Properties

Label 6300.2.ch.e.1601.6
Level $6300$
Weight $2$
Character 6300.1601
Analytic conductor $50.306$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6300,2,Mod(1601,6300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6300.1601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.ch (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 32 x^{18} - 124 x^{16} + 5094 x^{14} + 61094 x^{12} + 245850 x^{10} + 420152 x^{8} + \cdots + 15876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.6
Root \(-0.227585 - 0.209112i\) of defining polynomial
Character \(\chi\) \(=\) 6300.1601
Dual form 6300.2.ch.e.4301.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.651797 - 2.56421i) q^{7} +(0.362193 - 0.209112i) q^{11} -1.12703i q^{13} +(2.46721 + 4.27334i) q^{17} +(4.27648 + 2.46903i) q^{19} +(6.18653 + 3.57179i) q^{23} -4.95212i q^{29} +(-5.51945 + 3.18666i) q^{31} +(-4.42041 + 7.65637i) q^{37} +12.1871 q^{41} -6.05128 q^{43} +(3.85392 - 6.67519i) q^{47} +(-6.15032 - 3.34269i) q^{49} +(-8.93951 + 5.16123i) q^{53} +(0.569345 + 0.986135i) q^{59} +(10.9401 + 6.31629i) q^{61} +(5.14561 + 8.91246i) q^{67} +4.87068i q^{71} +(-4.00954 + 2.31491i) q^{73} +(-0.300131 - 1.06504i) q^{77} +(2.38171 - 4.12524i) q^{79} -12.1871 q^{83} +(-2.33261 + 4.04019i) q^{89} +(-2.88994 - 0.734595i) q^{91} -7.49558i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{7} + 6 q^{31} + 2 q^{37} - 20 q^{43} + 4 q^{49} + 6 q^{61} + 28 q^{67} - 6 q^{73} + 2 q^{79} - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.651797 2.56421i 0.246356 0.969179i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.362193 0.209112i 0.109205 0.0630497i −0.444403 0.895827i \(-0.646584\pi\)
0.553608 + 0.832778i \(0.313251\pi\)
\(12\) 0 0
\(13\) 1.12703i 0.312582i −0.987711 0.156291i \(-0.950046\pi\)
0.987711 0.156291i \(-0.0499538\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.46721 + 4.27334i 0.598387 + 1.03644i 0.993059 + 0.117615i \(0.0375248\pi\)
−0.394672 + 0.918822i \(0.629142\pi\)
\(18\) 0 0
\(19\) 4.27648 + 2.46903i 0.981091 + 0.566433i 0.902599 0.430481i \(-0.141656\pi\)
0.0784919 + 0.996915i \(0.474990\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.18653 + 3.57179i 1.28998 + 0.744771i 0.978651 0.205531i \(-0.0658923\pi\)
0.311330 + 0.950302i \(0.399226\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.95212i 0.919585i −0.888026 0.459793i \(-0.847924\pi\)
0.888026 0.459793i \(-0.152076\pi\)
\(30\) 0 0
\(31\) −5.51945 + 3.18666i −0.991323 + 0.572340i −0.905669 0.423985i \(-0.860631\pi\)
−0.0856532 + 0.996325i \(0.527298\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.42041 + 7.65637i −0.726711 + 1.25870i 0.231555 + 0.972822i \(0.425619\pi\)
−0.958266 + 0.285878i \(0.907715\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.1871 1.90331 0.951653 0.307176i \(-0.0993841\pi\)
0.951653 + 0.307176i \(0.0993841\pi\)
\(42\) 0 0
\(43\) −6.05128 −0.922811 −0.461406 0.887189i \(-0.652655\pi\)
−0.461406 + 0.887189i \(0.652655\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.85392 6.67519i 0.562152 0.973676i −0.435156 0.900355i \(-0.643307\pi\)
0.997308 0.0733214i \(-0.0233599\pi\)
\(48\) 0 0
\(49\) −6.15032 3.34269i −0.878617 0.477527i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.93951 + 5.16123i −1.22794 + 0.708950i −0.966598 0.256298i \(-0.917497\pi\)
−0.261339 + 0.965247i \(0.584164\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.569345 + 0.986135i 0.0741224 + 0.128384i 0.900704 0.434433i \(-0.143051\pi\)
−0.826582 + 0.562816i \(0.809718\pi\)
\(60\) 0 0
\(61\) 10.9401 + 6.31629i 1.40074 + 0.808719i 0.994469 0.105033i \(-0.0334948\pi\)
0.406273 + 0.913752i \(0.366828\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.14561 + 8.91246i 0.628636 + 1.08883i 0.987826 + 0.155565i \(0.0497198\pi\)
−0.359190 + 0.933265i \(0.616947\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.87068i 0.578043i 0.957323 + 0.289022i \(0.0933299\pi\)
−0.957323 + 0.289022i \(0.906670\pi\)
\(72\) 0 0
\(73\) −4.00954 + 2.31491i −0.469281 + 0.270940i −0.715939 0.698163i \(-0.754001\pi\)
0.246657 + 0.969103i \(0.420668\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.300131 1.06504i −0.0342031 0.121372i
\(78\) 0 0
\(79\) 2.38171 4.12524i 0.267963 0.464126i −0.700373 0.713777i \(-0.746983\pi\)
0.968336 + 0.249652i \(0.0803161\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.1871 −1.33771 −0.668854 0.743394i \(-0.733215\pi\)
−0.668854 + 0.743394i \(0.733215\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.33261 + 4.04019i −0.247256 + 0.428260i −0.962763 0.270345i \(-0.912862\pi\)
0.715508 + 0.698605i \(0.246195\pi\)
\(90\) 0 0
\(91\) −2.88994 0.734595i −0.302948 0.0770065i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.49558i 0.761061i −0.924768 0.380531i \(-0.875741\pi\)
0.924768 0.380531i \(-0.124259\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.66219 2.87900i −0.165394 0.286471i 0.771401 0.636349i \(-0.219556\pi\)
−0.936795 + 0.349878i \(0.886223\pi\)
\(102\) 0 0
\(103\) 0.913253 + 0.527267i 0.0899855 + 0.0519532i 0.544318 0.838879i \(-0.316789\pi\)
−0.454332 + 0.890832i \(0.650122\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.0683306 0.0394507i −0.00660577 0.00381384i 0.496693 0.867926i \(-0.334547\pi\)
−0.503299 + 0.864112i \(0.667881\pi\)
\(108\) 0 0
\(109\) 4.94437 + 8.56391i 0.473585 + 0.820273i 0.999543 0.0302374i \(-0.00962633\pi\)
−0.525958 + 0.850511i \(0.676293\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.67921i 0.252039i −0.992028 0.126019i \(-0.959780\pi\)
0.992028 0.126019i \(-0.0402202\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.5659 3.54110i 1.15191 0.324612i
\(120\) 0 0
\(121\) −5.41254 + 9.37480i −0.492049 + 0.852255i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.37526 0.831920 0.415960 0.909383i \(-0.363446\pi\)
0.415960 + 0.909383i \(0.363446\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.7363 18.5958i 0.938036 1.62473i 0.168908 0.985632i \(-0.445976\pi\)
0.769128 0.639094i \(-0.220691\pi\)
\(132\) 0 0
\(133\) 9.11849 9.35647i 0.790673 0.811309i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.4767 8.93547i 1.32226 0.763409i 0.338174 0.941084i \(-0.390191\pi\)
0.984089 + 0.177675i \(0.0568575\pi\)
\(138\) 0 0
\(139\) 6.19154i 0.525160i 0.964910 + 0.262580i \(0.0845733\pi\)
−0.964910 + 0.262580i \(0.915427\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.235676 0.408202i −0.0197082 0.0341356i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.561255 0.324041i −0.0459798 0.0265465i 0.476834 0.878993i \(-0.341784\pi\)
−0.522814 + 0.852447i \(0.675118\pi\)
\(150\) 0 0
\(151\) 7.05844 + 12.2256i 0.574407 + 0.994903i 0.996106 + 0.0881666i \(0.0281008\pi\)
−0.421698 + 0.906736i \(0.638566\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.19873 + 3.00149i −0.414904 + 0.239545i −0.692895 0.721039i \(-0.743665\pi\)
0.277991 + 0.960584i \(0.410332\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.1912 13.5355i 1.03961 1.06674i
\(162\) 0 0
\(163\) 7.16338 12.4073i 0.561079 0.971818i −0.436323 0.899790i \(-0.643720\pi\)
0.997403 0.0720280i \(-0.0229471\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.6425 0.823544 0.411772 0.911287i \(-0.364910\pi\)
0.411772 + 0.911287i \(0.364910\pi\)
\(168\) 0 0
\(169\) 11.7298 0.902293
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.15899 + 3.73948i −0.164145 + 0.284308i −0.936351 0.351064i \(-0.885820\pi\)
0.772206 + 0.635372i \(0.219153\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.8816 9.74662i 1.26179 0.728496i 0.288372 0.957519i \(-0.406886\pi\)
0.973421 + 0.229022i \(0.0735528\pi\)
\(180\) 0 0
\(181\) 5.30351i 0.394206i 0.980383 + 0.197103i \(0.0631534\pi\)
−0.980383 + 0.197103i \(0.936847\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.78721 + 1.03185i 0.130694 + 0.0754562i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.5745 + 10.7240i 1.34400 + 0.775961i 0.987392 0.158291i \(-0.0505984\pi\)
0.356612 + 0.934253i \(0.383932\pi\)
\(192\) 0 0
\(193\) −9.78531 16.9487i −0.704362 1.21999i −0.966921 0.255075i \(-0.917900\pi\)
0.262559 0.964916i \(-0.415434\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.33697i 0.380244i 0.981761 + 0.190122i \(0.0608883\pi\)
−0.981761 + 0.190122i \(0.939112\pi\)
\(198\) 0 0
\(199\) −20.9563 + 12.0991i −1.48555 + 0.857683i −0.999865 0.0164499i \(-0.994764\pi\)
−0.485686 + 0.874133i \(0.661430\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.6983 3.22778i −0.891243 0.226546i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.06521 0.142854
\(210\) 0 0
\(211\) 18.6200 1.28185 0.640926 0.767603i \(-0.278551\pi\)
0.640926 + 0.767603i \(0.278551\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.57368 + 16.2301i 0.310482 + 1.10177i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.81618 2.78062i 0.323972 0.187045i
\(222\) 0 0
\(223\) 5.73344i 0.383939i −0.981401 0.191970i \(-0.938512\pi\)
0.981401 0.191970i \(-0.0614875\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.59091 4.48759i −0.171965 0.297852i 0.767142 0.641478i \(-0.221678\pi\)
−0.939107 + 0.343626i \(0.888345\pi\)
\(228\) 0 0
\(229\) −7.74178 4.46972i −0.511591 0.295367i 0.221896 0.975070i \(-0.428775\pi\)
−0.733487 + 0.679703i \(0.762109\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.4724 11.8197i −1.34119 0.774337i −0.354208 0.935167i \(-0.615250\pi\)
−0.986982 + 0.160830i \(0.948583\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.6720i 0.949055i 0.880241 + 0.474527i \(0.157381\pi\)
−0.880241 + 0.474527i \(0.842619\pi\)
\(240\) 0 0
\(241\) 15.1765 8.76217i 0.977606 0.564421i 0.0760595 0.997103i \(-0.475766\pi\)
0.901547 + 0.432682i \(0.142433\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.78267 4.81972i 0.177057 0.306671i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.8640 1.00132 0.500662 0.865643i \(-0.333090\pi\)
0.500662 + 0.865643i \(0.333090\pi\)
\(252\) 0 0
\(253\) 2.98762 0.187830
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.59575 + 4.49596i −0.161918 + 0.280451i −0.935557 0.353177i \(-0.885101\pi\)
0.773638 + 0.633627i \(0.218435\pi\)
\(258\) 0 0
\(259\) 16.7513 + 16.3253i 1.04088 + 1.01440i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.12333 2.38061i 0.254255 0.146794i −0.367456 0.930041i \(-0.619771\pi\)
0.621711 + 0.783247i \(0.286438\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.41706 + 9.38263i 0.330284 + 0.572069i 0.982567 0.185906i \(-0.0595221\pi\)
−0.652283 + 0.757975i \(0.726189\pi\)
\(270\) 0 0
\(271\) 0.474762 + 0.274104i 0.0288397 + 0.0166506i 0.514351 0.857580i \(-0.328033\pi\)
−0.485511 + 0.874231i \(0.661366\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.35922 + 4.08629i 0.141752 + 0.245522i 0.928156 0.372190i \(-0.121393\pi\)
−0.786405 + 0.617712i \(0.788060\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 31.5915i 1.88459i −0.334784 0.942295i \(-0.608663\pi\)
0.334784 0.942295i \(-0.391337\pi\)
\(282\) 0 0
\(283\) −0.289624 + 0.167214i −0.0172164 + 0.00993987i −0.508583 0.861013i \(-0.669831\pi\)
0.491367 + 0.870953i \(0.336497\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.94352 31.2503i 0.468891 1.84464i
\(288\) 0 0
\(289\) −3.67428 + 6.36405i −0.216134 + 0.374356i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.6272 −1.43874 −0.719369 0.694628i \(-0.755569\pi\)
−0.719369 + 0.694628i \(0.755569\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.02552 6.97241i 0.232802 0.403225i
\(300\) 0 0
\(301\) −3.94421 + 15.5167i −0.227340 + 0.894370i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.0923i 1.31795i 0.752167 + 0.658973i \(0.229009\pi\)
−0.752167 + 0.658973i \(0.770991\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.167345 + 0.289850i 0.00948927 + 0.0164359i 0.870731 0.491760i \(-0.163646\pi\)
−0.861242 + 0.508195i \(0.830313\pi\)
\(312\) 0 0
\(313\) −10.3133 5.95439i −0.582942 0.336562i 0.179360 0.983784i \(-0.442597\pi\)
−0.762302 + 0.647222i \(0.775931\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.8665 + 9.73787i 0.947316 + 0.546933i 0.892246 0.451550i \(-0.149129\pi\)
0.0550697 + 0.998483i \(0.482462\pi\)
\(318\) 0 0
\(319\) −1.03555 1.79362i −0.0579796 0.100424i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.3665i 1.35579i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −14.6046 14.2331i −0.805177 0.784698i
\(330\) 0 0
\(331\) −12.0359 + 20.8467i −0.661551 + 1.14584i 0.318657 + 0.947870i \(0.396768\pi\)
−0.980208 + 0.197970i \(0.936565\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.09864 −0.168794 −0.0843968 0.996432i \(-0.526896\pi\)
−0.0843968 + 0.996432i \(0.526896\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.33274 + 2.30837i −0.0721718 + 0.125005i
\(342\) 0 0
\(343\) −12.5801 + 13.5919i −0.679262 + 0.733896i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.9251 12.0811i 1.12332 0.648548i 0.181072 0.983470i \(-0.442043\pi\)
0.942246 + 0.334922i \(0.108710\pi\)
\(348\) 0 0
\(349\) 17.6656i 0.945619i −0.881165 0.472810i \(-0.843240\pi\)
0.881165 0.472810i \(-0.156760\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.64565 + 14.9747i 0.460162 + 0.797023i 0.998969 0.0454060i \(-0.0144581\pi\)
−0.538807 + 0.842429i \(0.681125\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.44547 + 4.29864i 0.392957 + 0.226874i 0.683440 0.730006i \(-0.260483\pi\)
−0.290484 + 0.956880i \(0.593816\pi\)
\(360\) 0 0
\(361\) 2.69218 + 4.66299i 0.141693 + 0.245420i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −12.1984 + 7.04273i −0.636749 + 0.367627i −0.783361 0.621567i \(-0.786497\pi\)
0.146612 + 0.989194i \(0.453163\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.40771 + 26.2868i 0.384589 + 1.36475i
\(372\) 0 0
\(373\) −4.65651 + 8.06531i −0.241105 + 0.417606i −0.961029 0.276447i \(-0.910843\pi\)
0.719924 + 0.694053i \(0.244176\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.58119 −0.287446
\(378\) 0 0
\(379\) −10.1796 −0.522893 −0.261446 0.965218i \(-0.584199\pi\)
−0.261446 + 0.965218i \(0.584199\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.37425 + 16.2367i −0.479002 + 0.829656i −0.999710 0.0240791i \(-0.992335\pi\)
0.520708 + 0.853735i \(0.325668\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.245202 + 0.141567i −0.0124322 + 0.00717774i −0.506203 0.862414i \(-0.668951\pi\)
0.493771 + 0.869592i \(0.335618\pi\)
\(390\) 0 0
\(391\) 35.2495i 1.78264i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.24390 + 4.75962i 0.413750 + 0.238878i 0.692400 0.721514i \(-0.256554\pi\)
−0.278650 + 0.960393i \(0.589887\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.39612 + 3.69280i 0.319407 + 0.184410i 0.651128 0.758968i \(-0.274296\pi\)
−0.331721 + 0.943377i \(0.607629\pi\)
\(402\) 0 0
\(403\) 3.59146 + 6.22059i 0.178903 + 0.309870i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.69745i 0.183276i
\(408\) 0 0
\(409\) 27.2122 15.7110i 1.34556 0.776857i 0.357940 0.933745i \(-0.383479\pi\)
0.987616 + 0.156887i \(0.0501460\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.89975 0.817159i 0.142687 0.0402098i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.3040 0.649942 0.324971 0.945724i \(-0.394645\pi\)
0.324971 + 0.945724i \(0.394645\pi\)
\(420\) 0 0
\(421\) −11.2491 −0.548249 −0.274124 0.961694i \(-0.588388\pi\)
−0.274124 + 0.961694i \(0.588388\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 23.3270 23.9359i 1.12887 1.15834i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.2897 19.2198i 1.60351 0.925786i 0.612730 0.790292i \(-0.290071\pi\)
0.990778 0.135494i \(-0.0432622\pi\)
\(432\) 0 0
\(433\) 19.2100i 0.923176i −0.887095 0.461588i \(-0.847280\pi\)
0.887095 0.461588i \(-0.152720\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.6377 + 30.5494i 0.843726 + 1.46138i
\(438\) 0 0
\(439\) 1.43555 + 0.828815i 0.0685151 + 0.0395572i 0.533866 0.845569i \(-0.320739\pi\)
−0.465351 + 0.885126i \(0.654072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.8422 10.3012i −0.847710 0.489426i 0.0121675 0.999926i \(-0.496127\pi\)
−0.859878 + 0.510500i \(0.829460\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.8309i 1.21904i −0.792772 0.609519i \(-0.791363\pi\)
0.792772 0.609519i \(-0.208637\pi\)
\(450\) 0 0
\(451\) 4.41408 2.54847i 0.207851 0.120003i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.28542 3.95846i 0.106907 0.185169i −0.807609 0.589719i \(-0.799238\pi\)
0.914516 + 0.404550i \(0.132572\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.8927 1.39224 0.696121 0.717924i \(-0.254908\pi\)
0.696121 + 0.717924i \(0.254908\pi\)
\(462\) 0 0
\(463\) −8.44194 −0.392330 −0.196165 0.980571i \(-0.562849\pi\)
−0.196165 + 0.980571i \(0.562849\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.99480 + 6.91919i −0.184857 + 0.320182i −0.943528 0.331292i \(-0.892516\pi\)
0.758671 + 0.651474i \(0.225849\pi\)
\(468\) 0 0
\(469\) 26.2073 7.38529i 1.21014 0.341021i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.19173 + 1.26540i −0.100776 + 0.0581830i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.82985 + 17.0258i 0.449137 + 0.777928i 0.998330 0.0577672i \(-0.0183981\pi\)
−0.549193 + 0.835696i \(0.685065\pi\)
\(480\) 0 0
\(481\) 8.62897 + 4.98194i 0.393447 + 0.227157i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 13.1510 + 22.7781i 0.595927 + 1.03218i 0.993415 + 0.114569i \(0.0365487\pi\)
−0.397488 + 0.917607i \(0.630118\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.03367i 0.0917781i 0.998947 + 0.0458890i \(0.0146121\pi\)
−0.998947 + 0.0458890i \(0.985388\pi\)
\(492\) 0 0
\(493\) 21.1621 12.2179i 0.953092 0.550268i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.4894 + 3.17470i 0.560227 + 0.142405i
\(498\) 0 0
\(499\) −13.4706 + 23.3318i −0.603027 + 1.04447i 0.389332 + 0.921097i \(0.372706\pi\)
−0.992360 + 0.123377i \(0.960628\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.4310 1.80273 0.901365 0.433060i \(-0.142566\pi\)
0.901365 + 0.433060i \(0.142566\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.7258 28.9699i 0.741358 1.28407i −0.210519 0.977590i \(-0.567515\pi\)
0.951877 0.306480i \(-0.0991512\pi\)
\(510\) 0 0
\(511\) 3.32250 + 11.7902i 0.146979 + 0.521566i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.22361i 0.141774i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.88232 4.99232i −0.126277 0.218718i 0.795955 0.605356i \(-0.206969\pi\)
−0.922231 + 0.386639i \(0.873636\pi\)
\(522\) 0 0
\(523\) −24.9506 14.4052i −1.09101 0.629896i −0.157166 0.987572i \(-0.550236\pi\)
−0.933846 + 0.357676i \(0.883569\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −27.2353 15.7243i −1.18639 0.684962i
\(528\) 0 0
\(529\) 14.0154 + 24.2754i 0.609366 + 1.05545i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 13.7352i 0.594939i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.92660 + 0.0754091i −0.126058 + 0.00324810i
\(540\) 0 0
\(541\) 14.2209 24.6313i 0.611404 1.05898i −0.379600 0.925151i \(-0.623939\pi\)
0.991004 0.133832i \(-0.0427281\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.3927 −1.51328 −0.756641 0.653831i \(-0.773161\pi\)
−0.756641 + 0.653831i \(0.773161\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.2269 21.1776i 0.520884 0.902197i
\(552\) 0 0
\(553\) −9.02558 8.79601i −0.383807 0.374045i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.2847 22.1037i 1.62218 0.936564i 0.635839 0.771821i \(-0.280654\pi\)
0.986337 0.164742i \(-0.0526793\pi\)
\(558\) 0 0
\(559\) 6.81998i 0.288454i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.11680 + 10.5946i 0.257792 + 0.446510i 0.965650 0.259845i \(-0.0836716\pi\)
−0.707858 + 0.706355i \(0.750338\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.8992 17.2623i −1.25344 0.723674i −0.281649 0.959518i \(-0.590881\pi\)
−0.971791 + 0.235844i \(0.924215\pi\)
\(570\) 0 0
\(571\) −19.9367 34.5314i −0.834325 1.44509i −0.894579 0.446911i \(-0.852524\pi\)
0.0602534 0.998183i \(-0.480809\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.2980 + 14.0285i −1.01154 + 0.584013i −0.911642 0.410985i \(-0.865185\pi\)
−0.0998980 + 0.994998i \(0.531852\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.94352 + 31.2503i −0.329553 + 1.29648i
\(582\) 0 0
\(583\) −2.15855 + 3.73872i −0.0893981 + 0.154842i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −43.6793 −1.80284 −0.901419 0.432948i \(-0.857473\pi\)
−0.901419 + 0.432948i \(0.857473\pi\)
\(588\) 0 0
\(589\) −31.4717 −1.29677
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.4300 + 19.7973i −0.469373 + 0.812978i −0.999387 0.0350112i \(-0.988853\pi\)
0.530014 + 0.847989i \(0.322187\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.4810 6.05121i 0.428242 0.247246i −0.270355 0.962761i \(-0.587141\pi\)
0.698598 + 0.715515i \(0.253808\pi\)
\(600\) 0 0
\(601\) 17.2909i 0.705312i 0.935753 + 0.352656i \(0.114721\pi\)
−0.935753 + 0.352656i \(0.885279\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −11.3538 6.55511i −0.460836 0.266064i 0.251560 0.967842i \(-0.419057\pi\)
−0.712396 + 0.701778i \(0.752390\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.52314 4.34349i −0.304354 0.175719i
\(612\) 0 0
\(613\) 19.0721 + 33.0339i 0.770316 + 1.33423i 0.937390 + 0.348282i \(0.113235\pi\)
−0.167074 + 0.985944i \(0.553432\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 37.4629i 1.50820i −0.656760 0.754100i \(-0.728074\pi\)
0.656760 0.754100i \(-0.271926\pi\)
\(618\) 0 0
\(619\) −5.81733 + 3.35864i −0.233818 + 0.134995i −0.612332 0.790601i \(-0.709769\pi\)
0.378514 + 0.925596i \(0.376435\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.83950 + 8.61467i 0.354147 + 0.345140i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −43.6244 −1.73942
\(630\) 0 0
\(631\) −16.5402 −0.658457 −0.329228 0.944250i \(-0.606789\pi\)
−0.329228 + 0.944250i \(0.606789\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.76731 + 6.93160i −0.149266 + 0.274640i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −25.9232 + 14.9668i −1.02391 + 0.591152i −0.915233 0.402926i \(-0.867993\pi\)
−0.108673 + 0.994078i \(0.534660\pi\)
\(642\) 0 0
\(643\) 4.14597i 0.163501i −0.996653 0.0817505i \(-0.973949\pi\)
0.996653 0.0817505i \(-0.0260511\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.1476 + 41.8249i 0.949341 + 1.64431i 0.746818 + 0.665028i \(0.231581\pi\)
0.202523 + 0.979278i \(0.435086\pi\)
\(648\) 0 0
\(649\) 0.412426 + 0.238114i 0.0161891 + 0.00934679i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.29871 + 4.21391i 0.285621 + 0.164903i 0.635965 0.771718i \(-0.280602\pi\)
−0.350345 + 0.936621i \(0.613936\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.5542i 1.11231i 0.831078 + 0.556156i \(0.187724\pi\)
−0.831078 + 0.556156i \(0.812276\pi\)
\(660\) 0 0
\(661\) 1.75859 1.01532i 0.0684011 0.0394914i −0.465409 0.885096i \(-0.654093\pi\)
0.533811 + 0.845604i \(0.320760\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 17.6879 30.6364i 0.684880 1.18625i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.28326 0.203958
\(672\) 0 0
\(673\) 32.4749 1.25181 0.625907 0.779898i \(-0.284729\pi\)
0.625907 + 0.779898i \(0.284729\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.61071 + 4.52189i −0.100338 + 0.173790i −0.911824 0.410582i \(-0.865326\pi\)
0.811486 + 0.584372i \(0.198659\pi\)
\(678\) 0 0
\(679\) −19.2202 4.88560i −0.737605 0.187492i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0769 6.97259i 0.462109 0.266799i −0.250822 0.968033i \(-0.580701\pi\)
0.712931 + 0.701235i \(0.247367\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.81686 + 10.0751i 0.221605 + 0.383831i
\(690\) 0 0
\(691\) 17.3513 + 10.0178i 0.660074 + 0.381094i 0.792305 0.610125i \(-0.208881\pi\)
−0.132231 + 0.991219i \(0.542214\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 30.0682 + 52.0796i 1.13891 + 1.97266i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0256i 0.378663i 0.981913 + 0.189331i \(0.0606320\pi\)
−0.981913 + 0.189331i \(0.939368\pi\)
\(702\) 0 0
\(703\) −37.8076 + 21.8282i −1.42594 + 0.823267i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.46577 + 2.38568i −0.318388 + 0.0897227i
\(708\) 0 0
\(709\) 18.5575 32.1426i 0.696942 1.20714i −0.272579 0.962133i \(-0.587877\pi\)
0.969521 0.245006i \(-0.0787901\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −45.5283 −1.70505
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.7712 + 34.2448i −0.737343 + 1.27712i 0.216345 + 0.976317i \(0.430587\pi\)
−0.953688 + 0.300799i \(0.902747\pi\)
\(720\) 0 0
\(721\) 1.94728 1.99810i 0.0725204 0.0744131i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 39.5032i 1.46509i −0.680716 0.732547i \(-0.738331\pi\)
0.680716 0.732547i \(-0.261669\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14.9298 25.8592i −0.552198 0.956436i
\(732\) 0 0
\(733\) −18.1224 10.4629i −0.669364 0.386458i 0.126471 0.991970i \(-0.459635\pi\)
−0.795836 + 0.605513i \(0.792968\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.72741 + 2.15202i 0.137301 + 0.0792706i
\(738\) 0 0
\(739\) −3.48447 6.03528i −0.128178 0.222011i 0.794793 0.606881i \(-0.207580\pi\)
−0.922971 + 0.384870i \(0.874246\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.79105i 0.139080i 0.997579 + 0.0695400i \(0.0221531\pi\)
−0.997579 + 0.0695400i \(0.977847\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.145698 + 0.149500i −0.00532367 + 0.00546261i
\(750\) 0 0
\(751\) 9.37773 16.2427i 0.342198 0.592704i −0.642643 0.766166i \(-0.722162\pi\)
0.984841 + 0.173462i \(0.0554953\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 13.0853 0.475593 0.237797 0.971315i \(-0.423575\pi\)
0.237797 + 0.971315i \(0.423575\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.2391 17.7347i 0.371168 0.642883i −0.618577 0.785724i \(-0.712291\pi\)
0.989746 + 0.142842i \(0.0456239\pi\)
\(762\) 0 0
\(763\) 25.1824 7.09647i 0.911663 0.256909i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.11140 0.641669i 0.0401305 0.0231693i
\(768\) 0 0
\(769\) 5.99525i 0.216194i −0.994140 0.108097i \(-0.965524\pi\)
0.994140 0.108097i \(-0.0344757\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.2390 43.7153i −0.907785 1.57233i −0.817134 0.576447i \(-0.804439\pi\)
−0.0906507 0.995883i \(-0.528895\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 52.1179 + 30.0903i 1.86732 + 1.07810i
\(780\) 0 0
\(781\) 1.01852 + 1.76412i 0.0364454 + 0.0631254i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.7676 8.52605i 0.526407 0.303921i −0.213145 0.977020i \(-0.568371\pi\)
0.739552 + 0.673100i \(0.235037\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.87005 1.74630i −0.244271 0.0620913i
\(792\) 0 0
\(793\) 7.11866 12.3299i 0.252791 0.437847i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.3352 −0.543200 −0.271600 0.962410i \(-0.587553\pi\)
−0.271600 + 0.962410i \(0.587553\pi\)
\(798\) 0 0
\(799\) 38.0338 1.34554
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.968152 + 1.67689i −0.0341653 + 0.0591761i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 44.7050 25.8105i 1.57175 0.907448i 0.575790 0.817598i \(-0.304695\pi\)
0.995955 0.0898500i \(-0.0286388\pi\)
\(810\) 0 0
\(811\) 16.3629i 0.574580i 0.957844 + 0.287290i \(0.0927544\pi\)
−0.957844 + 0.287290i \(0.907246\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −25.8782 14.9408i −0.905362 0.522711i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.96116 1.70963i −0.103345 0.0596663i 0.447437 0.894316i \(-0.352337\pi\)
−0.550782 + 0.834649i \(0.685670\pi\)
\(822\) 0 0
\(823\) 4.36601 + 7.56215i 0.152190 + 0.263600i 0.932032 0.362376i \(-0.118034\pi\)
−0.779843 + 0.625976i \(0.784701\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.46966i 0.0858786i 0.999078 + 0.0429393i \(0.0136722\pi\)
−0.999078 + 0.0429393i \(0.986328\pi\)
\(828\) 0 0
\(829\) −37.0486 + 21.3900i −1.28675 + 0.742905i −0.978073 0.208261i \(-0.933220\pi\)
−0.308677 + 0.951167i \(0.599886\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.889715 34.5295i −0.0308268 1.19638i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.3279 −0.563703 −0.281852 0.959458i \(-0.590949\pi\)
−0.281852 + 0.959458i \(0.590949\pi\)
\(840\) 0 0
\(841\) 4.47652 0.154363
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 20.5111 + 19.9894i 0.704768 + 0.686842i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −54.6940 + 31.5776i −1.87489 + 1.08247i
\(852\) 0 0
\(853\) 19.2402i 0.658772i −0.944195 0.329386i \(-0.893158\pi\)
0.944195 0.329386i \(-0.106842\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.58903 + 14.8766i 0.293396 + 0.508176i 0.974610 0.223907i \(-0.0718813\pi\)
−0.681215 + 0.732084i \(0.738548\pi\)
\(858\) 0 0
\(859\) −23.7587 13.7171i −0.810637 0.468021i 0.0365401 0.999332i \(-0.488366\pi\)
−0.847177 + 0.531311i \(0.821700\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.36663 1.94373i −0.114601 0.0661652i 0.441604 0.897210i \(-0.354410\pi\)
−0.556205 + 0.831045i \(0.687743\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.99218i 0.0675799i
\(870\) 0 0
\(871\) 10.0446 5.79926i 0.340349 0.196500i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.71537 + 11.6314i −0.226762 + 0.392763i −0.956847 0.290593i \(-0.906147\pi\)
0.730085 + 0.683357i \(0.239481\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33.0947 −1.11499 −0.557494 0.830181i \(-0.688237\pi\)
−0.557494 + 0.830181i \(0.688237\pi\)
\(882\) 0 0
\(883\) −8.30489 −0.279482 −0.139741 0.990188i \(-0.544627\pi\)
−0.139741 + 0.990188i \(0.544627\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.0972 + 17.4889i −0.339032 + 0.587221i −0.984251 0.176777i \(-0.943433\pi\)
0.645219 + 0.763998i \(0.276766\pi\)
\(888\) 0 0
\(889\) 6.11077 24.0401i 0.204949 0.806279i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 32.9624 19.0309i 1.10305 0.636844i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.7807 + 27.3330i 0.526316 + 0.911606i
\(900\) 0 0
\(901\) −44.1114 25.4677i −1.46956 0.848453i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −21.0211 36.4096i −0.697994 1.20896i −0.969161 0.246429i \(-0.920743\pi\)
0.271167 0.962532i \(-0.412591\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.92004i 0.262403i −0.991356 0.131201i \(-0.958117\pi\)
0.991356 0.131201i \(-0.0418834\pi\)
\(912\) 0 0
\(913\) −4.41408 + 2.54847i −0.146085 + 0.0843421i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −40.6857 39.6509i −1.34356 1.30939i
\(918\) 0 0
\(919\) 1.93406 3.34989i 0.0637988 0.110503i −0.832362 0.554233i \(-0.813012\pi\)
0.896161 + 0.443730i \(0.146345\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.48940 0.180686
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.7260 + 30.7024i −0.581573 + 1.00731i 0.413721 + 0.910404i \(0.364229\pi\)
−0.995293 + 0.0969093i \(0.969104\pi\)
\(930\) 0 0
\(931\) −18.0485 29.4802i −0.591517 0.966175i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.8730i 1.26992i −0.772543 0.634962i \(-0.781016\pi\)
0.772543 0.634962i \(-0.218984\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27.5251 47.6749i −0.897294 1.55416i −0.830940 0.556362i \(-0.812197\pi\)
−0.0663534 0.997796i \(-0.521136\pi\)
\(942\) 0 0
\(943\) 75.3958 + 43.5298i 2.45523 + 1.41753i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.3059 12.3009i −0.692347 0.399727i 0.112143 0.993692i \(-0.464228\pi\)
−0.804491 + 0.593965i \(0.797562\pi\)
\(948\) 0 0
\(949\) 2.60897 + 4.51888i 0.0846909 + 0.146689i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.3661i 0.465363i −0.972553 0.232681i \(-0.925250\pi\)
0.972553 0.232681i \(-0.0747499\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.8247 45.5096i −0.414132 1.46958i
\(960\) 0 0
\(961\) 4.80956 8.33040i 0.155147 0.268723i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 19.5923 0.630045 0.315022 0.949084i \(-0.397988\pi\)
0.315022 + 0.949084i \(0.397988\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.4512 + 35.4225i −0.656310 + 1.13676i 0.325254 + 0.945627i \(0.394550\pi\)
−0.981564 + 0.191135i \(0.938783\pi\)
\(972\) 0 0
\(973\) 15.8764 + 4.03563i 0.508974 + 0.129376i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.4860 10.6729i 0.591418 0.341456i −0.174240 0.984703i \(-0.555747\pi\)
0.765658 + 0.643248i \(0.222413\pi\)
\(978\) 0 0
\(979\) 1.95111i 0.0623576i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 21.4069 + 37.0779i 0.682775 + 1.18260i 0.974131 + 0.225986i \(0.0725604\pi\)
−0.291355 + 0.956615i \(0.594106\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −37.4364 21.6139i −1.19041 0.687283i
\(990\) 0 0
\(991\) −0.0478801 0.0829308i −0.00152096 0.00263438i 0.865264 0.501317i \(-0.167151\pi\)
−0.866785 + 0.498682i \(0.833817\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −51.6419 + 29.8154i −1.63551 + 0.944265i −0.653164 + 0.757217i \(0.726559\pi\)
−0.982351 + 0.187048i \(0.940108\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.ch.e.1601.6 yes 20
3.2 odd 2 inner 6300.2.ch.e.1601.5 yes 20
5.2 odd 4 6300.2.dd.d.1349.20 40
5.3 odd 4 6300.2.dd.d.1349.2 40
5.4 even 2 6300.2.ch.d.1601.6 yes 20
7.3 odd 6 inner 6300.2.ch.e.4301.5 yes 20
15.2 even 4 6300.2.dd.d.1349.19 40
15.8 even 4 6300.2.dd.d.1349.1 40
15.14 odd 2 6300.2.ch.d.1601.5 20
21.17 even 6 inner 6300.2.ch.e.4301.6 yes 20
35.3 even 12 6300.2.dd.d.4049.20 40
35.17 even 12 6300.2.dd.d.4049.2 40
35.24 odd 6 6300.2.ch.d.4301.5 yes 20
105.17 odd 12 6300.2.dd.d.4049.1 40
105.38 odd 12 6300.2.dd.d.4049.19 40
105.59 even 6 6300.2.ch.d.4301.6 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6300.2.ch.d.1601.5 20 15.14 odd 2
6300.2.ch.d.1601.6 yes 20 5.4 even 2
6300.2.ch.d.4301.5 yes 20 35.24 odd 6
6300.2.ch.d.4301.6 yes 20 105.59 even 6
6300.2.ch.e.1601.5 yes 20 3.2 odd 2 inner
6300.2.ch.e.1601.6 yes 20 1.1 even 1 trivial
6300.2.ch.e.4301.5 yes 20 7.3 odd 6 inner
6300.2.ch.e.4301.6 yes 20 21.17 even 6 inner
6300.2.dd.d.1349.1 40 15.8 even 4
6300.2.dd.d.1349.2 40 5.3 odd 4
6300.2.dd.d.1349.19 40 15.2 even 4
6300.2.dd.d.1349.20 40 5.2 odd 4
6300.2.dd.d.4049.1 40 105.17 odd 12
6300.2.dd.d.4049.2 40 35.17 even 12
6300.2.dd.d.4049.19 40 105.38 odd 12
6300.2.dd.d.4049.20 40 35.3 even 12