Properties

Label 6300.2.v.e.5993.6
Level $6300$
Weight $2$
Character 6300.5993
Analytic conductor $50.306$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6300,2,Mod(1457,6300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6300.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,-8,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6x^{10} - 24x^{9} + 18x^{8} + 40x^{7} - 82x^{6} + 12x^{5} + 228x^{4} - 284x^{3} + 124x^{2} - 16x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5993.6
Root \(-1.32833 + 3.20687i\) of defining polynomial
Character \(\chi\) \(=\) 6300.5993
Dual form 6300.2.v.e.1457.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{7} +1.75708i q^{11} +(-1.25153 - 1.25153i) q^{13} +(-1.50555 - 1.50555i) q^{17} +2.37390i q^{19} +(4.16220 - 4.16220i) q^{23} -0.629673 q^{29} +4.08528 q^{31} +(-3.44100 + 3.44100i) q^{37} -1.20261i q^{41} +(-3.05781 - 3.05781i) q^{43} +(-3.51235 - 3.51235i) q^{47} -1.00000i q^{49} +(6.36629 - 6.36629i) q^{53} -10.8093 q^{59} +15.1297 q^{61} +(-4.87916 + 4.87916i) q^{67} -4.26110i q^{71} +(4.06178 + 4.06178i) q^{73} +(1.24244 + 1.24244i) q^{77} +1.49197i q^{79} +(3.25402 - 3.25402i) q^{83} +7.28131 q^{89} -1.76993 q^{91} +(3.07287 - 3.07287i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{13} - 8 q^{17} + 8 q^{23} - 32 q^{29} + 16 q^{31} - 4 q^{37} - 8 q^{43} - 8 q^{47} + 8 q^{53} - 16 q^{59} + 12 q^{73} + 56 q^{83} - 72 q^{89} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.75708i 0.529779i 0.964279 + 0.264889i \(0.0853354\pi\)
−0.964279 + 0.264889i \(0.914665\pi\)
\(12\) 0 0
\(13\) −1.25153 1.25153i −0.347112 0.347112i 0.511921 0.859033i \(-0.328934\pi\)
−0.859033 + 0.511921i \(0.828934\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.50555 1.50555i −0.365149 0.365149i 0.500556 0.865704i \(-0.333129\pi\)
−0.865704 + 0.500556i \(0.833129\pi\)
\(18\) 0 0
\(19\) 2.37390i 0.544609i 0.962211 + 0.272305i \(0.0877858\pi\)
−0.962211 + 0.272305i \(0.912214\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.16220 4.16220i 0.867879 0.867879i −0.124358 0.992237i \(-0.539687\pi\)
0.992237 + 0.124358i \(0.0396872\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.629673 −0.116927 −0.0584637 0.998290i \(-0.518620\pi\)
−0.0584637 + 0.998290i \(0.518620\pi\)
\(30\) 0 0
\(31\) 4.08528 0.733738 0.366869 0.930273i \(-0.380430\pi\)
0.366869 + 0.930273i \(0.380430\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.44100 + 3.44100i −0.565696 + 0.565696i −0.930920 0.365224i \(-0.880993\pi\)
0.365224 + 0.930920i \(0.380993\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.20261i 0.187815i −0.995581 0.0939077i \(-0.970064\pi\)
0.995581 0.0939077i \(-0.0299359\pi\)
\(42\) 0 0
\(43\) −3.05781 3.05781i −0.466312 0.466312i 0.434405 0.900718i \(-0.356959\pi\)
−0.900718 + 0.434405i \(0.856959\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.51235 3.51235i −0.512328 0.512328i 0.402911 0.915239i \(-0.367998\pi\)
−0.915239 + 0.402911i \(0.867998\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.36629 6.36629i 0.874477 0.874477i −0.118480 0.992956i \(-0.537802\pi\)
0.992956 + 0.118480i \(0.0378021\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.8093 −1.40725 −0.703625 0.710572i \(-0.748436\pi\)
−0.703625 + 0.710572i \(0.748436\pi\)
\(60\) 0 0
\(61\) 15.1297 1.93716 0.968579 0.248708i \(-0.0800059\pi\)
0.968579 + 0.248708i \(0.0800059\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.87916 + 4.87916i −0.596084 + 0.596084i −0.939268 0.343184i \(-0.888494\pi\)
0.343184 + 0.939268i \(0.388494\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.26110i 0.505700i −0.967506 0.252850i \(-0.918632\pi\)
0.967506 0.252850i \(-0.0813679\pi\)
\(72\) 0 0
\(73\) 4.06178 + 4.06178i 0.475395 + 0.475395i 0.903655 0.428260i \(-0.140873\pi\)
−0.428260 + 0.903655i \(0.640873\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.24244 + 1.24244i 0.141589 + 0.141589i
\(78\) 0 0
\(79\) 1.49197i 0.167859i 0.996472 + 0.0839297i \(0.0267471\pi\)
−0.996472 + 0.0839297i \(0.973253\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.25402 3.25402i 0.357175 0.357175i −0.505596 0.862770i \(-0.668727\pi\)
0.862770 + 0.505596i \(0.168727\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.28131 0.771818 0.385909 0.922537i \(-0.373888\pi\)
0.385909 + 0.922537i \(0.373888\pi\)
\(90\) 0 0
\(91\) −1.76993 −0.185539
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.07287 3.07287i 0.312003 0.312003i −0.533682 0.845685i \(-0.679192\pi\)
0.845685 + 0.533682i \(0.179192\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.10374i 0.209330i −0.994508 0.104665i \(-0.966623\pi\)
0.994508 0.104665i \(-0.0333770\pi\)
\(102\) 0 0
\(103\) −4.84060 4.84060i −0.476959 0.476959i 0.427199 0.904158i \(-0.359500\pi\)
−0.904158 + 0.427199i \(0.859500\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.18038 6.18038i −0.597480 0.597480i 0.342161 0.939641i \(-0.388841\pi\)
−0.939641 + 0.342161i \(0.888841\pi\)
\(108\) 0 0
\(109\) 14.3345i 1.37299i −0.727133 0.686497i \(-0.759147\pi\)
0.727133 0.686497i \(-0.240853\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.952072 + 0.952072i −0.0895634 + 0.0895634i −0.750469 0.660906i \(-0.770172\pi\)
0.660906 + 0.750469i \(0.270172\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.12916 −0.195180
\(120\) 0 0
\(121\) 7.91268 0.719335
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.8275 10.8275i 0.960782 0.960782i −0.0384774 0.999259i \(-0.512251\pi\)
0.999259 + 0.0384774i \(0.0122508\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.41314i 0.560319i −0.959954 0.280159i \(-0.909613\pi\)
0.959954 0.280159i \(-0.0903873\pi\)
\(132\) 0 0
\(133\) 1.67860 + 1.67860i 0.145553 + 0.145553i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.0788 14.0788i −1.20283 1.20283i −0.973301 0.229531i \(-0.926281\pi\)
−0.229531 0.973301i \(-0.573719\pi\)
\(138\) 0 0
\(139\) 4.70894i 0.399407i 0.979856 + 0.199704i \(0.0639979\pi\)
−0.979856 + 0.199704i \(0.936002\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.19904 2.19904i 0.183893 0.183893i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.7568 −1.29085 −0.645423 0.763825i \(-0.723319\pi\)
−0.645423 + 0.763825i \(0.723319\pi\)
\(150\) 0 0
\(151\) 22.1891 1.80572 0.902860 0.429934i \(-0.141463\pi\)
0.902860 + 0.429934i \(0.141463\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.54558 3.54558i 0.282968 0.282968i −0.551323 0.834292i \(-0.685877\pi\)
0.834292 + 0.551323i \(0.185877\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.88624i 0.463901i
\(162\) 0 0
\(163\) 6.34258 + 6.34258i 0.496789 + 0.496789i 0.910437 0.413648i \(-0.135745\pi\)
−0.413648 + 0.910437i \(0.635745\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.9692 + 16.9692i 1.31312 + 1.31312i 0.919106 + 0.394010i \(0.128912\pi\)
0.394010 + 0.919106i \(0.371088\pi\)
\(168\) 0 0
\(169\) 9.86734i 0.759026i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.49802 1.49802i 0.113893 0.113893i −0.647864 0.761756i \(-0.724337\pi\)
0.761756 + 0.647864i \(0.224337\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.93516 0.294128 0.147064 0.989127i \(-0.453018\pi\)
0.147064 + 0.989127i \(0.453018\pi\)
\(180\) 0 0
\(181\) −13.0358 −0.968946 −0.484473 0.874806i \(-0.660989\pi\)
−0.484473 + 0.874806i \(0.660989\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.64536 2.64536i 0.193448 0.193448i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.0935i 1.09213i −0.837743 0.546065i \(-0.816125\pi\)
0.837743 0.546065i \(-0.183875\pi\)
\(192\) 0 0
\(193\) 7.37140 + 7.37140i 0.530605 + 0.530605i 0.920752 0.390147i \(-0.127576\pi\)
−0.390147 + 0.920752i \(0.627576\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.77438 2.77438i −0.197666 0.197666i 0.601333 0.798999i \(-0.294637\pi\)
−0.798999 + 0.601333i \(0.794637\pi\)
\(198\) 0 0
\(199\) 8.53028i 0.604696i 0.953198 + 0.302348i \(0.0977704\pi\)
−0.953198 + 0.302348i \(0.902230\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.445246 + 0.445246i −0.0312502 + 0.0312502i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.17112 −0.288522
\(210\) 0 0
\(211\) −7.85634 −0.540853 −0.270426 0.962741i \(-0.587165\pi\)
−0.270426 + 0.962741i \(0.587165\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.88873 2.88873i 0.196100 0.196100i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.76848i 0.253495i
\(222\) 0 0
\(223\) 13.4318 + 13.4318i 0.899462 + 0.899462i 0.995388 0.0959263i \(-0.0305813\pi\)
−0.0959263 + 0.995388i \(0.530581\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.98261 + 8.98261i 0.596197 + 0.596197i 0.939298 0.343101i \(-0.111477\pi\)
−0.343101 + 0.939298i \(0.611477\pi\)
\(228\) 0 0
\(229\) 26.7648i 1.76867i −0.466853 0.884335i \(-0.654612\pi\)
0.466853 0.884335i \(-0.345388\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.92828 + 4.92828i −0.322862 + 0.322862i −0.849864 0.527002i \(-0.823316\pi\)
0.527002 + 0.849864i \(0.323316\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.1102 −1.36550 −0.682752 0.730650i \(-0.739217\pi\)
−0.682752 + 0.730650i \(0.739217\pi\)
\(240\) 0 0
\(241\) −25.0446 −1.61326 −0.806631 0.591056i \(-0.798711\pi\)
−0.806631 + 0.591056i \(0.798711\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.97100 2.97100i 0.189040 0.189040i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 29.5486i 1.86509i −0.361054 0.932545i \(-0.617583\pi\)
0.361054 0.932545i \(-0.382417\pi\)
\(252\) 0 0
\(253\) 7.31331 + 7.31331i 0.459784 + 0.459784i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.20108 2.20108i −0.137300 0.137300i 0.635117 0.772416i \(-0.280952\pi\)
−0.772416 + 0.635117i \(0.780952\pi\)
\(258\) 0 0
\(259\) 4.86630i 0.302377i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.11708 2.11708i 0.130545 0.130545i −0.638815 0.769360i \(-0.720575\pi\)
0.769360 + 0.638815i \(0.220575\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.238843 0.0145625 0.00728127 0.999973i \(-0.497682\pi\)
0.00728127 + 0.999973i \(0.497682\pi\)
\(270\) 0 0
\(271\) 9.21426 0.559726 0.279863 0.960040i \(-0.409711\pi\)
0.279863 + 0.960040i \(0.409711\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −23.0749 + 23.0749i −1.38644 + 1.38644i −0.553762 + 0.832675i \(0.686808\pi\)
−0.832675 + 0.553762i \(0.813192\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.7376i 1.47572i −0.674953 0.737861i \(-0.735836\pi\)
0.674953 0.737861i \(-0.264164\pi\)
\(282\) 0 0
\(283\) 7.10743 + 7.10743i 0.422493 + 0.422493i 0.886061 0.463568i \(-0.153431\pi\)
−0.463568 + 0.886061i \(0.653431\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.850371 0.850371i −0.0501958 0.0501958i
\(288\) 0 0
\(289\) 12.4667i 0.733333i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.34581 9.34581i 0.545988 0.545988i −0.379290 0.925278i \(-0.623832\pi\)
0.925278 + 0.379290i \(0.123832\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.4182 −0.602503
\(300\) 0 0
\(301\) −4.32440 −0.249254
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.86325 8.86325i 0.505852 0.505852i −0.407398 0.913251i \(-0.633564\pi\)
0.913251 + 0.407398i \(0.133564\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.9652i 1.58576i −0.609375 0.792882i \(-0.708580\pi\)
0.609375 0.792882i \(-0.291420\pi\)
\(312\) 0 0
\(313\) 16.1204 + 16.1204i 0.911178 + 0.911178i 0.996365 0.0851869i \(-0.0271487\pi\)
−0.0851869 + 0.996365i \(0.527149\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.8990 15.8990i −0.892977 0.892977i 0.101825 0.994802i \(-0.467532\pi\)
−0.994802 + 0.101825i \(0.967532\pi\)
\(318\) 0 0
\(319\) 1.10638i 0.0619457i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.57401 3.57401i 0.198863 0.198863i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.96721 −0.273851
\(330\) 0 0
\(331\) 4.65465 0.255843 0.127921 0.991784i \(-0.459169\pi\)
0.127921 + 0.991784i \(0.459169\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 17.7762 17.7762i 0.968329 0.968329i −0.0311844 0.999514i \(-0.509928\pi\)
0.999514 + 0.0311844i \(0.00992792\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.17815i 0.388719i
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.28995 + 1.28995i 0.0692481 + 0.0692481i 0.740883 0.671635i \(-0.234407\pi\)
−0.671635 + 0.740883i \(0.734407\pi\)
\(348\) 0 0
\(349\) 12.1821i 0.652093i 0.945354 + 0.326046i \(0.105717\pi\)
−0.945354 + 0.326046i \(0.894283\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.26875 + 6.26875i −0.333652 + 0.333652i −0.853971 0.520320i \(-0.825813\pi\)
0.520320 + 0.853971i \(0.325813\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.5533 1.55977 0.779883 0.625925i \(-0.215279\pi\)
0.779883 + 0.625925i \(0.215279\pi\)
\(360\) 0 0
\(361\) 13.3646 0.703401
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.1933 22.1933i 1.15848 1.15848i 0.173679 0.984802i \(-0.444434\pi\)
0.984802 0.173679i \(-0.0555656\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.00329i 0.467427i
\(372\) 0 0
\(373\) −17.9117 17.9117i −0.927434 0.927434i 0.0701060 0.997540i \(-0.477666\pi\)
−0.997540 + 0.0701060i \(0.977666\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.788055 + 0.788055i 0.0405869 + 0.0405869i
\(378\) 0 0
\(379\) 6.65544i 0.341867i 0.985283 + 0.170933i \(0.0546783\pi\)
−0.985283 + 0.170933i \(0.945322\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.2538 24.2538i 1.23931 1.23931i 0.279032 0.960282i \(-0.409987\pi\)
0.960282 0.279032i \(-0.0900134\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.8093 0.649459 0.324730 0.945807i \(-0.394727\pi\)
0.324730 + 0.945807i \(0.394727\pi\)
\(390\) 0 0
\(391\) −12.5328 −0.633810
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10.5735 + 10.5735i −0.530668 + 0.530668i −0.920771 0.390103i \(-0.872439\pi\)
0.390103 + 0.920771i \(0.372439\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.1840i 0.958003i −0.877814 0.479001i \(-0.840999\pi\)
0.877814 0.479001i \(-0.159001\pi\)
\(402\) 0 0
\(403\) −5.11285 5.11285i −0.254689 0.254689i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.04609 6.04609i −0.299694 0.299694i
\(408\) 0 0
\(409\) 17.7037i 0.875392i −0.899123 0.437696i \(-0.855795\pi\)
0.899123 0.437696i \(-0.144205\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.64332 + 7.64332i −0.376103 + 0.376103i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.3013 −0.600960 −0.300480 0.953788i \(-0.597147\pi\)
−0.300480 + 0.953788i \(0.597147\pi\)
\(420\) 0 0
\(421\) 21.0571 1.02626 0.513131 0.858310i \(-0.328486\pi\)
0.513131 + 0.858310i \(0.328486\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.6983 10.6983i 0.517727 0.517727i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.8858i 0.909697i 0.890569 + 0.454848i \(0.150307\pi\)
−0.890569 + 0.454848i \(0.849693\pi\)
\(432\) 0 0
\(433\) 14.0129 + 14.0129i 0.673415 + 0.673415i 0.958502 0.285087i \(-0.0920224\pi\)
−0.285087 + 0.958502i \(0.592022\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.88064 + 9.88064i 0.472655 + 0.472655i
\(438\) 0 0
\(439\) 2.74707i 0.131110i 0.997849 + 0.0655552i \(0.0208819\pi\)
−0.997849 + 0.0655552i \(0.979118\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.91928 + 5.91928i −0.281233 + 0.281233i −0.833601 0.552367i \(-0.813725\pi\)
0.552367 + 0.833601i \(0.313725\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −21.8023 −1.02892 −0.514458 0.857516i \(-0.672007\pi\)
−0.514458 + 0.857516i \(0.672007\pi\)
\(450\) 0 0
\(451\) 2.11307 0.0995006
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10.9740 10.9740i 0.513343 0.513343i −0.402206 0.915549i \(-0.631757\pi\)
0.915549 + 0.402206i \(0.131757\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.7346i 1.38488i 0.721475 + 0.692440i \(0.243464\pi\)
−0.721475 + 0.692440i \(0.756536\pi\)
\(462\) 0 0
\(463\) 7.94451 + 7.94451i 0.369213 + 0.369213i 0.867190 0.497977i \(-0.165924\pi\)
−0.497977 + 0.867190i \(0.665924\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.9720 14.9720i −0.692820 0.692820i 0.270031 0.962852i \(-0.412966\pi\)
−0.962852 + 0.270031i \(0.912966\pi\)
\(468\) 0 0
\(469\) 6.90017i 0.318620i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.37282 5.37282i 0.247042 0.247042i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.1568 0.509765 0.254882 0.966972i \(-0.417963\pi\)
0.254882 + 0.966972i \(0.417963\pi\)
\(480\) 0 0
\(481\) 8.61302 0.392720
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −27.2757 + 27.2757i −1.23598 + 1.23598i −0.274350 + 0.961630i \(0.588463\pi\)
−0.961630 + 0.274350i \(0.911537\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.1471i 0.728707i −0.931261 0.364353i \(-0.881290\pi\)
0.931261 0.364353i \(-0.118710\pi\)
\(492\) 0 0
\(493\) 0.948003 + 0.948003i 0.0426959 + 0.0426959i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.01305 3.01305i −0.135154 0.135154i
\(498\) 0 0
\(499\) 30.0186i 1.34382i −0.740633 0.671909i \(-0.765474\pi\)
0.740633 0.671909i \(-0.234526\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.43925 8.43925i 0.376287 0.376287i −0.493473 0.869761i \(-0.664273\pi\)
0.869761 + 0.493473i \(0.164273\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −25.9643 −1.15085 −0.575424 0.817855i \(-0.695163\pi\)
−0.575424 + 0.817855i \(0.695163\pi\)
\(510\) 0 0
\(511\) 5.74422 0.254109
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.17146 6.17146i 0.271421 0.271421i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.2637i 0.537284i −0.963240 0.268642i \(-0.913425\pi\)
0.963240 0.268642i \(-0.0865749\pi\)
\(522\) 0 0
\(523\) −15.4597 15.4597i −0.676005 0.676005i 0.283089 0.959094i \(-0.408641\pi\)
−0.959094 + 0.283089i \(0.908641\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.15058 6.15058i −0.267923 0.267923i
\(528\) 0 0
\(529\) 11.6478i 0.506428i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.50510 + 1.50510i −0.0651930 + 0.0651930i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.75708 0.0756827
\(540\) 0 0
\(541\) 39.3958 1.69376 0.846878 0.531787i \(-0.178479\pi\)
0.846878 + 0.531787i \(0.178479\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −14.7712 + 14.7712i −0.631570 + 0.631570i −0.948462 0.316891i \(-0.897361\pi\)
0.316891 + 0.948462i \(0.397361\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.49478i 0.0636797i
\(552\) 0 0
\(553\) 1.05498 + 1.05498i 0.0448623 + 0.0448623i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.5258 19.5258i −0.827336 0.827336i 0.159811 0.987148i \(-0.448911\pi\)
−0.987148 + 0.159811i \(0.948911\pi\)
\(558\) 0 0
\(559\) 7.65390i 0.323725i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.3047 28.3047i 1.19290 1.19290i 0.216652 0.976249i \(-0.430486\pi\)
0.976249 0.216652i \(-0.0695136\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.7109 −1.53900 −0.769502 0.638645i \(-0.779495\pi\)
−0.769502 + 0.638645i \(0.779495\pi\)
\(570\) 0 0
\(571\) 27.0116 1.13040 0.565199 0.824955i \(-0.308799\pi\)
0.565199 + 0.824955i \(0.308799\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.45781 3.45781i 0.143950 0.143950i −0.631459 0.775409i \(-0.717544\pi\)
0.775409 + 0.631459i \(0.217544\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.60187i 0.190918i
\(582\) 0 0
\(583\) 11.1861 + 11.1861i 0.463279 + 0.463279i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.4297 + 31.4297i 1.29724 + 1.29724i 0.930206 + 0.367038i \(0.119628\pi\)
0.367038 + 0.930206i \(0.380372\pi\)
\(588\) 0 0
\(589\) 9.69803i 0.399600i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.2735 + 24.2735i −0.996793 + 0.996793i −0.999995 0.00320180i \(-0.998981\pi\)
0.00320180 + 0.999995i \(0.498981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.17790 0.170704 0.0853522 0.996351i \(-0.472798\pi\)
0.0853522 + 0.996351i \(0.472798\pi\)
\(600\) 0 0
\(601\) −9.30227 −0.379448 −0.189724 0.981838i \(-0.560759\pi\)
−0.189724 + 0.981838i \(0.560759\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −5.98589 + 5.98589i −0.242960 + 0.242960i −0.818074 0.575114i \(-0.804958\pi\)
0.575114 + 0.818074i \(0.304958\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.79161i 0.355671i
\(612\) 0 0
\(613\) −17.6216 17.6216i −0.711732 0.711732i 0.255166 0.966897i \(-0.417870\pi\)
−0.966897 + 0.255166i \(0.917870\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.94438 2.94438i −0.118536 0.118536i 0.645350 0.763887i \(-0.276711\pi\)
−0.763887 + 0.645350i \(0.776711\pi\)
\(618\) 0 0
\(619\) 38.2627i 1.53791i 0.639305 + 0.768953i \(0.279222\pi\)
−0.639305 + 0.768953i \(0.720778\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.14867 5.14867i 0.206277 0.206277i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.3612 0.413126
\(630\) 0 0
\(631\) 4.65200 0.185193 0.0925966 0.995704i \(-0.470483\pi\)
0.0925966 + 0.995704i \(0.470483\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.25153 + 1.25153i −0.0495874 + 0.0495874i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.5186i 0.889431i 0.895672 + 0.444715i \(0.146695\pi\)
−0.895672 + 0.444715i \(0.853305\pi\)
\(642\) 0 0
\(643\) 9.94450 + 9.94450i 0.392173 + 0.392173i 0.875461 0.483288i \(-0.160558\pi\)
−0.483288 + 0.875461i \(0.660558\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.43047 + 3.43047i 0.134866 + 0.134866i 0.771317 0.636451i \(-0.219598\pi\)
−0.636451 + 0.771317i \(0.719598\pi\)
\(648\) 0 0
\(649\) 18.9927i 0.745531i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.20047 9.20047i 0.360042 0.360042i −0.503786 0.863828i \(-0.668060\pi\)
0.863828 + 0.503786i \(0.168060\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.8844 1.35890 0.679452 0.733720i \(-0.262217\pi\)
0.679452 + 0.733720i \(0.262217\pi\)
\(660\) 0 0
\(661\) −9.24236 −0.359486 −0.179743 0.983714i \(-0.557527\pi\)
−0.179743 + 0.983714i \(0.557527\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.62083 + 2.62083i −0.101479 + 0.101479i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 26.5840i 1.02626i
\(672\) 0 0
\(673\) −10.6090 10.6090i −0.408949 0.408949i 0.472423 0.881372i \(-0.343379\pi\)
−0.881372 + 0.472423i \(0.843379\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.1316 25.1316i −0.965887 0.965887i 0.0335498 0.999437i \(-0.489319\pi\)
−0.999437 + 0.0335498i \(0.989319\pi\)
\(678\) 0 0
\(679\) 4.34570i 0.166773i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.91527 9.91527i 0.379397 0.379397i −0.491487 0.870885i \(-0.663547\pi\)
0.870885 + 0.491487i \(0.163547\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.9352 −0.607083
\(690\) 0 0
\(691\) 19.0529 0.724806 0.362403 0.932022i \(-0.381956\pi\)
0.362403 + 0.932022i \(0.381956\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.81058 + 1.81058i −0.0685806 + 0.0685806i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.8614i 0.825692i 0.910801 + 0.412846i \(0.135465\pi\)
−0.910801 + 0.412846i \(0.864535\pi\)
\(702\) 0 0
\(703\) −8.16857 8.16857i −0.308083 0.308083i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.48757 1.48757i −0.0559457 0.0559457i
\(708\) 0 0
\(709\) 30.9167i 1.16110i 0.814225 + 0.580550i \(0.197162\pi\)
−0.814225 + 0.580550i \(0.802838\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 17.0037 17.0037i 0.636795 0.636795i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 27.2125 1.01485 0.507427 0.861695i \(-0.330597\pi\)
0.507427 + 0.861695i \(0.330597\pi\)
\(720\) 0 0
\(721\) −6.84564 −0.254945
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −34.8717 + 34.8717i −1.29332 + 1.29332i −0.360602 + 0.932720i \(0.617429\pi\)
−0.932720 + 0.360602i \(0.882571\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.20737i 0.340547i
\(732\) 0 0
\(733\) −21.2879 21.2879i −0.786286 0.786286i 0.194597 0.980883i \(-0.437660\pi\)
−0.980883 + 0.194597i \(0.937660\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.57306 8.57306i −0.315793 0.315793i
\(738\) 0 0
\(739\) 2.04347i 0.0751701i −0.999293 0.0375851i \(-0.988033\pi\)
0.999293 0.0375851i \(-0.0119665\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.7619 + 14.7619i −0.541561 + 0.541561i −0.923986 0.382426i \(-0.875089\pi\)
0.382426 + 0.923986i \(0.375089\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.74038 −0.319366
\(750\) 0 0
\(751\) 14.1494 0.516320 0.258160 0.966102i \(-0.416884\pi\)
0.258160 + 0.966102i \(0.416884\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.4200 21.4200i 0.778523 0.778523i −0.201057 0.979580i \(-0.564438\pi\)
0.979580 + 0.201057i \(0.0644376\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.1834i 0.659146i −0.944130 0.329573i \(-0.893095\pi\)
0.944130 0.329573i \(-0.106905\pi\)
\(762\) 0 0
\(763\) −10.1360 10.1360i −0.366948 0.366948i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.5282 + 13.5282i 0.488473 + 0.488473i
\(768\) 0 0
\(769\) 16.3155i 0.588352i 0.955751 + 0.294176i \(0.0950452\pi\)
−0.955751 + 0.294176i \(0.904955\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.80152 2.80152i 0.100764 0.100764i −0.654928 0.755692i \(-0.727301\pi\)
0.755692 + 0.654928i \(0.227301\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.85486 0.102286
\(780\) 0 0
\(781\) 7.48708 0.267909
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −21.5728 + 21.5728i −0.768986 + 0.768986i −0.977928 0.208942i \(-0.932998\pi\)
0.208942 + 0.977928i \(0.432998\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.34643i 0.0478737i
\(792\) 0 0
\(793\) −18.9353 18.9353i −0.672411 0.672411i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25.7202 + 25.7202i 0.911057 + 0.911057i 0.996355 0.0852982i \(-0.0271843\pi\)
−0.0852982 + 0.996355i \(0.527184\pi\)
\(798\) 0 0
\(799\) 10.5760i 0.374152i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.13686 + 7.13686i −0.251854 + 0.251854i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.42491 −0.225888 −0.112944 0.993601i \(-0.536028\pi\)
−0.112944 + 0.993601i \(0.536028\pi\)
\(810\) 0 0
\(811\) −29.1628 −1.02405 −0.512023 0.858972i \(-0.671104\pi\)
−0.512023 + 0.858972i \(0.671104\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7.25894 7.25894i 0.253958 0.253958i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.9270i 1.18406i 0.805915 + 0.592031i \(0.201674\pi\)
−0.805915 + 0.592031i \(0.798326\pi\)
\(822\) 0 0
\(823\) 3.65350 + 3.65350i 0.127353 + 0.127353i 0.767910 0.640557i \(-0.221297\pi\)
−0.640557 + 0.767910i \(0.721297\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.73779 2.73779i −0.0952024 0.0952024i 0.657902 0.753104i \(-0.271444\pi\)
−0.753104 + 0.657902i \(0.771444\pi\)
\(828\) 0 0
\(829\) 11.3948i 0.395759i −0.980226 0.197880i \(-0.936594\pi\)
0.980226 0.197880i \(-0.0634055\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.50555 + 1.50555i −0.0521641 + 0.0521641i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 42.3828 1.46322 0.731608 0.681726i \(-0.238770\pi\)
0.731608 + 0.681726i \(0.238770\pi\)
\(840\) 0 0
\(841\) −28.6035 −0.986328
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.59511 5.59511i 0.192250 0.192250i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 28.6442i 0.981912i
\(852\) 0 0
\(853\) −18.5498 18.5498i −0.635132 0.635132i 0.314218 0.949351i \(-0.398258\pi\)
−0.949351 + 0.314218i \(0.898258\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.99915 + 2.99915i 0.102449 + 0.102449i 0.756473 0.654024i \(-0.226921\pi\)
−0.654024 + 0.756473i \(0.726921\pi\)
\(858\) 0 0
\(859\) 9.26686i 0.316181i 0.987425 + 0.158091i \(0.0505338\pi\)
−0.987425 + 0.158091i \(0.949466\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.0871 + 26.0871i −0.888014 + 0.888014i −0.994332 0.106318i \(-0.966094\pi\)
0.106318 + 0.994332i \(0.466094\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.62150 −0.0889284
\(870\) 0 0
\(871\) 12.2128 0.413816
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 18.0469 18.0469i 0.609400 0.609400i −0.333389 0.942789i \(-0.608192\pi\)
0.942789 + 0.333389i \(0.108192\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4.92641i 0.165975i 0.996551 + 0.0829875i \(0.0264461\pi\)
−0.996551 + 0.0829875i \(0.973554\pi\)
\(882\) 0 0
\(883\) −11.2048 11.2048i −0.377072 0.377072i 0.492973 0.870045i \(-0.335910\pi\)
−0.870045 + 0.492973i \(0.835910\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.59105 1.59105i −0.0534224 0.0534224i 0.679891 0.733313i \(-0.262027\pi\)
−0.733313 + 0.679891i \(0.762027\pi\)
\(888\) 0 0
\(889\) 15.3123i 0.513560i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.33794 8.33794i 0.279019 0.279019i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.57239 −0.0857940
\(900\) 0 0
\(901\) −19.1695 −0.638628
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −13.5776 + 13.5776i −0.450836 + 0.450836i −0.895632 0.444796i \(-0.853276\pi\)
0.444796 + 0.895632i \(0.353276\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 47.0735i 1.55961i −0.626020 0.779807i \(-0.715317\pi\)
0.626020 0.779807i \(-0.284683\pi\)
\(912\) 0 0
\(913\) 5.71756 + 5.71756i 0.189224 + 0.189224i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.53477 4.53477i −0.149751 0.149751i
\(918\) 0 0
\(919\) 34.5324i 1.13912i −0.821950 0.569560i \(-0.807114\pi\)
0.821950 0.569560i \(-0.192886\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.33290 + 5.33290i −0.175534 + 0.175534i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.6925 −0.416427 −0.208214 0.978083i \(-0.566765\pi\)
−0.208214 + 0.978083i \(0.566765\pi\)
\(930\) 0 0
\(931\) 2.37390 0.0778013
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −9.16625 + 9.16625i −0.299448 + 0.299448i −0.840798 0.541349i \(-0.817914\pi\)
0.541349 + 0.840798i \(0.317914\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 44.4401i 1.44871i 0.689430 + 0.724353i \(0.257861\pi\)
−0.689430 + 0.724353i \(0.742139\pi\)
\(942\) 0 0
\(943\) −5.00549 5.00549i −0.163001 0.163001i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.43877 4.43877i −0.144241 0.144241i 0.631299 0.775540i \(-0.282522\pi\)
−0.775540 + 0.631299i \(0.782522\pi\)
\(948\) 0 0
\(949\) 10.1669i 0.330031i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.98360 + 1.98360i −0.0642552 + 0.0642552i −0.738504 0.674249i \(-0.764467\pi\)
0.674249 + 0.738504i \(0.264467\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −19.9104 −0.642941
\(960\) 0 0
\(961\) −14.3105 −0.461629
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.18629 4.18629i 0.134622 0.134622i −0.636585 0.771207i \(-0.719653\pi\)
0.771207 + 0.636585i \(0.219653\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.6434i 0.502020i −0.967984 0.251010i \(-0.919237\pi\)
0.967984 0.251010i \(-0.0807628\pi\)
\(972\) 0 0
\(973\) 3.32972 + 3.32972i 0.106746 + 0.106746i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 43.9954 + 43.9954i 1.40754 + 1.40754i 0.772392 + 0.635146i \(0.219060\pi\)
0.635146 + 0.772392i \(0.280940\pi\)
\(978\) 0 0
\(979\) 12.7938i 0.408893i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.4449 + 16.4449i −0.524510 + 0.524510i −0.918930 0.394420i \(-0.870946\pi\)
0.394420 + 0.918930i \(0.370946\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −25.4545 −0.809405
\(990\) 0 0
\(991\) −54.9484 −1.74549 −0.872747 0.488172i \(-0.837664\pi\)
−0.872747 + 0.488172i \(0.837664\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −11.7296 + 11.7296i −0.371480 + 0.371480i −0.868016 0.496536i \(-0.834605\pi\)
0.496536 + 0.868016i \(0.334605\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.v.e.5993.6 12
3.2 odd 2 6300.2.v.f.5993.4 12
5.2 odd 4 6300.2.v.f.1457.6 12
5.3 odd 4 1260.2.v.a.197.1 12
5.4 even 2 1260.2.v.b.953.6 yes 12
15.2 even 4 inner 6300.2.v.e.1457.4 12
15.8 even 4 1260.2.v.b.197.6 yes 12
15.14 odd 2 1260.2.v.a.953.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.v.a.197.1 12 5.3 odd 4
1260.2.v.a.953.1 yes 12 15.14 odd 2
1260.2.v.b.197.6 yes 12 15.8 even 4
1260.2.v.b.953.6 yes 12 5.4 even 2
6300.2.v.e.1457.4 12 15.2 even 4 inner
6300.2.v.e.5993.6 12 1.1 even 1 trivial
6300.2.v.f.1457.6 12 5.2 odd 4
6300.2.v.f.5993.4 12 3.2 odd 2