Properties

Label 6300.2.ch.e.1601.1
Level $6300$
Weight $2$
Character 6300.1601
Analytic conductor $50.306$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6300,2,Mod(1601,6300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6300.1601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.ch (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 32 x^{18} - 124 x^{16} + 5094 x^{14} + 61094 x^{12} + 245850 x^{10} + 420152 x^{8} + \cdots + 15876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.1
Root \(4.99853 + 0.314967i\) of defining polynomial
Character \(\chi\) \(=\) 6300.1601
Dual form 6300.2.ch.e.4301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.37152 - 1.17299i) q^{7} +(-0.545538 + 0.314967i) q^{11} -3.17384i q^{13} +(-0.0398515 - 0.0690248i) q^{17} +(-3.42210 - 1.97575i) q^{19} +(-7.83251 - 4.52210i) q^{23} +0.634956i q^{29} +(-1.15101 + 0.664538i) q^{31} +(0.996014 - 1.72515i) q^{37} +3.23801 q^{41} +5.39522 q^{43} +(-3.33967 + 5.78448i) q^{47} +(4.24819 + 5.56353i) q^{49} +(1.64531 - 0.949922i) q^{53} +(7.24278 + 12.5449i) q^{59} +(-6.68049 - 3.85698i) q^{61} +(3.47711 + 6.02252i) q^{67} +5.78534i q^{71} +(5.24659 - 3.02912i) q^{73} +(1.66321 - 0.107039i) q^{77} +(-5.62370 + 9.74053i) q^{79} -3.23801 q^{83} +(4.49284 - 7.78183i) q^{89} +(-3.72288 + 7.52683i) q^{91} +3.13513i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{7} + 6 q^{31} + 2 q^{37} - 20 q^{43} + 4 q^{49} + 6 q^{61} + 28 q^{67} - 6 q^{73} + 2 q^{79} - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.37152 1.17299i −0.896350 0.443348i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.545538 + 0.314967i −0.164486 + 0.0949660i −0.579983 0.814628i \(-0.696941\pi\)
0.415497 + 0.909594i \(0.363608\pi\)
\(12\) 0 0
\(13\) 3.17384i 0.880266i −0.897933 0.440133i \(-0.854931\pi\)
0.897933 0.440133i \(-0.145069\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.0398515 0.0690248i −0.00966541 0.0167410i 0.861152 0.508347i \(-0.169743\pi\)
−0.870818 + 0.491606i \(0.836410\pi\)
\(18\) 0 0
\(19\) −3.42210 1.97575i −0.785084 0.453268i 0.0531451 0.998587i \(-0.483075\pi\)
−0.838229 + 0.545318i \(0.816409\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.83251 4.52210i −1.63319 0.942924i −0.983100 0.183069i \(-0.941397\pi\)
−0.650092 0.759855i \(-0.725270\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.634956i 0.117908i 0.998261 + 0.0589541i \(0.0187766\pi\)
−0.998261 + 0.0589541i \(0.981223\pi\)
\(30\) 0 0
\(31\) −1.15101 + 0.664538i −0.206728 + 0.119355i −0.599790 0.800158i \(-0.704749\pi\)
0.393062 + 0.919512i \(0.371416\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.996014 1.72515i 0.163744 0.283612i −0.772465 0.635058i \(-0.780976\pi\)
0.936208 + 0.351445i \(0.114310\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.23801 0.505692 0.252846 0.967507i \(-0.418633\pi\)
0.252846 + 0.967507i \(0.418633\pi\)
\(42\) 0 0
\(43\) 5.39522 0.822764 0.411382 0.911463i \(-0.365046\pi\)
0.411382 + 0.911463i \(0.365046\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.33967 + 5.78448i −0.487141 + 0.843753i −0.999891 0.0147849i \(-0.995294\pi\)
0.512749 + 0.858538i \(0.328627\pi\)
\(48\) 0 0
\(49\) 4.24819 + 5.56353i 0.606885 + 0.794790i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.64531 0.949922i 0.226001 0.130482i −0.382725 0.923862i \(-0.625014\pi\)
0.608726 + 0.793381i \(0.291681\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.24278 + 12.5449i 0.942929 + 1.63320i 0.759845 + 0.650104i \(0.225275\pi\)
0.183084 + 0.983097i \(0.441392\pi\)
\(60\) 0 0
\(61\) −6.68049 3.85698i −0.855350 0.493836i 0.00710270 0.999975i \(-0.497739\pi\)
−0.862452 + 0.506139i \(0.831072\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.47711 + 6.02252i 0.424796 + 0.735769i 0.996401 0.0847603i \(-0.0270124\pi\)
−0.571605 + 0.820529i \(0.693679\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.78534i 0.686593i 0.939227 + 0.343297i \(0.111544\pi\)
−0.939227 + 0.343297i \(0.888456\pi\)
\(72\) 0 0
\(73\) 5.24659 3.02912i 0.614067 0.354531i −0.160489 0.987038i \(-0.551307\pi\)
0.774555 + 0.632506i \(0.217974\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.66321 0.107039i 0.189540 0.0121982i
\(78\) 0 0
\(79\) −5.62370 + 9.74053i −0.632716 + 1.09590i 0.354279 + 0.935140i \(0.384726\pi\)
−0.986994 + 0.160756i \(0.948607\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.23801 −0.355418 −0.177709 0.984083i \(-0.556869\pi\)
−0.177709 + 0.984083i \(0.556869\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.49284 7.78183i 0.476240 0.824872i −0.523389 0.852094i \(-0.675333\pi\)
0.999629 + 0.0272213i \(0.00866589\pi\)
\(90\) 0 0
\(91\) −3.72288 + 7.52683i −0.390264 + 0.789026i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.13513i 0.318324i 0.987252 + 0.159162i \(0.0508793\pi\)
−0.987252 + 0.159162i \(0.949121\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.28297 + 10.8824i 0.625179 + 1.08284i 0.988506 + 0.151180i \(0.0483074\pi\)
−0.363327 + 0.931662i \(0.618359\pi\)
\(102\) 0 0
\(103\) −6.33444 3.65719i −0.624151 0.360354i 0.154332 0.988019i \(-0.450677\pi\)
−0.778483 + 0.627665i \(0.784011\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.7715 + 6.21891i 1.04132 + 0.601205i 0.920206 0.391434i \(-0.128021\pi\)
0.121111 + 0.992639i \(0.461354\pi\)
\(108\) 0 0
\(109\) −2.24464 3.88784i −0.214998 0.372387i 0.738274 0.674501i \(-0.235641\pi\)
−0.953272 + 0.302114i \(0.902308\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.1946i 1.33531i −0.744469 0.667657i \(-0.767297\pi\)
0.744469 0.667657i \(-0.232703\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.0135432 + 0.210439i 0.00124150 + 0.0192909i
\(120\) 0 0
\(121\) −5.30159 + 9.18263i −0.481963 + 0.834784i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −14.0140 −1.24355 −0.621773 0.783198i \(-0.713587\pi\)
−0.621773 + 0.783198i \(0.713587\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.47529 + 6.01939i −0.303638 + 0.525916i −0.976957 0.213436i \(-0.931535\pi\)
0.673319 + 0.739352i \(0.264868\pi\)
\(132\) 0 0
\(133\) 5.79804 + 8.69962i 0.502754 + 0.754352i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.3492 6.55245i 0.969625 0.559813i 0.0705030 0.997512i \(-0.477540\pi\)
0.899122 + 0.437698i \(0.144206\pi\)
\(138\) 0 0
\(139\) 11.8932i 1.00877i −0.863479 0.504385i \(-0.831719\pi\)
0.863479 0.504385i \(-0.168281\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.999655 + 1.73145i 0.0835953 + 0.144791i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.24390 1.87287i −0.265751 0.153431i 0.361204 0.932487i \(-0.382366\pi\)
−0.626955 + 0.779055i \(0.715699\pi\)
\(150\) 0 0
\(151\) −2.55679 4.42850i −0.208069 0.360386i 0.743037 0.669250i \(-0.233385\pi\)
−0.951106 + 0.308864i \(0.900051\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.6027 + 7.85355i −1.08562 + 0.626782i −0.932406 0.361412i \(-0.882295\pi\)
−0.153211 + 0.988193i \(0.548962\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.2706 + 19.9117i 1.04587 + 1.56926i
\(162\) 0 0
\(163\) 5.07710 8.79380i 0.397669 0.688783i −0.595769 0.803156i \(-0.703152\pi\)
0.993438 + 0.114373i \(0.0364858\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.38941 0.107516 0.0537578 0.998554i \(-0.482880\pi\)
0.0537578 + 0.998554i \(0.482880\pi\)
\(168\) 0 0
\(169\) 2.92672 0.225132
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.37552 4.11452i 0.180607 0.312821i −0.761480 0.648188i \(-0.775527\pi\)
0.942088 + 0.335367i \(0.108860\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.94883 + 5.74396i −0.743610 + 0.429324i −0.823380 0.567490i \(-0.807915\pi\)
0.0797703 + 0.996813i \(0.474581\pi\)
\(180\) 0 0
\(181\) 17.5511i 1.30456i 0.757978 + 0.652280i \(0.226187\pi\)
−0.757978 + 0.652280i \(0.773813\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.0434810 + 0.0251038i 0.00317965 + 0.00183577i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.0829 + 8.70814i 1.09136 + 0.630099i 0.933939 0.357432i \(-0.116348\pi\)
0.157424 + 0.987531i \(0.449681\pi\)
\(192\) 0 0
\(193\) 0.0326560 + 0.0565619i 0.00235063 + 0.00407141i 0.867198 0.497963i \(-0.165918\pi\)
−0.864848 + 0.502034i \(0.832585\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.2109i 1.51122i 0.655023 + 0.755609i \(0.272659\pi\)
−0.655023 + 0.755609i \(0.727341\pi\)
\(198\) 0 0
\(199\) −11.5823 + 6.68706i −0.821050 + 0.474033i −0.850778 0.525525i \(-0.823869\pi\)
0.0297286 + 0.999558i \(0.490536\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.744796 1.50581i 0.0522744 0.105687i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.48918 0.172180
\(210\) 0 0
\(211\) −18.8346 −1.29663 −0.648315 0.761372i \(-0.724526\pi\)
−0.648315 + 0.761372i \(0.724526\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.50914 0.225838i 0.238216 0.0153309i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.219074 + 0.126482i −0.0147365 + 0.00850813i
\(222\) 0 0
\(223\) 0.904185i 0.0605487i −0.999542 0.0302743i \(-0.990362\pi\)
0.999542 0.0302743i \(-0.00963809\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.0680 + 22.6345i 0.867354 + 1.50230i 0.864690 + 0.502305i \(0.167515\pi\)
0.00266398 + 0.999996i \(0.499152\pi\)
\(228\) 0 0
\(229\) 4.13905 + 2.38968i 0.273516 + 0.157915i 0.630485 0.776202i \(-0.282856\pi\)
−0.356968 + 0.934117i \(0.616190\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.80032 4.50351i −0.511016 0.295035i 0.222235 0.974993i \(-0.428665\pi\)
−0.733251 + 0.679958i \(0.761998\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.75749i 0.243052i 0.992588 + 0.121526i \(0.0387787\pi\)
−0.992588 + 0.121526i \(0.961221\pi\)
\(240\) 0 0
\(241\) −16.6168 + 9.59371i −1.07038 + 0.617985i −0.928286 0.371868i \(-0.878717\pi\)
−0.142096 + 0.989853i \(0.545384\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.27073 + 10.8612i −0.398997 + 0.691083i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.3871 1.72866 0.864328 0.502928i \(-0.167744\pi\)
0.864328 + 0.502928i \(0.167744\pi\)
\(252\) 0 0
\(253\) 5.69725 0.358183
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.30972 + 16.1249i −0.580725 + 1.00584i 0.414669 + 0.909972i \(0.363897\pi\)
−0.995394 + 0.0958722i \(0.969436\pi\)
\(258\) 0 0
\(259\) −4.38564 + 2.92290i −0.272511 + 0.181620i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.42624 + 0.823440i −0.0879457 + 0.0507755i −0.543328 0.839521i \(-0.682836\pi\)
0.455382 + 0.890296i \(0.349503\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.72546 + 8.18474i 0.288116 + 0.499032i 0.973360 0.229282i \(-0.0736377\pi\)
−0.685244 + 0.728314i \(0.740304\pi\)
\(270\) 0 0
\(271\) 6.56613 + 3.79096i 0.398864 + 0.230284i 0.685994 0.727607i \(-0.259368\pi\)
−0.287130 + 0.957892i \(0.592701\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.50161 + 6.06496i 0.210391 + 0.364408i 0.951837 0.306605i \(-0.0991929\pi\)
−0.741446 + 0.671013i \(0.765860\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.1496i 0.903747i 0.892082 + 0.451873i \(0.149244\pi\)
−0.892082 + 0.451873i \(0.850756\pi\)
\(282\) 0 0
\(283\) −4.39336 + 2.53651i −0.261158 + 0.150780i −0.624863 0.780735i \(-0.714845\pi\)
0.363705 + 0.931514i \(0.381512\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.67900 3.79815i −0.453277 0.224198i
\(288\) 0 0
\(289\) 8.49682 14.7169i 0.499813 0.865702i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.38425 −0.431393 −0.215696 0.976460i \(-0.569202\pi\)
−0.215696 + 0.976460i \(0.569202\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.3525 + 24.8592i −0.830024 + 1.43764i
\(300\) 0 0
\(301\) −12.7949 6.32853i −0.737484 0.364771i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.3870i 0.706963i −0.935441 0.353482i \(-0.884998\pi\)
0.935441 0.353482i \(-0.115002\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.77181 + 16.9253i 0.554109 + 0.959744i 0.997972 + 0.0636498i \(0.0202741\pi\)
−0.443864 + 0.896094i \(0.646393\pi\)
\(312\) 0 0
\(313\) 21.0291 + 12.1412i 1.18864 + 0.686260i 0.957997 0.286779i \(-0.0925847\pi\)
0.230640 + 0.973039i \(0.425918\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.64538 3.83671i −0.373242 0.215491i 0.301632 0.953424i \(-0.402469\pi\)
−0.674874 + 0.737933i \(0.735802\pi\)
\(318\) 0 0
\(319\) −0.199990 0.346393i −0.0111973 0.0193943i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.314947i 0.0175241i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 14.7052 9.80060i 0.810725 0.540325i
\(330\) 0 0
\(331\) −8.07835 + 13.9921i −0.444026 + 0.769076i −0.997984 0.0634691i \(-0.979784\pi\)
0.553958 + 0.832545i \(0.313117\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.77851 −0.205828 −0.102914 0.994690i \(-0.532817\pi\)
−0.102914 + 0.994690i \(0.532817\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.418615 0.725062i 0.0226693 0.0392643i
\(342\) 0 0
\(343\) −3.54871 18.1771i −0.191612 0.981471i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.7689 11.9909i 1.11493 0.643708i 0.174832 0.984598i \(-0.444062\pi\)
0.940103 + 0.340890i \(0.110729\pi\)
\(348\) 0 0
\(349\) 27.1667i 1.45420i 0.686530 + 0.727101i \(0.259133\pi\)
−0.686530 + 0.727101i \(0.740867\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.8712 20.5616i −0.631842 1.09438i −0.987175 0.159643i \(-0.948966\pi\)
0.355332 0.934740i \(-0.384368\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.9963 + 10.9675i 1.00259 + 0.578843i 0.909012 0.416769i \(-0.136838\pi\)
0.0935733 + 0.995612i \(0.470171\pi\)
\(360\) 0 0
\(361\) −1.69281 2.93204i −0.0890955 0.154318i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6.45856 + 3.72885i −0.337134 + 0.194644i −0.659004 0.752139i \(-0.729022\pi\)
0.321870 + 0.946784i \(0.395689\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.01614 + 0.322823i −0.260425 + 0.0167601i
\(372\) 0 0
\(373\) 7.09682 12.2921i 0.367459 0.636458i −0.621708 0.783249i \(-0.713561\pi\)
0.989168 + 0.146791i \(0.0468944\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.01525 0.103791
\(378\) 0 0
\(379\) −24.5439 −1.26074 −0.630369 0.776296i \(-0.717096\pi\)
−0.630369 + 0.776296i \(0.717096\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.14447 + 1.98228i −0.0584797 + 0.101290i −0.893783 0.448499i \(-0.851959\pi\)
0.835303 + 0.549789i \(0.185292\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 31.2676 18.0524i 1.58533 0.915292i 0.591271 0.806473i \(-0.298626\pi\)
0.994062 0.108819i \(-0.0347070\pi\)
\(390\) 0 0
\(391\) 0.720851i 0.0364550i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −31.4630 18.1652i −1.57908 0.911685i −0.994987 0.100001i \(-0.968115\pi\)
−0.584097 0.811684i \(-0.698551\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.1148 + 13.9227i 1.20423 + 0.695264i 0.961494 0.274827i \(-0.0886206\pi\)
0.242740 + 0.970091i \(0.421954\pi\)
\(402\) 0 0
\(403\) 2.10914 + 3.65314i 0.105064 + 0.181976i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.25484i 0.0622003i
\(408\) 0 0
\(409\) −20.2326 + 11.6813i −1.00044 + 0.577604i −0.908378 0.418150i \(-0.862679\pi\)
−0.0920608 + 0.995753i \(0.529345\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.46140 38.2460i −0.121117 1.88196i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.2387 −0.842167 −0.421084 0.907022i \(-0.638350\pi\)
−0.421084 + 0.907022i \(0.638350\pi\)
\(420\) 0 0
\(421\) 14.5092 0.707135 0.353567 0.935409i \(-0.384968\pi\)
0.353567 + 0.935409i \(0.384968\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 11.3187 + 16.9831i 0.547751 + 0.821867i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −35.3429 + 20.4052i −1.70241 + 0.982886i −0.759097 + 0.650977i \(0.774359\pi\)
−0.943311 + 0.331909i \(0.892307\pi\)
\(432\) 0 0
\(433\) 24.3665i 1.17098i −0.810679 0.585491i \(-0.800902\pi\)
0.810679 0.585491i \(-0.199098\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.8691 + 30.9502i 0.854795 + 1.48055i
\(438\) 0 0
\(439\) 0.748822 + 0.432332i 0.0357393 + 0.0206341i 0.517763 0.855524i \(-0.326765\pi\)
−0.482024 + 0.876158i \(0.660098\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.18260 2.99217i −0.246233 0.142162i 0.371805 0.928311i \(-0.378739\pi\)
−0.618038 + 0.786148i \(0.712072\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.597775i 0.0282107i −0.999901 0.0141054i \(-0.995510\pi\)
0.999901 0.0141054i \(-0.00449003\pi\)
\(450\) 0 0
\(451\) −1.76646 + 1.01987i −0.0831793 + 0.0480236i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.71155 + 6.42860i −0.173619 + 0.300717i −0.939683 0.342048i \(-0.888879\pi\)
0.766063 + 0.642765i \(0.222213\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.92784 −0.229513 −0.114756 0.993394i \(-0.536609\pi\)
−0.114756 + 0.993394i \(0.536609\pi\)
\(462\) 0 0
\(463\) 4.92546 0.228906 0.114453 0.993429i \(-0.463489\pi\)
0.114453 + 0.993429i \(0.463489\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.7758 18.6643i 0.498645 0.863679i −0.501354 0.865243i \(-0.667164\pi\)
0.999999 + 0.00156365i \(0.000497725\pi\)
\(468\) 0 0
\(469\) −1.18167 18.3611i −0.0545642 0.847838i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.94330 + 1.69931i −0.135333 + 0.0781346i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.41091 + 11.1040i 0.292922 + 0.507356i 0.974499 0.224390i \(-0.0720391\pi\)
−0.681577 + 0.731746i \(0.738706\pi\)
\(480\) 0 0
\(481\) −5.47534 3.16119i −0.249654 0.144138i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.06050 + 15.6932i 0.410570 + 0.711129i 0.994952 0.100350i \(-0.0319963\pi\)
−0.584382 + 0.811479i \(0.698663\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.4664i 0.743117i 0.928409 + 0.371559i \(0.121177\pi\)
−0.928409 + 0.371559i \(0.878823\pi\)
\(492\) 0 0
\(493\) 0.0438277 0.0253039i 0.00197390 0.00113963i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.78613 13.7200i 0.304400 0.615427i
\(498\) 0 0
\(499\) 10.3994 18.0123i 0.465541 0.806340i −0.533685 0.845683i \(-0.679193\pi\)
0.999226 + 0.0393432i \(0.0125266\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −35.7828 −1.59547 −0.797737 0.603005i \(-0.793970\pi\)
−0.797737 + 0.603005i \(0.793970\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.20179 + 10.7418i −0.274890 + 0.476123i −0.970107 0.242677i \(-0.921975\pi\)
0.695218 + 0.718799i \(0.255308\pi\)
\(510\) 0 0
\(511\) −15.9955 + 1.02942i −0.707599 + 0.0455389i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.20754i 0.185047i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.1236 34.8551i −0.881631 1.52703i −0.849527 0.527545i \(-0.823113\pi\)
−0.0321033 0.999485i \(-0.510221\pi\)
\(522\) 0 0
\(523\) 2.23019 + 1.28760i 0.0975196 + 0.0563029i 0.547967 0.836500i \(-0.315402\pi\)
−0.450447 + 0.892803i \(0.648735\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.0917392 + 0.0529657i 0.00399622 + 0.00230722i
\(528\) 0 0
\(529\) 29.3989 + 50.9203i 1.27821 + 2.21393i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.2769i 0.445144i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.06988 1.69708i −0.175302 0.0730983i
\(540\) 0 0
\(541\) 4.04711 7.00979i 0.173999 0.301374i −0.765816 0.643060i \(-0.777664\pi\)
0.939814 + 0.341686i \(0.110998\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.64318 0.369556 0.184778 0.982780i \(-0.440843\pi\)
0.184778 + 0.982780i \(0.440843\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.25451 2.17288i 0.0534441 0.0925679i
\(552\) 0 0
\(553\) 24.7622 16.5033i 1.05300 0.701792i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.7450 + 7.93569i −0.582395 + 0.336246i −0.762085 0.647478i \(-0.775824\pi\)
0.179690 + 0.983723i \(0.442491\pi\)
\(558\) 0 0
\(559\) 17.1236i 0.724251i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.31444 + 4.00872i 0.0975419 + 0.168948i 0.910667 0.413142i \(-0.135569\pi\)
−0.813125 + 0.582089i \(0.802235\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.43907 3.14025i −0.228018 0.131646i 0.381640 0.924311i \(-0.375360\pi\)
−0.609657 + 0.792665i \(0.708693\pi\)
\(570\) 0 0
\(571\) −6.72730 11.6520i −0.281529 0.487622i 0.690233 0.723588i \(-0.257508\pi\)
−0.971762 + 0.235965i \(0.924175\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8.97939 + 5.18425i −0.373817 + 0.215823i −0.675125 0.737704i \(-0.735910\pi\)
0.301308 + 0.953527i \(0.402577\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.67900 + 3.79815i 0.318579 + 0.157574i
\(582\) 0 0
\(583\) −0.598388 + 1.03644i −0.0247827 + 0.0429249i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −29.7632 −1.22846 −0.614230 0.789127i \(-0.710533\pi\)
−0.614230 + 0.789127i \(0.710533\pi\)
\(588\) 0 0
\(589\) 5.25185 0.216399
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.989732 1.71427i 0.0406434 0.0703965i −0.844988 0.534785i \(-0.820393\pi\)
0.885632 + 0.464389i \(0.153726\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.8980 8.60138i 0.608717 0.351443i −0.163746 0.986502i \(-0.552358\pi\)
0.772463 + 0.635060i \(0.219025\pi\)
\(600\) 0 0
\(601\) 16.8733i 0.688274i 0.938919 + 0.344137i \(0.111829\pi\)
−0.938919 + 0.344137i \(0.888171\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.5293 + 10.1206i 0.711493 + 0.410781i 0.811614 0.584194i \(-0.198589\pi\)
−0.100120 + 0.994975i \(0.531923\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.3590 + 10.5996i 0.742727 + 0.428814i
\(612\) 0 0
\(613\) 7.14230 + 12.3708i 0.288475 + 0.499653i 0.973446 0.228917i \(-0.0735185\pi\)
−0.684971 + 0.728570i \(0.740185\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.4895i 0.744358i 0.928161 + 0.372179i \(0.121389\pi\)
−0.928161 + 0.372179i \(0.878611\pi\)
\(618\) 0 0
\(619\) −14.7219 + 8.49969i −0.591723 + 0.341631i −0.765778 0.643104i \(-0.777646\pi\)
0.174056 + 0.984736i \(0.444313\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −19.7829 + 13.1847i −0.792583 + 0.528234i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.158771 −0.00633060
\(630\) 0 0
\(631\) −35.9321 −1.43043 −0.715216 0.698903i \(-0.753672\pi\)
−0.715216 + 0.698903i \(0.753672\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 17.6578 13.4831i 0.699626 0.534220i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.4525 11.2309i 0.768328 0.443594i −0.0639497 0.997953i \(-0.520370\pi\)
0.832278 + 0.554359i \(0.187036\pi\)
\(642\) 0 0
\(643\) 8.27095i 0.326175i 0.986612 + 0.163087i \(0.0521452\pi\)
−0.986612 + 0.163087i \(0.947855\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.06882 + 15.7077i 0.356532 + 0.617532i 0.987379 0.158376i \(-0.0506257\pi\)
−0.630847 + 0.775907i \(0.717292\pi\)
\(648\) 0 0
\(649\) −7.90242 4.56247i −0.310197 0.179092i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.3365 + 14.0507i 0.952359 + 0.549845i 0.893813 0.448440i \(-0.148020\pi\)
0.0585463 + 0.998285i \(0.481353\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.1912i 1.17608i 0.808832 + 0.588040i \(0.200100\pi\)
−0.808832 + 0.588040i \(0.799900\pi\)
\(660\) 0 0
\(661\) 27.7832 16.0407i 1.08064 0.623909i 0.149573 0.988751i \(-0.452210\pi\)
0.931070 + 0.364841i \(0.118877\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.87134 4.97330i 0.111179 0.192567i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.85929 0.187591
\(672\) 0 0
\(673\) −28.5578 −1.10082 −0.550412 0.834893i \(-0.685529\pi\)
−0.550412 + 0.834893i \(0.685529\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.9988 + 22.5146i −0.499586 + 0.865308i −1.00000 0.000478375i \(-0.999848\pi\)
0.500414 + 0.865786i \(0.333181\pi\)
\(678\) 0 0
\(679\) 3.67747 7.43502i 0.141128 0.285330i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 28.2820 16.3286i 1.08218 0.624797i 0.150696 0.988580i \(-0.451849\pi\)
0.931484 + 0.363783i \(0.118515\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.01490 5.22197i −0.114859 0.198941i
\(690\) 0 0
\(691\) 20.3090 + 11.7254i 0.772593 + 0.446057i 0.833799 0.552069i \(-0.186161\pi\)
−0.0612061 + 0.998125i \(0.519495\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.129040 0.223503i −0.00488772 0.00846578i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.4918i 0.887272i −0.896207 0.443636i \(-0.853688\pi\)
0.896207 0.443636i \(-0.146312\pi\)
\(702\) 0 0
\(703\) −6.81692 + 3.93575i −0.257105 + 0.148440i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.13522 33.1777i −0.0803030 1.24778i
\(708\) 0 0
\(709\) −14.1045 + 24.4296i −0.529704 + 0.917474i 0.469696 + 0.882828i \(0.344364\pi\)
−0.999400 + 0.0346459i \(0.988970\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0204 0.450169
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.58682 + 16.6049i −0.357528 + 0.619257i −0.987547 0.157323i \(-0.949714\pi\)
0.630019 + 0.776580i \(0.283047\pi\)
\(720\) 0 0
\(721\) 10.7324 + 16.1033i 0.399695 + 0.599719i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 33.2243i 1.23222i −0.787659 0.616111i \(-0.788707\pi\)
0.787659 0.616111i \(-0.211293\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.215008 0.372404i −0.00795235 0.0137739i
\(732\) 0 0
\(733\) −11.0897 6.40264i −0.409608 0.236487i 0.281014 0.959704i \(-0.409329\pi\)
−0.690621 + 0.723217i \(0.742663\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.79379 2.19035i −0.139746 0.0806824i
\(738\) 0 0
\(739\) −2.76955 4.79701i −0.101880 0.176461i 0.810579 0.585629i \(-0.199152\pi\)
−0.912459 + 0.409168i \(0.865819\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.3484i 1.00332i 0.865066 + 0.501658i \(0.167276\pi\)
−0.865066 + 0.501658i \(0.832724\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.2500 27.3831i −0.666841 1.00056i
\(750\) 0 0
\(751\) −3.11938 + 5.40292i −0.113828 + 0.197155i −0.917310 0.398173i \(-0.869644\pi\)
0.803483 + 0.595328i \(0.202978\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −28.2206 −1.02570 −0.512848 0.858479i \(-0.671410\pi\)
−0.512848 + 0.858479i \(0.671410\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.29393 5.70525i 0.119405 0.206815i −0.800127 0.599830i \(-0.795235\pi\)
0.919532 + 0.393015i \(0.128568\pi\)
\(762\) 0 0
\(763\) 0.762823 + 11.8530i 0.0276161 + 0.429108i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 39.8154 22.9874i 1.43765 0.830028i
\(768\) 0 0
\(769\) 39.0076i 1.40665i −0.710868 0.703325i \(-0.751698\pi\)
0.710868 0.703325i \(-0.248302\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.3147 + 29.9899i 0.622766 + 1.07866i 0.988968 + 0.148127i \(0.0473246\pi\)
−0.366202 + 0.930535i \(0.619342\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.0808 6.39750i −0.397011 0.229214i
\(780\) 0 0
\(781\) −1.82219 3.15612i −0.0652030 0.112935i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −42.2269 + 24.3797i −1.50523 + 0.869044i −0.505247 + 0.862975i \(0.668598\pi\)
−0.999982 + 0.00606887i \(0.998068\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.6501 + 33.6627i −0.592009 + 1.19691i
\(792\) 0 0
\(793\) −12.2415 + 21.2028i −0.434707 + 0.752935i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −54.3306 −1.92449 −0.962244 0.272189i \(-0.912252\pi\)
−0.962244 + 0.272189i \(0.912252\pi\)
\(798\) 0 0
\(799\) 0.532364 0.0188337
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.90814 + 3.30500i −0.0673369 + 0.116631i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 31.3176 18.0812i 1.10107 0.635701i 0.164566 0.986366i \(-0.447378\pi\)
0.936501 + 0.350665i \(0.114044\pi\)
\(810\) 0 0
\(811\) 10.0168i 0.351738i 0.984414 + 0.175869i \(0.0562735\pi\)
−0.984414 + 0.175869i \(0.943726\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −18.4630 10.6596i −0.645938 0.372933i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −25.2767 14.5935i −0.882163 0.509317i −0.0107921 0.999942i \(-0.503435\pi\)
−0.871371 + 0.490625i \(0.836769\pi\)
\(822\) 0 0
\(823\) −6.80415 11.7851i −0.237178 0.410804i 0.722725 0.691135i \(-0.242889\pi\)
−0.959903 + 0.280331i \(0.909556\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.3414i 1.26372i −0.775084 0.631858i \(-0.782293\pi\)
0.775084 0.631858i \(-0.217707\pi\)
\(828\) 0 0
\(829\) 43.2073 24.9457i 1.50065 0.866401i 0.500651 0.865649i \(-0.333094\pi\)
1.00000 0.000751649i \(-0.000239257\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.214725 0.514946i 0.00743977 0.0178418i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −31.6185 −1.09159 −0.545796 0.837918i \(-0.683773\pi\)
−0.545796 + 0.837918i \(0.683773\pi\)
\(840\) 0 0
\(841\) 28.5968 0.986098
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 23.3439 15.5581i 0.802107 0.534581i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −15.6026 + 9.00816i −0.534850 + 0.308796i
\(852\) 0 0
\(853\) 30.7487i 1.05281i 0.850232 + 0.526407i \(0.176461\pi\)
−0.850232 + 0.526407i \(0.823539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.9682 + 36.3180i 0.716260 + 1.24060i 0.962472 + 0.271382i \(0.0874808\pi\)
−0.246212 + 0.969216i \(0.579186\pi\)
\(858\) 0 0
\(859\) −39.3503 22.7189i −1.34262 0.775160i −0.355425 0.934705i \(-0.615664\pi\)
−0.987191 + 0.159545i \(0.948997\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.60951 5.54805i −0.327112 0.188858i 0.327446 0.944870i \(-0.393812\pi\)
−0.654558 + 0.756012i \(0.727145\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.08511i 0.240346i
\(870\) 0 0
\(871\) 19.1146 11.0358i 0.647672 0.373934i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.9542 24.1693i 0.471198 0.816139i −0.528259 0.849083i \(-0.677155\pi\)
0.999457 + 0.0329440i \(0.0104883\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 52.9244 1.78307 0.891534 0.452953i \(-0.149630\pi\)
0.891534 + 0.452953i \(0.149630\pi\)
\(882\) 0 0
\(883\) −14.8744 −0.500562 −0.250281 0.968173i \(-0.580523\pi\)
−0.250281 + 0.968173i \(0.580523\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.571118 0.989205i 0.0191763 0.0332142i −0.856278 0.516515i \(-0.827229\pi\)
0.875454 + 0.483301i \(0.160562\pi\)
\(888\) 0 0
\(889\) 33.2346 + 16.4383i 1.11465 + 0.551323i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 22.8574 13.1967i 0.764894 0.441612i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.421952 0.730842i −0.0140729 0.0243750i
\(900\) 0 0
\(901\) −0.131136 0.0757117i −0.00436879 0.00252232i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 10.6487 + 18.4442i 0.353586 + 0.612428i 0.986875 0.161487i \(-0.0516289\pi\)
−0.633289 + 0.773915i \(0.718296\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.29445i 0.109150i −0.998510 0.0545749i \(-0.982620\pi\)
0.998510 0.0545749i \(-0.0173804\pi\)
\(912\) 0 0
\(913\) 1.76646 1.01987i 0.0584612 0.0337526i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.3024 10.1986i 0.505330 0.336788i
\(918\) 0 0
\(919\) −10.5108 + 18.2052i −0.346718 + 0.600533i −0.985664 0.168718i \(-0.946037\pi\)
0.638946 + 0.769251i \(0.279371\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 18.3618 0.604384
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.9527 36.2911i 0.687436 1.19067i −0.285229 0.958459i \(-0.592070\pi\)
0.972665 0.232214i \(-0.0745970\pi\)
\(930\) 0 0
\(931\) −3.54560 27.4323i −0.116202 0.899058i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.94712i 0.194284i 0.995271 + 0.0971419i \(0.0309701\pi\)
−0.995271 + 0.0971419i \(0.969030\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23.9262 41.4414i −0.779973 1.35095i −0.931957 0.362570i \(-0.881900\pi\)
0.151984 0.988383i \(-0.451434\pi\)
\(942\) 0 0
\(943\) −25.3618 14.6426i −0.825893 0.476829i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.4399 15.2651i −0.859182 0.496049i 0.00455619 0.999990i \(-0.498550\pi\)
−0.863738 + 0.503941i \(0.831883\pi\)
\(948\) 0 0
\(949\) −9.61395 16.6518i −0.312082 0.540542i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.5262i 0.988842i 0.869223 + 0.494421i \(0.164620\pi\)
−0.869223 + 0.494421i \(0.835380\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −34.6007 + 2.22679i −1.11731 + 0.0719069i
\(960\) 0 0
\(961\) −14.6168 + 25.3170i −0.471509 + 0.816678i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 55.8252 1.79522 0.897609 0.440793i \(-0.145303\pi\)
0.897609 + 0.440793i \(0.145303\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.8910 32.7202i 0.606242 1.05004i −0.385612 0.922661i \(-0.626010\pi\)
0.991854 0.127381i \(-0.0406572\pi\)
\(972\) 0 0
\(973\) −13.9506 + 28.2050i −0.447236 + 0.904210i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 43.8820 25.3353i 1.40391 0.810547i 0.409117 0.912482i \(-0.365837\pi\)
0.994791 + 0.101935i \(0.0325034\pi\)
\(978\) 0 0
\(979\) 5.66038i 0.180907i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.9873 + 36.3510i 0.669390 + 1.15942i 0.978075 + 0.208254i \(0.0667779\pi\)
−0.308685 + 0.951164i \(0.599889\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −42.2582 24.3978i −1.34373 0.775803i
\(990\) 0 0
\(991\) −20.7463 35.9336i −0.659027 1.14147i −0.980868 0.194674i \(-0.937635\pi\)
0.321841 0.946794i \(-0.395698\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −24.7630 + 14.2969i −0.784253 + 0.452788i −0.837935 0.545770i \(-0.816237\pi\)
0.0536827 + 0.998558i \(0.482904\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.ch.e.1601.1 yes 20
3.2 odd 2 inner 6300.2.ch.e.1601.2 yes 20
5.2 odd 4 6300.2.dd.d.1349.13 40
5.3 odd 4 6300.2.dd.d.1349.7 40
5.4 even 2 6300.2.ch.d.1601.9 20
7.3 odd 6 inner 6300.2.ch.e.4301.2 yes 20
15.2 even 4 6300.2.dd.d.1349.14 40
15.8 even 4 6300.2.dd.d.1349.8 40
15.14 odd 2 6300.2.ch.d.1601.10 yes 20
21.17 even 6 inner 6300.2.ch.e.4301.1 yes 20
35.3 even 12 6300.2.dd.d.4049.14 40
35.17 even 12 6300.2.dd.d.4049.8 40
35.24 odd 6 6300.2.ch.d.4301.10 yes 20
105.17 odd 12 6300.2.dd.d.4049.7 40
105.38 odd 12 6300.2.dd.d.4049.13 40
105.59 even 6 6300.2.ch.d.4301.9 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6300.2.ch.d.1601.9 20 5.4 even 2
6300.2.ch.d.1601.10 yes 20 15.14 odd 2
6300.2.ch.d.4301.9 yes 20 105.59 even 6
6300.2.ch.d.4301.10 yes 20 35.24 odd 6
6300.2.ch.e.1601.1 yes 20 1.1 even 1 trivial
6300.2.ch.e.1601.2 yes 20 3.2 odd 2 inner
6300.2.ch.e.4301.1 yes 20 21.17 even 6 inner
6300.2.ch.e.4301.2 yes 20 7.3 odd 6 inner
6300.2.dd.d.1349.7 40 5.3 odd 4
6300.2.dd.d.1349.8 40 15.8 even 4
6300.2.dd.d.1349.13 40 5.2 odd 4
6300.2.dd.d.1349.14 40 15.2 even 4
6300.2.dd.d.4049.7 40 105.17 odd 12
6300.2.dd.d.4049.8 40 35.17 even 12
6300.2.dd.d.4049.13 40 105.38 odd 12
6300.2.dd.d.4049.14 40 35.3 even 12