.5916 −1.48721 −0.743604 0.668621i \(-0.766885\pi\)
−0.743604 + 0.668621i \(0.766885\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.60954 9.60954i 0.410874 0.410874i −0.471169 0.882043i \(-0.656168\pi\)
0.882043 + 0.471169i \(0.156168\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.9897i 0.510779i
\(552\) 0 0
\(553\) 1.76399 + 1.76399i 0.0750125 + 0.0750125i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20.2677 20.2677i −0.858772 0.858772i 0.132422 0.991193i \(-0.457725\pi\)
−0.991193 + 0.132422i \(0.957725\pi\)
\(558\) 0 0
\(559\) 3.64648i 0.154230i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.00112 5.00112i 0.210772 0.210772i −0.593823 0.804595i \(-0.702382\pi\)
0.804595 + 0.593823i \(0.202382\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.4657 1.19334 0.596671 0.802486i \(-0.296490\pi\)
0.596671 + 0.802486i \(0.296490\pi\)
\(570\) 0 0
\(571\) −22.3373 −0.934786 −0.467393 0.884050i \(-0.654807\pi\)
−0.467393 + 0.884050i \(0.654807\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −12.6382 + 12.6382i −0.526134 + 0.526134i −0.919417 0.393284i \(-0.871339\pi\)
0.393284 + 0.919417i \(0.371339\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.89286i 0.161503i
\(582\) 0 0
\(583\) −15.1675 15.1675i −0.628173 0.628173i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.8827 22.8827i −0.944469 0.944469i 0.0540682 0.998537i \(-0.482781\pi\)
−0.998537 + 0.0540682i \(0.982781\pi\)
\(588\) 0 0
\(589\) 8.68103i 0.357695i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.2439 + 10.2439i −0.420665 + 0.420665i −0.885433 0.464768i \(-0.846138\pi\)
0.464768 + 0.885433i \(0.346138\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.16453 0.129299 0.0646496 0.997908i \(-0.479407\pi\)
0.0646496 + 0.997908i \(0.479407\pi\)
\(600\) 0 0
\(601\) −11.3100 −0.461346 −0.230673 0.973031i \(-0.574093\pi\)
−0.230673 + 0.973031i \(0.574093\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 27.1529 27.1529i 1.10210 1.10210i 0.107946 0.994157i \(-0.465573\pi\)
0.994157 0.107946i \(-0.0344274\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.96369i 0.119898i
\(612\) 0 0
\(613\) −4.12198 4.12198i −0.166485 0.166485i 0.618947 0.785433i \(-0.287559\pi\)
−0.785433 + 0.618947i \(0.787559\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.6408 + 26.6408i 1.07252 + 1.07252i 0.997156 + 0.0753620i \(0.0240112\pi\)
0.0753620 + 0.997156i \(0.475989\pi\)
\(618\) 0 0
\(619\) 38.8564i 1.56177i 0.624674 + 0.780886i \(0.285232\pi\)
−0.624674 + 0.780886i \(0.714768\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.7964 10.7964i 0.432549 0.432549i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −10.1901 −0.406306
\(630\) 0 0
\(631\) 15.7400 0.626601 0.313300 0.949654i \(-0.398565\pi\)
0.313300 + 0.949654i \(0.398565\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.457310 0.457310i 0.0181193 0.0181193i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.5538i 0.416852i −0.978038 0.208426i \(-0.933166\pi\)
0.978038 0.208426i \(-0.0668340\pi\)
\(642\) 0 0
\(643\) −9.80987 9.80987i −0.386863 0.386863i 0.486704 0.873567i \(-0.338199\pi\)
−0.873567 + 0.486704i \(0.838199\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.3542 19.3542i −0.760892 0.760892i 0.215591 0.976484i \(-0.430832\pi\)
−0.976484 + 0.215591i \(0.930832\pi\)
\(648\) 0 0
\(649\) 10.1520i 0.398501i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 34.0108 34.0108i 1.33095 1.33095i 0.426420 0.904525i \(-0.359775\pi\)
0.904525 0.426420i \(-0.140225\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.8401 0.617042 0.308521 0.951218i \(-0.400166\pi\)
0.308521 + 0.951218i \(0.400166\pi\)
\(660\) 0 0
\(661\) −34.0035 −1.32258 −0.661291 0.750129i \(-0.729991\pi\)
−0.661291 + 0.750129i \(0.729991\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.71756 4.71756i 0.182664 0.182664i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.35623i 0.0523568i
\(672\) 0 0
\(673\) 11.9081 + 11.9081i 0.459025 + 0.459025i 0.898335 0.439310i \(-0.144777\pi\)
−0.439310 + 0.898335i \(0.644777\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.4842 27.4842i −1.05630 1.05630i −0.998317 0.0579868i \(-0.981532\pi\)
−0.0579868 0.998317i \(-0.518468\pi\)
\(678\) 0 0
\(679\) 7.32704i 0.281186i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.9803 + 11.9803i −0.458413 + 0.458413i −0.898134 0.439721i \(-0.855077\pi\)
0.439721 + 0.898134i \(0.355077\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.41666 −0.244455
\(690\) 0 0
\(691\) 6.79041 0.258319 0.129160 0.991624i \(-0.458772\pi\)
0.129160 + 0.991624i \(0.458772\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3.40314 3.40314i 0.128903 0.128903i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.4657i 1.56614i 0.621935 + 0.783069i \(0.286347\pi\)
−0.621935 + 0.783069i \(0.713653\pi\)
\(702\) 0 0
\(703\) 15.0536 + 15.0536i 0.567757 + 0.567757i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.0761079 0.0761079i −0.00286233 0.00286233i
\(708\) 0 0
\(709\) 10.5840i 0.397491i 0.980051 + 0.198745i \(0.0636867\pi\)
−0.980051 + 0.198745i \(0.936313\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.41569 + 3.41569i −0.127919 + 0.127919i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.0588 0.524304 0.262152 0.965027i \(-0.415568\pi\)
0.262152 + 0.965027i \(0.415568\pi\)
\(720\) 0 0
\(721\) 4.41009 0.164240
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −32.1631 + 32.1631i −1.19286 + 1.19286i −0.216603 + 0.976260i \(0.569498\pi\)
−0.976260 + 0.216603i \(0.930502\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.61863i 0.207813i
\(732\) 0 0
\(733\) −23.8284 23.8284i −0.880121 0.880121i 0.113426 0.993546i \(-0.463818\pi\)
−0.993546 + 0.113426i \(0.963818\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.8318 + 18.8318i 0.693679 + 0.693679i
\(738\) 0 0
\(739\) 32.9821i 1.21327i 0.794981 + 0.606634i \(0.207481\pi\)
−0.794981 + 0.606634i \(0.792519\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.9516 18.9516i 0.695265 0.695265i −0.268120 0.963385i \(-0.586402\pi\)
0.963385 + 0.268120i \(0.0864025\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.70040 0.171749
\(750\) 0 0
\(751\) 26.1199 0.953129 0.476564 0.879140i \(-0.341882\pi\)
0.476564 + 0.879140i \(0.341882\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 30.7144 30.7144i 1.11633 1.11633i 0.124057 0.992275i \(-0.460409\pi\)
0.992275 0.124057i \(-0.0395906\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.13933i 0.258801i 0.991592 + 0.129400i \(0.0413052\pi\)
−0.991592 + 0.129400i \(0.958695\pi\)
\(762\) 0 0
\(763\) 11.7088 + 11.7088i 0.423886 + 0.423886i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.14742 2.14742i −0.0775388 0.0775388i
\(768\) 0 0
\(769\) 27.7870i 1.00203i −0.865440 0.501013i \(-0.832961\pi\)
0.865440 0.501013i \(-0.167039\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.5414 21.5414i 0.774791 0.774791i −0.204149 0.978940i \(-0.565443\pi\)
0.978940 + 0.204149i \(0.0654427\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.0548 −0.360249
\(780\) 0 0
\(781\) −22.2784 −0.797185
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 10.9055 10.9055i 0.388738 0.388738i −0.485499 0.874237i \(-0.661362\pi\)
0.874237 + 0.485499i \(0.161362\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.26478i 0.0805264i
\(792\) 0 0
\(793\) 0.286880 + 0.286880i 0.0101874 + 0.0101874i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.5137 25.5137i −0.903743 0.903743i 0.0920143 0.995758i \(-0.470669\pi\)
−0.995758 + 0.0920143i \(0.970669\pi\)
\(798\) 0 0
\(799\) 4.56656i 0.161553i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.493528 + 0.493528i −0.0174162 + 0.0174162i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.53780 −0.124383 −0.0621913 0.998064i \(-0.519809\pi\)
−0.0621913 + 0.998064i \(0.519809\pi\)
\(810\) 0 0
\(811\) −18.3184 −0.643246 −0.321623 0.946868i \(-0.604228\pi\)
−0.321623 + 0.946868i \(0.604228\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −8.30026 + 8.30026i −0.290389 + 0.290389i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.3167i 0.848658i 0.905508 + 0.424329i \(0.139490\pi\)
−0.905508 + 0.424329i \(0.860510\pi\)
\(822\) 0 0
\(823\) −5.89626 5.89626i −0.205531 0.205531i 0.596834 0.802365i \(-0.296425\pi\)
−0.802365 + 0.596834i \(0.796425\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28.1324 28.1324i −0.978259 0.978259i 0.0215101 0.999769i \(-0.493153\pi\)
−0.999769 + 0.0215101i \(0.993153\pi\)
\(828\) 0 0
\(829\) 9.44361i 0.327990i −0.986461 0.163995i \(-0.947562\pi\)
0.986461 0.163995i \(-0.0524381\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.704639 + 0.704639i −0.0244143 + 0.0244143i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.1959 −0.386525 −0.193263 0.981147i \(-0.561907\pi\)
−0.193263 + 0.981147i \(0.561907\pi\)
\(840\) 0 0
\(841\) 4.16672 0.143680
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.47314 4.47314i 0.153699 0.153699i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.8462i 0.406081i
\(852\) 0 0
\(853\) 20.8836 + 20.8836i 0.715040 + 0.715040i 0.967585 0.252545i \(-0.0812676\pi\)
−0.252545 + 0.967585i \(0.581268\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.9264 + 15.9264i 0.544037 + 0.544037i 0.924710 0.380673i \(-0.124308\pi\)
−0.380673 + 0.924710i \(0.624308\pi\)
\(858\) 0 0
\(859\) 30.2920i 1.03355i −0.856122 0.516775i \(-0.827133\pi\)
0.856122 0.516775i \(-0.172867\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.6185 + 11.6185i −0.395497 + 0.395497i −0.876641 0.481144i \(-0.840221\pi\)
0.481144 + 0.876641i \(0.340221\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.39333 −0.182956
\(870\) 0 0
\(871\) 7.96686 0.269947
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.3134 30.3134i 1.02361 1.02361i 0.0238969 0.999714i \(-0.492393\pi\)
0.999714 0.0238969i \(-0.00760734\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.5757i 1.56917i −0.620019 0.784587i \(-0.712875\pi\)
0.620019 0.784587i \(-0.287125\pi\)
\(882\) 0 0
\(883\) −29.4266 29.4266i −0.990285 0.990285i 0.00966815 0.999953i \(-0.496922\pi\)
−0.999953 + 0.00966815i \(0.996922\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31.3384 31.3384i −1.05224 1.05224i −0.998558 0.0536830i \(-0.982904\pi\)
−0.0536830 0.998558i \(-0.517096\pi\)
\(888\) 0 0
\(889\) 3.61039i 0.121088i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.74606 6.74606i 0.225748 0.225748i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −24.0140 −0.800911
\(900\) 0 0
\(901\) 9.88701 0.329384
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −31.9163 + 31.9163i −1.05976 + 1.05976i −0.0616666 + 0.998097i \(0.519642\pi\)
−0.998097 + 0.0616666i \(0.980358\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 57.4801i 1.90440i −0.305474 0.952200i \(-0.598815\pi\)
0.305474 0.952200i \(-0.401185\pi\)
\(912\) 0 0
\(913\) −5.95113 5.95113i −0.196954 0.196954i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.2055 + 14.2055i 0.469106 + 0.469106i
\(918\) 0 0
\(919\) 18.5220i 0.610985i 0.952194 + 0.305492i \(0.0988211\pi\)
−0.952194 + 0.305492i \(0.901179\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.71248 + 4.71248i −0.155113 + 0.155113i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.95373 −0.129718 −0.0648588 0.997894i \(-0.520660\pi\)
−0.0648588 + 0.997894i \(0.520660\pi\)
\(930\) 0 0
\(931\) 2.08189 0.0682312
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −15.7125 + 15.7125i −0.513304 + 0.513304i −0.915537 0.402233i \(-0.868234\pi\)
0.402233 + 0.915537i \(0.368234\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.0600i 1.37112i −0.728017 0.685559i \(-0.759558\pi\)
0.728017 0.685559i \(-0.240442\pi\)
\(942\) 0 0
\(943\) 3.95621 + 3.95621i 0.128832 + 0.128832i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.1406 + 27.1406i 0.881951 + 0.881951i 0.993733 0.111782i \(-0.0356558\pi\)
−0.111782 + 0.993733i \(0.535656\pi\)
\(948\) 0 0
\(949\) 0.208789i 0.00677757i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.2671 22.2671i 0.721302 0.721302i −0.247569 0.968870i \(-0.579632\pi\)
0.968870 + 0.247569i \(0.0796316\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.34800 −0.172696
\(960\) 0 0
\(961\) −13.6129 −0.439127
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −11.2401 + 11.2401i −0.361459 + 0.361459i −0.864350 0.502891i \(-0.832270\pi\)
0.502891 + 0.864350i \(0.332270\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.03205i 0.0331202i −0.999863 0.0165601i \(-0.994729\pi\)
0.999863 0.0165601i \(-0.00527148\pi\)
\(972\) 0 0
\(973\) −13.1792 13.1792i −0.422506 0.422506i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.1067 + 30.1067i 0.963198 + 0.963198i 0.999346 0.0361488i \(-0.0115090\pi\)
−0.0361488 + 0.999346i \(0.511509\pi\)
\(978\) 0 0
\(979\) 33.0096i 1.05499i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −33.0384 + 33.0384i −1.05376 + 1.05376i −0.0552903 + 0.998470i \(0.517608\pi\)
−0.998470 + 0.0552903i \(0.982392\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.53175 0.207698
\(990\) 0 0
\(991\) −27.6554 −0.878504 −0.439252 0.898364i \(-0.644756\pi\)
−0.439252 + 0.898364i \(0.644756\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20.3948 + 20.3948i −0.645909 + 0.645909i −0.952002 0.306093i \(-0.900978\pi\)
0.306093 + 0.952002i \(0.400978\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.v.f.5993.5 12
3.2 odd 2 6300.2.v.e.5993.5 12
5.2 odd 4 6300.2.v.e.1457.5 12
5.3 odd 4 1260.2.v.b.197.2 yes 12
5.4 even 2 1260.2.v.a.953.5 yes 12
15.2 even 4 inner 6300.2.v.f.1457.5 12
15.8 even 4 1260.2.v.a.197.5 12
15.14 odd 2 1260.2.v.b.953.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.v.a.197.5 12 15.8 even 4
1260.2.v.a.953.5 yes 12 5.4 even 2
1260.2.v.b.197.2 yes 12 5.3 odd 4
1260.2.v.b.953.2 yes 12 15.14 odd 2
6300.2.v.e.1457.5 12 5.2 odd 4
6300.2.v.e.5993.5 12 3.2 odd 2
6300.2.v.f.1457.5 12 15.2 even 4 inner
6300.2.v.f.5993.5 12 1.1 even 1 trivial