Properties

Label 630.2.j.k.211.2
Level $630$
Weight $2$
Character 630.211
Analytic conductor $5.031$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(211,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.211"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,1,-3,-3,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 211.2
Root \(0.403374 + 1.68443i\) of defining polynomial
Character \(\chi\) \(=\) 630.211
Dual form 630.2.j.k.421.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.403374 + 1.68443i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.25707 - 1.19154i) q^{6} +(-0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(-2.67458 + 1.35891i) q^{9} +1.00000 q^{10} +(1.25707 + 2.17731i) q^{11} +(-1.66044 - 0.492881i) q^{12} +(-0.757068 + 1.31128i) q^{13} +(-0.500000 + 0.866025i) q^{14} +(-1.66044 - 0.492881i) q^{15} +(-0.500000 - 0.866025i) q^{16} -0.320884 q^{17} +(2.51414 + 1.63680i) q^{18} -2.70739 q^{19} +(-0.500000 - 0.866025i) q^{20} +(1.25707 - 1.19154i) q^{21} +(1.25707 - 2.17731i) q^{22} +(-3.07795 + 5.33117i) q^{23} +(0.403374 + 1.68443i) q^{24} +(-0.500000 - 0.866025i) q^{25} +1.51414 q^{26} +(-3.36783 - 3.95698i) q^{27} +1.00000 q^{28} +(0.563816 + 0.976558i) q^{29} +(0.403374 + 1.68443i) q^{30} +(-0.193252 + 0.334723i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-3.16044 + 2.99571i) q^{33} +(0.160442 + 0.277894i) q^{34} +1.00000 q^{35} +(0.160442 - 2.99571i) q^{36} -5.86330 q^{37} +(1.35369 + 2.34467i) q^{38} +(-2.51414 - 0.746289i) q^{39} +(-0.500000 + 0.866025i) q^{40} +(-5.38470 + 9.32657i) q^{41} +(-1.66044 - 0.492881i) q^{42} +(-5.01414 - 8.68474i) q^{43} -2.51414 q^{44} +(0.160442 - 2.99571i) q^{45} +6.15591 q^{46} +(0.320884 + 0.555788i) q^{47} +(1.25707 - 1.19154i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(-0.500000 + 0.866025i) q^{50} +(-0.129436 - 0.540506i) q^{51} +(-0.757068 - 1.31128i) q^{52} +2.83502 q^{53} +(-1.74293 + 4.89512i) q^{54} -2.51414 q^{55} +(-0.500000 - 0.866025i) q^{56} +(-1.09209 - 4.56040i) q^{57} +(0.563816 - 0.976558i) q^{58} +(-6.16044 + 10.6702i) q^{59} +(1.25707 - 1.19154i) q^{60} +(0.0966262 + 0.167362i) q^{61} +0.386505 q^{62} +(2.51414 + 1.63680i) q^{63} +1.00000 q^{64} +(-0.757068 - 1.31128i) q^{65} +(4.17458 + 1.23917i) q^{66} +(0.546947 - 0.947340i) q^{67} +(0.160442 - 0.277894i) q^{68} +(-10.2215 - 3.03413i) q^{69} +(-0.500000 - 0.866025i) q^{70} +10.6363 q^{71} +(-2.67458 + 1.35891i) q^{72} +5.64177 q^{73} +(2.93165 + 5.07776i) q^{74} +(1.25707 - 1.19154i) q^{75} +(1.35369 - 2.34467i) q^{76} +(1.25707 - 2.17731i) q^{77} +(0.610763 + 2.55045i) q^{78} +(2.32088 + 4.01989i) q^{79} +1.00000 q^{80} +(5.30675 - 7.26900i) q^{81} +10.7694 q^{82} +(2.83502 + 4.91040i) q^{83} +(0.403374 + 1.68443i) q^{84} +(0.160442 - 0.277894i) q^{85} +(-5.01414 + 8.68474i) q^{86} +(-1.41751 + 1.34362i) q^{87} +(1.25707 + 2.17731i) q^{88} +16.0565 q^{89} +(-2.67458 + 1.35891i) q^{90} +1.51414 q^{91} +(-3.07795 - 5.33117i) q^{92} +(-0.641769 - 0.190501i) q^{93} +(0.320884 - 0.555788i) q^{94} +(1.35369 - 2.34467i) q^{95} +(-1.66044 - 0.492881i) q^{96} +(1.30675 + 2.26335i) q^{97} +1.00000 q^{98} +(-6.32088 - 4.11514i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + q^{3} - 3 q^{4} - 3 q^{5} + q^{6} - 3 q^{7} + 6 q^{8} + 5 q^{9} + 6 q^{10} + q^{11} - 2 q^{12} + 2 q^{13} - 3 q^{14} - 2 q^{15} - 3 q^{16} + 14 q^{17} + 2 q^{18} - 6 q^{19} - 3 q^{20}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.403374 + 1.68443i 0.232888 + 0.972504i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 1.25707 1.19154i 0.513196 0.486446i
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) 1.00000 0.353553
\(9\) −2.67458 + 1.35891i −0.891526 + 0.452969i
\(10\) 1.00000 0.316228
\(11\) 1.25707 + 2.17731i 0.379020 + 0.656483i 0.990920 0.134453i \(-0.0429277\pi\)
−0.611900 + 0.790935i \(0.709594\pi\)
\(12\) −1.66044 0.492881i −0.479328 0.142282i
\(13\) −0.757068 + 1.31128i −0.209973 + 0.363684i −0.951706 0.307012i \(-0.900671\pi\)
0.741733 + 0.670696i \(0.234004\pi\)
\(14\) −0.500000 + 0.866025i −0.133631 + 0.231455i
\(15\) −1.66044 0.492881i −0.428724 0.127261i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.320884 −0.0778259 −0.0389130 0.999243i \(-0.512390\pi\)
−0.0389130 + 0.999243i \(0.512390\pi\)
\(18\) 2.51414 + 1.63680i 0.592588 + 0.385798i
\(19\) −2.70739 −0.621118 −0.310559 0.950554i \(-0.600516\pi\)
−0.310559 + 0.950554i \(0.600516\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 1.25707 1.19154i 0.274315 0.260016i
\(22\) 1.25707 2.17731i 0.268008 0.464203i
\(23\) −3.07795 + 5.33117i −0.641798 + 1.11163i 0.343234 + 0.939250i \(0.388478\pi\)
−0.985031 + 0.172376i \(0.944856\pi\)
\(24\) 0.403374 + 1.68443i 0.0823383 + 0.343832i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.51414 0.296947
\(27\) −3.36783 3.95698i −0.648139 0.761522i
\(28\) 1.00000 0.188982
\(29\) 0.563816 + 0.976558i 0.104698 + 0.181342i 0.913615 0.406581i \(-0.133279\pi\)
−0.808917 + 0.587923i \(0.799946\pi\)
\(30\) 0.403374 + 1.68443i 0.0736456 + 0.307533i
\(31\) −0.193252 + 0.334723i −0.0347092 + 0.0601180i −0.882858 0.469640i \(-0.844384\pi\)
0.848149 + 0.529758i \(0.177717\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −3.16044 + 2.99571i −0.550162 + 0.521486i
\(34\) 0.160442 + 0.277894i 0.0275156 + 0.0476584i
\(35\) 1.00000 0.169031
\(36\) 0.160442 2.99571i 0.0267404 0.499284i
\(37\) −5.86330 −0.963920 −0.481960 0.876193i \(-0.660075\pi\)
−0.481960 + 0.876193i \(0.660075\pi\)
\(38\) 1.35369 + 2.34467i 0.219598 + 0.380355i
\(39\) −2.51414 0.746289i −0.402584 0.119502i
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) −5.38470 + 9.32657i −0.840949 + 1.45657i 0.0481444 + 0.998840i \(0.484669\pi\)
−0.889093 + 0.457726i \(0.848664\pi\)
\(42\) −1.66044 0.492881i −0.256212 0.0760532i
\(43\) −5.01414 8.68474i −0.764649 1.32441i −0.940432 0.339982i \(-0.889579\pi\)
0.175783 0.984429i \(-0.443754\pi\)
\(44\) −2.51414 −0.379020
\(45\) 0.160442 2.99571i 0.0239173 0.446574i
\(46\) 6.15591 0.907639
\(47\) 0.320884 + 0.555788i 0.0468058 + 0.0810700i 0.888479 0.458917i \(-0.151762\pi\)
−0.841673 + 0.539987i \(0.818429\pi\)
\(48\) 1.25707 1.19154i 0.181442 0.171985i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) −0.129436 0.540506i −0.0181247 0.0756860i
\(52\) −0.757068 1.31128i −0.104987 0.181842i
\(53\) 2.83502 0.389420 0.194710 0.980861i \(-0.437623\pi\)
0.194710 + 0.980861i \(0.437623\pi\)
\(54\) −1.74293 + 4.89512i −0.237183 + 0.666141i
\(55\) −2.51414 −0.339006
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) −1.09209 4.56040i −0.144651 0.604039i
\(58\) 0.563816 0.976558i 0.0740327 0.128228i
\(59\) −6.16044 + 10.6702i −0.802021 + 1.38914i 0.116262 + 0.993219i \(0.462909\pi\)
−0.918284 + 0.395923i \(0.870425\pi\)
\(60\) 1.25707 1.19154i 0.162287 0.153828i
\(61\) 0.0966262 + 0.167362i 0.0123717 + 0.0214284i 0.872145 0.489248i \(-0.162729\pi\)
−0.859773 + 0.510676i \(0.829395\pi\)
\(62\) 0.386505 0.0490862
\(63\) 2.51414 + 1.63680i 0.316751 + 0.206217i
\(64\) 1.00000 0.125000
\(65\) −0.757068 1.31128i −0.0939028 0.162644i
\(66\) 4.17458 + 1.23917i 0.513855 + 0.152531i
\(67\) 0.546947 0.947340i 0.0668202 0.115736i −0.830680 0.556751i \(-0.812048\pi\)
0.897500 + 0.441015i \(0.145381\pi\)
\(68\) 0.160442 0.277894i 0.0194565 0.0336996i
\(69\) −10.2215 3.03413i −1.23053 0.365266i
\(70\) −0.500000 0.866025i −0.0597614 0.103510i
\(71\) 10.6363 1.26230 0.631149 0.775662i \(-0.282584\pi\)
0.631149 + 0.775662i \(0.282584\pi\)
\(72\) −2.67458 + 1.35891i −0.315202 + 0.160149i
\(73\) 5.64177 0.660319 0.330160 0.943925i \(-0.392897\pi\)
0.330160 + 0.943925i \(0.392897\pi\)
\(74\) 2.93165 + 5.07776i 0.340797 + 0.590278i
\(75\) 1.25707 1.19154i 0.145154 0.137588i
\(76\) 1.35369 2.34467i 0.155279 0.268952i
\(77\) 1.25707 2.17731i 0.143256 0.248127i
\(78\) 0.610763 + 2.55045i 0.0691553 + 0.288782i
\(79\) 2.32088 + 4.01989i 0.261120 + 0.452273i 0.966540 0.256517i \(-0.0825749\pi\)
−0.705420 + 0.708790i \(0.749242\pi\)
\(80\) 1.00000 0.111803
\(81\) 5.30675 7.26900i 0.589639 0.807667i
\(82\) 10.7694 1.18928
\(83\) 2.83502 + 4.91040i 0.311184 + 0.538987i 0.978619 0.205682i \(-0.0659411\pi\)
−0.667435 + 0.744668i \(0.732608\pi\)
\(84\) 0.403374 + 1.68443i 0.0440117 + 0.183786i
\(85\) 0.160442 0.277894i 0.0174024 0.0301419i
\(86\) −5.01414 + 8.68474i −0.540688 + 0.936500i
\(87\) −1.41751 + 1.34362i −0.151973 + 0.144052i
\(88\) 1.25707 + 2.17731i 0.134004 + 0.232102i
\(89\) 16.0565 1.70199 0.850995 0.525173i \(-0.175999\pi\)
0.850995 + 0.525173i \(0.175999\pi\)
\(90\) −2.67458 + 1.35891i −0.281925 + 0.143241i
\(91\) 1.51414 0.158725
\(92\) −3.07795 5.33117i −0.320899 0.555813i
\(93\) −0.641769 0.190501i −0.0665483 0.0197540i
\(94\) 0.320884 0.555788i 0.0330967 0.0573252i
\(95\) 1.35369 2.34467i 0.138886 0.240558i
\(96\) −1.66044 0.492881i −0.169468 0.0503044i
\(97\) 1.30675 + 2.26335i 0.132680 + 0.229809i 0.924709 0.380675i \(-0.124308\pi\)
−0.792029 + 0.610484i \(0.790975\pi\)
\(98\) 1.00000 0.101015
\(99\) −6.32088 4.11514i −0.635273 0.413587i
\(100\) 1.00000 0.100000
\(101\) 7.54241 + 13.0638i 0.750498 + 1.29990i 0.947582 + 0.319514i \(0.103520\pi\)
−0.197084 + 0.980387i \(0.563147\pi\)
\(102\) −0.403374 + 0.382348i −0.0399400 + 0.0378581i
\(103\) 1.71012 2.96202i 0.168503 0.291856i −0.769391 0.638779i \(-0.779440\pi\)
0.937894 + 0.346922i \(0.112773\pi\)
\(104\) −0.757068 + 1.31128i −0.0742367 + 0.128582i
\(105\) 0.403374 + 1.68443i 0.0393653 + 0.164383i
\(106\) −1.41751 2.45520i −0.137681 0.238470i
\(107\) −11.0192 −1.06527 −0.532633 0.846346i \(-0.678797\pi\)
−0.532633 + 0.846346i \(0.678797\pi\)
\(108\) 5.11076 0.938136i 0.491783 0.0902722i
\(109\) 16.5990 1.58989 0.794946 0.606680i \(-0.207499\pi\)
0.794946 + 0.606680i \(0.207499\pi\)
\(110\) 1.25707 + 2.17731i 0.119857 + 0.207598i
\(111\) −2.36510 9.87628i −0.224485 0.937415i
\(112\) −0.500000 + 0.866025i −0.0472456 + 0.0818317i
\(113\) 5.88197 10.1879i 0.553329 0.958394i −0.444702 0.895678i \(-0.646691\pi\)
0.998031 0.0627156i \(-0.0199761\pi\)
\(114\) −3.40337 + 3.22598i −0.318755 + 0.302140i
\(115\) −3.07795 5.33117i −0.287021 0.497134i
\(116\) −1.12763 −0.104698
\(117\) 0.242932 4.53591i 0.0224590 0.419345i
\(118\) 12.3209 1.13423
\(119\) 0.160442 + 0.277894i 0.0147077 + 0.0254745i
\(120\) −1.66044 0.492881i −0.151577 0.0449937i
\(121\) 2.33956 4.05223i 0.212687 0.368385i
\(122\) 0.0966262 0.167362i 0.00874813 0.0151522i
\(123\) −17.8820 5.30803i −1.61236 0.478609i
\(124\) −0.193252 0.334723i −0.0173546 0.0300590i
\(125\) 1.00000 0.0894427
\(126\) 0.160442 2.99571i 0.0142933 0.266879i
\(127\) 5.90064 0.523597 0.261799 0.965123i \(-0.415684\pi\)
0.261799 + 0.965123i \(0.415684\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 12.6062 11.9491i 1.10992 1.05206i
\(130\) −0.757068 + 1.31128i −0.0663993 + 0.115007i
\(131\) −7.98133 + 13.8241i −0.697332 + 1.20781i 0.272057 + 0.962281i \(0.412296\pi\)
−0.969388 + 0.245533i \(0.921037\pi\)
\(132\) −1.01414 4.23488i −0.0882693 0.368599i
\(133\) 1.35369 + 2.34467i 0.117380 + 0.203308i
\(134\) −1.09389 −0.0944981
\(135\) 5.11076 0.938136i 0.439864 0.0807419i
\(136\) −0.320884 −0.0275156
\(137\) −11.1017 19.2287i −0.948481 1.64282i −0.748626 0.662993i \(-0.769286\pi\)
−0.199856 0.979825i \(-0.564047\pi\)
\(138\) 2.48313 + 10.3692i 0.211378 + 0.882682i
\(139\) −3.62763 + 6.28324i −0.307692 + 0.532938i −0.977857 0.209274i \(-0.932890\pi\)
0.670165 + 0.742212i \(0.266223\pi\)
\(140\) −0.500000 + 0.866025i −0.0422577 + 0.0731925i
\(141\) −0.806748 + 0.764696i −0.0679404 + 0.0643991i
\(142\) −5.31815 9.21131i −0.446289 0.772996i
\(143\) −3.80675 −0.318336
\(144\) 2.51414 + 1.63680i 0.209511 + 0.136400i
\(145\) −1.12763 −0.0936447
\(146\) −2.82088 4.88592i −0.233458 0.404361i
\(147\) −1.66044 0.492881i −0.136951 0.0406521i
\(148\) 2.93165 5.07776i 0.240980 0.417390i
\(149\) 5.83502 10.1066i 0.478024 0.827961i −0.521659 0.853154i \(-0.674687\pi\)
0.999683 + 0.0251929i \(0.00802001\pi\)
\(150\) −1.66044 0.492881i −0.135575 0.0402436i
\(151\) 0.292611 + 0.506816i 0.0238123 + 0.0412441i 0.877686 0.479236i \(-0.159086\pi\)
−0.853874 + 0.520480i \(0.825753\pi\)
\(152\) −2.70739 −0.219598
\(153\) 0.858231 0.436052i 0.0693839 0.0352527i
\(154\) −2.51414 −0.202595
\(155\) −0.193252 0.334723i −0.0155224 0.0268856i
\(156\) 1.90337 1.80416i 0.152392 0.144449i
\(157\) 2.97859 5.15908i 0.237718 0.411739i −0.722341 0.691537i \(-0.756934\pi\)
0.960059 + 0.279798i \(0.0902673\pi\)
\(158\) 2.32088 4.01989i 0.184640 0.319805i
\(159\) 1.14357 + 4.77538i 0.0906913 + 0.378712i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 6.15591 0.485153
\(162\) −8.94852 0.961276i −0.703062 0.0755250i
\(163\) −15.7639 −1.23473 −0.617363 0.786678i \(-0.711799\pi\)
−0.617363 + 0.786678i \(0.711799\pi\)
\(164\) −5.38470 9.32657i −0.420474 0.728283i
\(165\) −1.01414 4.23488i −0.0789505 0.329685i
\(166\) 2.83502 4.91040i 0.220040 0.381121i
\(167\) −3.61076 + 6.25403i −0.279409 + 0.483951i −0.971238 0.238111i \(-0.923472\pi\)
0.691829 + 0.722062i \(0.256805\pi\)
\(168\) 1.25707 1.19154i 0.0969849 0.0919297i
\(169\) 5.35369 + 9.27287i 0.411823 + 0.713298i
\(170\) −0.320884 −0.0246107
\(171\) 7.24113 3.67909i 0.553743 0.281347i
\(172\) 10.0283 0.764649
\(173\) 3.80675 + 6.59348i 0.289422 + 0.501293i 0.973672 0.227954i \(-0.0732037\pi\)
−0.684250 + 0.729247i \(0.739870\pi\)
\(174\) 1.87237 + 0.555788i 0.141944 + 0.0421342i
\(175\) −0.500000 + 0.866025i −0.0377964 + 0.0654654i
\(176\) 1.25707 2.17731i 0.0947551 0.164121i
\(177\) −20.4581 6.07273i −1.53773 0.456454i
\(178\) −8.02827 13.9054i −0.601745 1.04225i
\(179\) 3.32088 0.248215 0.124107 0.992269i \(-0.460393\pi\)
0.124107 + 0.992269i \(0.460393\pi\)
\(180\) 2.51414 + 1.63680i 0.187393 + 0.122000i
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −0.757068 1.31128i −0.0561176 0.0971986i
\(183\) −0.242932 + 0.230269i −0.0179580 + 0.0170220i
\(184\) −3.07795 + 5.33117i −0.226910 + 0.393019i
\(185\) 2.93165 5.07776i 0.215539 0.373325i
\(186\) 0.155906 + 0.651039i 0.0114316 + 0.0477365i
\(187\) −0.403374 0.698664i −0.0294976 0.0510914i
\(188\) −0.641769 −0.0468058
\(189\) −1.74293 + 4.89512i −0.126780 + 0.356068i
\(190\) −2.70739 −0.196415
\(191\) −3.48586 6.03769i −0.252228 0.436872i 0.711911 0.702270i \(-0.247830\pi\)
−0.964139 + 0.265398i \(0.914497\pi\)
\(192\) 0.403374 + 1.68443i 0.0291110 + 0.121563i
\(193\) −2.69598 + 4.66958i −0.194061 + 0.336124i −0.946592 0.322433i \(-0.895499\pi\)
0.752531 + 0.658557i \(0.228833\pi\)
\(194\) 1.30675 2.26335i 0.0938190 0.162499i
\(195\) 1.90337 1.80416i 0.136303 0.129199i
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) 13.6755 0.974340 0.487170 0.873307i \(-0.338029\pi\)
0.487170 + 0.873307i \(0.338029\pi\)
\(198\) −0.403374 + 7.53162i −0.0286665 + 0.535249i
\(199\) 26.4677 1.87625 0.938123 0.346301i \(-0.112562\pi\)
0.938123 + 0.346301i \(0.112562\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) 1.81635 + 0.539160i 0.128115 + 0.0380294i
\(202\) 7.54241 13.0638i 0.530682 0.919168i
\(203\) 0.563816 0.976558i 0.0395721 0.0685409i
\(204\) 0.532810 + 0.158158i 0.0373042 + 0.0110733i
\(205\) −5.38470 9.32657i −0.376084 0.651396i
\(206\) −3.42024 −0.238300
\(207\) 0.987667 18.4413i 0.0686476 1.28176i
\(208\) 1.51414 0.104987
\(209\) −3.40337 5.89482i −0.235416 0.407753i
\(210\) 1.25707 1.19154i 0.0867460 0.0822244i
\(211\) −1.41478 + 2.45047i −0.0973974 + 0.168697i −0.910607 0.413274i \(-0.864385\pi\)
0.813209 + 0.581971i \(0.197718\pi\)
\(212\) −1.41751 + 2.45520i −0.0973550 + 0.168624i
\(213\) 4.29041 + 17.9161i 0.293974 + 1.22759i
\(214\) 5.50960 + 9.54291i 0.376629 + 0.652340i
\(215\) 10.0283 0.683923
\(216\) −3.36783 3.95698i −0.229152 0.269239i
\(217\) 0.386505 0.0262377
\(218\) −8.29948 14.3751i −0.562112 0.973606i
\(219\) 2.27574 + 9.50314i 0.153780 + 0.642163i
\(220\) 1.25707 2.17731i 0.0847515 0.146794i
\(221\) 0.242932 0.420770i 0.0163413 0.0283040i
\(222\) −7.37056 + 6.98638i −0.494680 + 0.468895i
\(223\) 6.73840 + 11.6712i 0.451236 + 0.781564i 0.998463 0.0554201i \(-0.0176498\pi\)
−0.547227 + 0.836984i \(0.684316\pi\)
\(224\) 1.00000 0.0668153
\(225\) 2.51414 + 1.63680i 0.167609 + 0.109120i
\(226\) −11.7639 −0.782525
\(227\) −4.21012 7.29214i −0.279436 0.483997i 0.691809 0.722081i \(-0.256814\pi\)
−0.971245 + 0.238084i \(0.923481\pi\)
\(228\) 4.49546 + 1.33442i 0.297719 + 0.0883741i
\(229\) 11.7667 20.3805i 0.777563 1.34678i −0.155779 0.987792i \(-0.549789\pi\)
0.933342 0.358987i \(-0.116878\pi\)
\(230\) −3.07795 + 5.33117i −0.202954 + 0.351527i
\(231\) 4.17458 + 1.23917i 0.274667 + 0.0815314i
\(232\) 0.563816 + 0.976558i 0.0370163 + 0.0641142i
\(233\) 2.32635 0.152404 0.0762021 0.997092i \(-0.475721\pi\)
0.0762021 + 0.997092i \(0.475721\pi\)
\(234\) −4.04968 + 2.05757i −0.264736 + 0.134508i
\(235\) −0.641769 −0.0418644
\(236\) −6.16044 10.6702i −0.401011 0.694571i
\(237\) −5.83502 + 5.53088i −0.379025 + 0.359269i
\(238\) 0.160442 0.277894i 0.0103999 0.0180132i
\(239\) −2.19325 + 3.79882i −0.141870 + 0.245726i −0.928201 0.372080i \(-0.878645\pi\)
0.786331 + 0.617805i \(0.211978\pi\)
\(240\) 0.403374 + 1.68443i 0.0260377 + 0.108729i
\(241\) 1.11076 + 1.92390i 0.0715505 + 0.123929i 0.899581 0.436754i \(-0.143872\pi\)
−0.828030 + 0.560683i \(0.810539\pi\)
\(242\) −4.67912 −0.300785
\(243\) 14.3847 + 6.00670i 0.922779 + 0.385330i
\(244\) −0.193252 −0.0123717
\(245\) −0.500000 0.866025i −0.0319438 0.0553283i
\(246\) 4.34409 + 18.1403i 0.276969 + 1.15658i
\(247\) 2.04968 3.55015i 0.130418 0.225891i
\(248\) −0.193252 + 0.334723i −0.0122715 + 0.0212549i
\(249\) −7.12763 + 6.75611i −0.451695 + 0.428151i
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −17.5671 −1.10882 −0.554412 0.832242i \(-0.687057\pi\)
−0.554412 + 0.832242i \(0.687057\pi\)
\(252\) −2.67458 + 1.35891i −0.168483 + 0.0856030i
\(253\) −15.4768 −0.973017
\(254\) −2.95032 5.11011i −0.185120 0.320637i
\(255\) 0.532810 + 0.158158i 0.0333659 + 0.00990423i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 9.68418 16.7735i 0.604083 1.04630i −0.388113 0.921612i \(-0.626873\pi\)
0.992196 0.124690i \(-0.0397936\pi\)
\(258\) −16.6514 4.94274i −1.03667 0.307722i
\(259\) 2.93165 + 5.07776i 0.182164 + 0.315517i
\(260\) 1.51414 0.0939028
\(261\) −2.83502 1.84571i −0.175483 0.114246i
\(262\) 15.9627 0.986176
\(263\) 3.56382 + 6.17271i 0.219754 + 0.380626i 0.954733 0.297465i \(-0.0961411\pi\)
−0.734978 + 0.678090i \(0.762808\pi\)
\(264\) −3.16044 + 2.99571i −0.194512 + 0.184373i
\(265\) −1.41751 + 2.45520i −0.0870770 + 0.150822i
\(266\) 1.35369 2.34467i 0.0830003 0.143761i
\(267\) 6.47679 + 27.0461i 0.396373 + 1.65519i
\(268\) 0.546947 + 0.947340i 0.0334101 + 0.0578680i
\(269\) 15.6646 0.955086 0.477543 0.878608i \(-0.341527\pi\)
0.477543 + 0.878608i \(0.341527\pi\)
\(270\) −3.36783 3.95698i −0.204960 0.240814i
\(271\) −21.1842 −1.28685 −0.643424 0.765510i \(-0.722487\pi\)
−0.643424 + 0.765510i \(0.722487\pi\)
\(272\) 0.160442 + 0.277894i 0.00972824 + 0.0168498i
\(273\) 0.610763 + 2.55045i 0.0369651 + 0.154360i
\(274\) −11.1017 + 19.2287i −0.670678 + 1.16165i
\(275\) 1.25707 2.17731i 0.0758041 0.131297i
\(276\) 7.73840 7.33504i 0.465797 0.441517i
\(277\) 14.9627 + 25.9161i 0.899019 + 1.55715i 0.828751 + 0.559618i \(0.189052\pi\)
0.0702680 + 0.997528i \(0.477615\pi\)
\(278\) 7.25526 0.435142
\(279\) 0.0620117 1.15786i 0.00371254 0.0693190i
\(280\) 1.00000 0.0597614
\(281\) 15.4298 + 26.7253i 0.920467 + 1.59430i 0.798693 + 0.601738i \(0.205525\pi\)
0.121774 + 0.992558i \(0.461142\pi\)
\(282\) 1.06562 + 0.316316i 0.0634568 + 0.0188363i
\(283\) −10.2498 + 17.7532i −0.609287 + 1.05532i 0.382071 + 0.924133i \(0.375211\pi\)
−0.991358 + 0.131184i \(0.958122\pi\)
\(284\) −5.31815 + 9.21131i −0.315574 + 0.546591i
\(285\) 4.49546 + 1.33442i 0.266288 + 0.0790442i
\(286\) 1.90337 + 3.29674i 0.112549 + 0.194940i
\(287\) 10.7694 0.635698
\(288\) 0.160442 2.99571i 0.00945415 0.176524i
\(289\) −16.8970 −0.993943
\(290\) 0.563816 + 0.976558i 0.0331084 + 0.0573455i
\(291\) −3.28534 + 3.11410i −0.192590 + 0.182552i
\(292\) −2.82088 + 4.88592i −0.165080 + 0.285927i
\(293\) −4.14357 + 7.17688i −0.242070 + 0.419278i −0.961304 0.275490i \(-0.911160\pi\)
0.719234 + 0.694768i \(0.244493\pi\)
\(294\) 0.403374 + 1.68443i 0.0235252 + 0.0982377i
\(295\) −6.16044 10.6702i −0.358675 0.621243i
\(296\) −5.86330 −0.340797
\(297\) 4.38197 12.3070i 0.254268 0.714125i
\(298\) −11.6700 −0.676027
\(299\) −4.66044 8.07212i −0.269520 0.466823i
\(300\) 0.403374 + 1.68443i 0.0232888 + 0.0972504i
\(301\) −5.01414 + 8.68474i −0.289010 + 0.500580i
\(302\) 0.292611 0.506816i 0.0168379 0.0291640i
\(303\) −18.9627 + 17.9742i −1.08938 + 1.03259i
\(304\) 1.35369 + 2.34467i 0.0776397 + 0.134476i
\(305\) −0.193252 −0.0110656
\(306\) −0.806748 0.525224i −0.0461187 0.0300251i
\(307\) 9.21245 0.525783 0.262891 0.964825i \(-0.415324\pi\)
0.262891 + 0.964825i \(0.415324\pi\)
\(308\) 1.25707 + 2.17731i 0.0716281 + 0.124064i
\(309\) 5.67912 + 1.68577i 0.323074 + 0.0959002i
\(310\) −0.193252 + 0.334723i −0.0109760 + 0.0190110i
\(311\) −16.6983 + 28.9223i −0.946875 + 1.64004i −0.194921 + 0.980819i \(0.562445\pi\)
−0.751954 + 0.659216i \(0.770888\pi\)
\(312\) −2.51414 0.746289i −0.142335 0.0422503i
\(313\) −4.38743 7.59926i −0.247992 0.429535i 0.714976 0.699149i \(-0.246437\pi\)
−0.962969 + 0.269613i \(0.913104\pi\)
\(314\) −5.95719 −0.336184
\(315\) −2.67458 + 1.35891i −0.150695 + 0.0765657i
\(316\) −4.64177 −0.261120
\(317\) −14.1532 24.5140i −0.794921 1.37684i −0.922889 0.385066i \(-0.874179\pi\)
0.127968 0.991778i \(-0.459155\pi\)
\(318\) 3.56382 3.37805i 0.199849 0.189432i
\(319\) −1.41751 + 2.45520i −0.0793654 + 0.137465i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) −4.44486 18.5610i −0.248088 1.03598i
\(322\) −3.07795 5.33117i −0.171528 0.297095i
\(323\) 0.868759 0.0483391
\(324\) 3.64177 + 8.23028i 0.202320 + 0.457238i
\(325\) 1.51414 0.0839892
\(326\) 7.88197 + 13.6520i 0.436542 + 0.756113i
\(327\) 6.69558 + 27.9597i 0.370267 + 1.54618i
\(328\) −5.38470 + 9.32657i −0.297320 + 0.514974i
\(329\) 0.320884 0.555788i 0.0176909 0.0306416i
\(330\) −3.16044 + 2.99571i −0.173977 + 0.164908i
\(331\) −2.44852 4.24096i −0.134583 0.233104i 0.790855 0.612003i \(-0.209636\pi\)
−0.925438 + 0.378899i \(0.876303\pi\)
\(332\) −5.67004 −0.311184
\(333\) 15.6818 7.96767i 0.859360 0.436626i
\(334\) 7.22153 0.395144
\(335\) 0.546947 + 0.947340i 0.0298829 + 0.0517587i
\(336\) −1.66044 0.492881i −0.0905846 0.0268889i
\(337\) −12.5876 + 21.8023i −0.685688 + 1.18765i 0.287532 + 0.957771i \(0.407165\pi\)
−0.973220 + 0.229875i \(0.926168\pi\)
\(338\) 5.35369 9.27287i 0.291203 0.504378i
\(339\) 19.5333 + 5.79822i 1.06091 + 0.314916i
\(340\) 0.160442 + 0.277894i 0.00870120 + 0.0150709i
\(341\) −0.971726 −0.0526219
\(342\) −6.80675 4.43146i −0.368067 0.239626i
\(343\) 1.00000 0.0539949
\(344\) −5.01414 8.68474i −0.270344 0.468250i
\(345\) 7.73840 7.33504i 0.416621 0.394905i
\(346\) 3.80675 6.59348i 0.204652 0.354468i
\(347\) 7.77394 13.4649i 0.417327 0.722831i −0.578343 0.815794i \(-0.696300\pi\)
0.995670 + 0.0929626i \(0.0296337\pi\)
\(348\) −0.454857 1.89941i −0.0243829 0.101819i
\(349\) 16.3802 + 28.3713i 0.876810 + 1.51868i 0.854822 + 0.518921i \(0.173666\pi\)
0.0219881 + 0.999758i \(0.493000\pi\)
\(350\) 1.00000 0.0534522
\(351\) 7.73840 1.42047i 0.413045 0.0758189i
\(352\) −2.51414 −0.134004
\(353\) −4.66498 8.07998i −0.248292 0.430054i 0.714760 0.699370i \(-0.246536\pi\)
−0.963052 + 0.269316i \(0.913203\pi\)
\(354\) 4.96992 + 20.7536i 0.264148 + 1.10304i
\(355\) −5.31815 + 9.21131i −0.282258 + 0.488886i
\(356\) −8.02827 + 13.9054i −0.425498 + 0.736984i
\(357\) −0.403374 + 0.382348i −0.0213488 + 0.0202360i
\(358\) −1.66044 2.87597i −0.0877571 0.152000i
\(359\) 24.7038 1.30382 0.651908 0.758298i \(-0.273969\pi\)
0.651908 + 0.758298i \(0.273969\pi\)
\(360\) 0.160442 2.99571i 0.00845605 0.157888i
\(361\) −11.6700 −0.614213
\(362\) 5.00000 + 8.66025i 0.262794 + 0.455173i
\(363\) 7.76940 + 2.30625i 0.407788 + 0.121047i
\(364\) −0.757068 + 1.31128i −0.0396812 + 0.0687298i
\(365\) −2.82088 + 4.88592i −0.147652 + 0.255740i
\(366\) 0.320884 + 0.0952504i 0.0167729 + 0.00497882i
\(367\) 8.60169 + 14.8986i 0.449005 + 0.777699i 0.998321 0.0579153i \(-0.0184453\pi\)
−0.549317 + 0.835614i \(0.685112\pi\)
\(368\) 6.15591 0.320899
\(369\) 1.72787 32.2620i 0.0899492 1.67949i
\(370\) −5.86330 −0.304818
\(371\) −1.41751 2.45520i −0.0735935 0.127468i
\(372\) 0.485863 0.460538i 0.0251908 0.0238778i
\(373\) −6.50506 + 11.2671i −0.336819 + 0.583388i −0.983833 0.179090i \(-0.942685\pi\)
0.647013 + 0.762479i \(0.276018\pi\)
\(374\) −0.403374 + 0.698664i −0.0208580 + 0.0361270i
\(375\) 0.403374 + 1.68443i 0.0208301 + 0.0869834i
\(376\) 0.320884 + 0.555788i 0.0165484 + 0.0286626i
\(377\) −1.70739 −0.0879350
\(378\) 5.11076 0.938136i 0.262869 0.0482525i
\(379\) −26.8633 −1.37987 −0.689937 0.723869i \(-0.742362\pi\)
−0.689937 + 0.723869i \(0.742362\pi\)
\(380\) 1.35369 + 2.34467i 0.0694431 + 0.120279i
\(381\) 2.38016 + 9.93919i 0.121940 + 0.509200i
\(382\) −3.48586 + 6.03769i −0.178352 + 0.308915i
\(383\) 1.87237 3.24304i 0.0956735 0.165711i −0.814216 0.580562i \(-0.802833\pi\)
0.909890 + 0.414851i \(0.136166\pi\)
\(384\) 1.25707 1.19154i 0.0641495 0.0608058i
\(385\) 1.25707 + 2.17731i 0.0640661 + 0.110966i
\(386\) 5.39197 0.274444
\(387\) 25.2125 + 16.4143i 1.28162 + 0.834385i
\(388\) −2.61350 −0.132680
\(389\) 1.70739 + 2.95729i 0.0865681 + 0.149940i 0.906058 0.423153i \(-0.139077\pi\)
−0.819490 + 0.573093i \(0.805743\pi\)
\(390\) −2.51414 0.746289i −0.127308 0.0377898i
\(391\) 0.987667 1.71069i 0.0499485 0.0865133i
\(392\) −0.500000 + 0.866025i −0.0252538 + 0.0437409i
\(393\) −26.5051 7.86769i −1.33700 0.396872i
\(394\) −6.83775 11.8433i −0.344481 0.596659i
\(395\) −4.64177 −0.233553
\(396\) 6.72426 3.41648i 0.337907 0.171684i
\(397\) −13.0711 −0.656019 −0.328009 0.944674i \(-0.606378\pi\)
−0.328009 + 0.944674i \(0.606378\pi\)
\(398\) −13.2339 22.9217i −0.663353 1.14896i
\(399\) −3.40337 + 3.22598i −0.170382 + 0.161501i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 4.91478 8.51265i 0.245432 0.425101i −0.716821 0.697258i \(-0.754403\pi\)
0.962253 + 0.272156i \(0.0877368\pi\)
\(402\) −0.441248 1.84258i −0.0220075 0.0918997i
\(403\) −0.292611 0.506816i −0.0145760 0.0252463i
\(404\) −15.0848 −0.750498
\(405\) 3.64177 + 8.23028i 0.180961 + 0.408966i
\(406\) −1.12763 −0.0559634
\(407\) −7.37056 12.7662i −0.365345 0.632797i
\(408\) −0.129436 0.540506i −0.00640806 0.0267590i
\(409\) 15.6628 27.1287i 0.774474 1.34143i −0.160615 0.987017i \(-0.551348\pi\)
0.935089 0.354412i \(-0.115319\pi\)
\(410\) −5.38470 + 9.32657i −0.265931 + 0.460607i
\(411\) 27.9112 26.4563i 1.37676 1.30499i
\(412\) 1.71012 + 2.96202i 0.0842516 + 0.145928i
\(413\) 12.3209 0.606271
\(414\) −16.4645 + 8.36530i −0.809184 + 0.411132i
\(415\) −5.67004 −0.278331
\(416\) −0.757068 1.31128i −0.0371183 0.0642908i
\(417\) −12.0469 3.57598i −0.589942 0.175117i
\(418\) −3.40337 + 5.89482i −0.166464 + 0.288325i
\(419\) −13.9813 + 24.2164i −0.683033 + 1.18305i 0.291018 + 0.956717i \(0.406006\pi\)
−0.974051 + 0.226330i \(0.927327\pi\)
\(420\) −1.66044 0.492881i −0.0810213 0.0240501i
\(421\) −4.30494 7.45638i −0.209810 0.363402i 0.741844 0.670572i \(-0.233951\pi\)
−0.951655 + 0.307170i \(0.900618\pi\)
\(422\) 2.82956 0.137741
\(423\) −1.61350 1.05045i −0.0784508 0.0510745i
\(424\) 2.83502 0.137681
\(425\) 0.160442 + 0.277894i 0.00778259 + 0.0134798i
\(426\) 13.3706 12.6736i 0.647806 0.614040i
\(427\) 0.0966262 0.167362i 0.00467607 0.00809919i
\(428\) 5.50960 9.54291i 0.266317 0.461274i
\(429\) −1.53554 6.41218i −0.0741367 0.309583i
\(430\) −5.01414 8.68474i −0.241803 0.418815i
\(431\) −37.5953 −1.81090 −0.905452 0.424448i \(-0.860468\pi\)
−0.905452 + 0.424448i \(0.860468\pi\)
\(432\) −1.74293 + 4.89512i −0.0838568 + 0.235517i
\(433\) 28.5279 1.37096 0.685481 0.728090i \(-0.259592\pi\)
0.685481 + 0.728090i \(0.259592\pi\)
\(434\) −0.193252 0.334723i −0.00927641 0.0160672i
\(435\) −0.454857 1.89941i −0.0218087 0.0910699i
\(436\) −8.29948 + 14.3751i −0.397473 + 0.688443i
\(437\) 8.33322 14.4336i 0.398632 0.690451i
\(438\) 7.09209 6.72242i 0.338873 0.321210i
\(439\) −14.6113 25.3075i −0.697359 1.20786i −0.969379 0.245569i \(-0.921025\pi\)
0.272020 0.962292i \(-0.412308\pi\)
\(440\) −2.51414 −0.119857
\(441\) 0.160442 2.99571i 0.00764011 0.142653i
\(442\) −0.485863 −0.0231101
\(443\) 8.30675 + 14.3877i 0.394665 + 0.683581i 0.993058 0.117622i \(-0.0375271\pi\)
−0.598393 + 0.801203i \(0.704194\pi\)
\(444\) 9.73566 + 2.88991i 0.462034 + 0.137149i
\(445\) −8.02827 + 13.9054i −0.380577 + 0.659178i
\(446\) 6.73840 11.6712i 0.319072 0.552649i
\(447\) 19.3774 + 5.75194i 0.916521 + 0.272057i
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) −8.43398 −0.398024 −0.199012 0.979997i \(-0.563773\pi\)
−0.199012 + 0.979997i \(0.563773\pi\)
\(450\) 0.160442 2.99571i 0.00756332 0.141219i
\(451\) −27.0757 −1.27495
\(452\) 5.88197 + 10.1879i 0.276665 + 0.479197i
\(453\) −0.735663 + 0.697317i −0.0345645 + 0.0327628i
\(454\) −4.21012 + 7.29214i −0.197591 + 0.342237i
\(455\) −0.757068 + 1.31128i −0.0354919 + 0.0614738i
\(456\) −1.09209 4.56040i −0.0511418 0.213560i
\(457\) −10.7621 18.6406i −0.503431 0.871969i −0.999992 0.00396671i \(-0.998737\pi\)
0.496561 0.868002i \(-0.334596\pi\)
\(458\) −23.5333 −1.09964
\(459\) 1.08068 + 1.26973i 0.0504421 + 0.0592661i
\(460\) 6.15591 0.287021
\(461\) −5.06835 8.77864i −0.236057 0.408862i 0.723523 0.690301i \(-0.242522\pi\)
−0.959579 + 0.281439i \(0.909188\pi\)
\(462\) −1.01414 4.23488i −0.0471819 0.197024i
\(463\) 1.83502 3.17835i 0.0852807 0.147710i −0.820230 0.572034i \(-0.806155\pi\)
0.905511 + 0.424323i \(0.139488\pi\)
\(464\) 0.563816 0.976558i 0.0261745 0.0453356i
\(465\) 0.485863 0.460538i 0.0225314 0.0213569i
\(466\) −1.16317 2.01468i −0.0538830 0.0933281i
\(467\) 9.70378 0.449037 0.224519 0.974470i \(-0.427919\pi\)
0.224519 + 0.974470i \(0.427919\pi\)
\(468\) 3.80675 + 2.47834i 0.175967 + 0.114561i
\(469\) −1.09389 −0.0505113
\(470\) 0.320884 + 0.555788i 0.0148013 + 0.0256366i
\(471\) 9.89157 + 2.93618i 0.455779 + 0.135292i
\(472\) −6.16044 + 10.6702i −0.283557 + 0.491136i
\(473\) 12.6062 21.8346i 0.579635 1.00396i
\(474\) 7.70739 + 2.28784i 0.354012 + 0.105084i
\(475\) 1.35369 + 2.34467i 0.0621118 + 0.107581i
\(476\) −0.320884 −0.0147077
\(477\) −7.58249 + 3.85253i −0.347178 + 0.176395i
\(478\) 4.38650 0.200634
\(479\) −14.6541 25.3816i −0.669563 1.15972i −0.978026 0.208481i \(-0.933148\pi\)
0.308463 0.951236i \(-0.400185\pi\)
\(480\) 1.25707 1.19154i 0.0573771 0.0543863i
\(481\) 4.43892 7.68843i 0.202397 0.350562i
\(482\) 1.11076 1.92390i 0.0505939 0.0876312i
\(483\) 2.48313 + 10.3692i 0.112986 + 0.471813i
\(484\) 2.33956 + 4.05223i 0.106344 + 0.184192i
\(485\) −2.61350 −0.118673
\(486\) −1.99040 15.4609i −0.0902863 0.701319i
\(487\) 16.4431 0.745106 0.372553 0.928011i \(-0.378483\pi\)
0.372553 + 0.928011i \(0.378483\pi\)
\(488\) 0.0966262 + 0.167362i 0.00437406 + 0.00757610i
\(489\) −6.35876 26.5532i −0.287553 1.20078i
\(490\) −0.500000 + 0.866025i −0.0225877 + 0.0391230i
\(491\) 3.49727 6.05745i 0.157829 0.273369i −0.776256 0.630418i \(-0.782884\pi\)
0.934086 + 0.357049i \(0.116217\pi\)
\(492\) 13.5379 12.8322i 0.610335 0.578521i
\(493\) −0.180920 0.313362i −0.00814822 0.0141131i
\(494\) −4.09936 −0.184439
\(495\) 6.72426 3.41648i 0.302233 0.153559i
\(496\) 0.386505 0.0173546
\(497\) −5.31815 9.21131i −0.238552 0.413184i
\(498\) 9.41478 + 2.79466i 0.421886 + 0.125232i
\(499\) 13.5406 23.4530i 0.606161 1.04990i −0.385706 0.922622i \(-0.626042\pi\)
0.991867 0.127280i \(-0.0406245\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) −11.9909 3.55935i −0.535715 0.159020i
\(502\) 8.78354 + 15.2135i 0.392028 + 0.679013i
\(503\) 12.1878 0.543427 0.271713 0.962378i \(-0.412410\pi\)
0.271713 + 0.962378i \(0.412410\pi\)
\(504\) 2.51414 + 1.63680i 0.111989 + 0.0729089i
\(505\) −15.0848 −0.671266
\(506\) 7.73840 + 13.4033i 0.344014 + 0.595849i
\(507\) −13.4599 + 12.7583i −0.597776 + 0.566617i
\(508\) −2.95032 + 5.11011i −0.130899 + 0.226724i
\(509\) 4.34643 7.52823i 0.192652 0.333683i −0.753476 0.657475i \(-0.771624\pi\)
0.946128 + 0.323792i \(0.104958\pi\)
\(510\) −0.129436 0.540506i −0.00573154 0.0239340i
\(511\) −2.82088 4.88592i −0.124789 0.216140i
\(512\) 1.00000 0.0441942
\(513\) 9.11803 + 10.7131i 0.402571 + 0.472995i
\(514\) −19.3684 −0.854302
\(515\) 1.71012 + 2.96202i 0.0753570 + 0.130522i
\(516\) 4.04514 + 16.8919i 0.178077 + 0.743624i
\(517\) −0.806748 + 1.39733i −0.0354807 + 0.0614544i
\(518\) 2.93165 5.07776i 0.128809 0.223104i
\(519\) −9.57068 + 9.07182i −0.420106 + 0.398209i
\(520\) −0.757068 1.31128i −0.0331996 0.0575035i
\(521\) 15.2498 0.668106 0.334053 0.942554i \(-0.391584\pi\)
0.334053 + 0.942554i \(0.391584\pi\)
\(522\) −0.180920 + 3.37805i −0.00791865 + 0.147853i
\(523\) −20.1323 −0.880324 −0.440162 0.897918i \(-0.645079\pi\)
−0.440162 + 0.897918i \(0.645079\pi\)
\(524\) −7.98133 13.8241i −0.348666 0.603907i
\(525\) −1.66044 0.492881i −0.0724676 0.0215111i
\(526\) 3.56382 6.17271i 0.155390 0.269143i
\(527\) 0.0620117 0.107407i 0.00270127 0.00467874i
\(528\) 4.17458 + 1.23917i 0.181675 + 0.0539280i
\(529\) −7.44759 12.8996i −0.323808 0.560852i
\(530\) 2.83502 0.123145
\(531\) 1.97679 36.9098i 0.0857854 1.60175i
\(532\) −2.70739 −0.117380
\(533\) −8.15317 14.1217i −0.353153 0.611679i
\(534\) 20.1842 19.1321i 0.873455 0.827927i
\(535\) 5.50960 9.54291i 0.238201 0.412576i
\(536\) 0.546947 0.947340i 0.0236245 0.0409189i
\(537\) 1.33956 + 5.59378i 0.0578062 + 0.241390i
\(538\) −7.83229 13.5659i −0.337674 0.584868i
\(539\) −2.51414 −0.108292
\(540\) −1.74293 + 4.89512i −0.0750038 + 0.210652i
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 10.5921 + 18.3460i 0.454969 + 0.788030i
\(543\) −4.03374 16.8443i −0.173104 0.722856i
\(544\) 0.160442 0.277894i 0.00687890 0.0119146i
\(545\) −8.29948 + 14.3751i −0.355511 + 0.615762i
\(546\) 1.90337 1.80416i 0.0814569 0.0772110i
\(547\) 19.9713 + 34.5914i 0.853912 + 1.47902i 0.877650 + 0.479301i \(0.159110\pi\)
−0.0237382 + 0.999718i \(0.507557\pi\)
\(548\) 22.2034 0.948481
\(549\) −0.485863 0.316316i −0.0207361 0.0135000i
\(550\) −2.51414 −0.107203
\(551\) −1.52647 2.64392i −0.0650298 0.112635i
\(552\) −10.2215 3.03413i −0.435057 0.129141i
\(553\) 2.32088 4.01989i 0.0986940 0.170943i
\(554\) 14.9627 25.9161i 0.635702 1.10107i
\(555\) 9.73566 + 2.88991i 0.413256 + 0.122670i
\(556\) −3.62763 6.28324i −0.153846 0.266469i
\(557\) −19.4713 −0.825027 −0.412513 0.910952i \(-0.635349\pi\)
−0.412513 + 0.910952i \(0.635349\pi\)
\(558\) −1.03374 + 0.525224i −0.0437616 + 0.0222345i
\(559\) 15.1842 0.642222
\(560\) −0.500000 0.866025i −0.0211289 0.0365963i
\(561\) 1.01414 0.961276i 0.0428169 0.0405851i
\(562\) 15.4298 26.7253i 0.650869 1.12734i
\(563\) −21.6910 + 37.5700i −0.914169 + 1.58339i −0.106055 + 0.994360i \(0.533822\pi\)
−0.808114 + 0.589026i \(0.799511\pi\)
\(564\) −0.258873 1.08101i −0.0109005 0.0455188i
\(565\) 5.88197 + 10.1879i 0.247456 + 0.428607i
\(566\) 20.4996 0.861662
\(567\) −8.94852 0.961276i −0.375802 0.0403698i
\(568\) 10.6363 0.446289
\(569\) −16.1459 27.9655i −0.676872 1.17238i −0.975918 0.218137i \(-0.930002\pi\)
0.299046 0.954239i \(-0.403331\pi\)
\(570\) −1.09209 4.56040i −0.0457426 0.191014i
\(571\) 16.2667 28.1747i 0.680739 1.17907i −0.294017 0.955800i \(-0.594992\pi\)
0.974756 0.223274i \(-0.0716745\pi\)
\(572\) 1.90337 3.29674i 0.0795841 0.137844i
\(573\) 8.76394 8.30712i 0.366119 0.347035i
\(574\) −5.38470 9.32657i −0.224753 0.389284i
\(575\) 6.15591 0.256719
\(576\) −2.67458 + 1.35891i −0.111441 + 0.0566211i
\(577\) 1.86690 0.0777202 0.0388601 0.999245i \(-0.487627\pi\)
0.0388601 + 0.999245i \(0.487627\pi\)
\(578\) 8.44852 + 14.6333i 0.351412 + 0.608663i
\(579\) −8.95305 2.65760i −0.372076 0.110446i
\(580\) 0.563816 0.976558i 0.0234112 0.0405494i
\(581\) 2.83502 4.91040i 0.117617 0.203718i
\(582\) 4.33956 + 1.28814i 0.179880 + 0.0533952i
\(583\) 3.56382 + 6.17271i 0.147598 + 0.255648i
\(584\) 5.64177 0.233458
\(585\) 3.80675 + 2.47834i 0.157390 + 0.102467i
\(586\) 8.28715 0.342339
\(587\) 0.0583520 + 0.101069i 0.00240845 + 0.00417155i 0.867227 0.497913i \(-0.165900\pi\)
−0.864819 + 0.502084i \(0.832567\pi\)
\(588\) 1.25707 1.19154i 0.0518406 0.0491385i
\(589\) 0.523210 0.906226i 0.0215585 0.0373404i
\(590\) −6.16044 + 10.6702i −0.253621 + 0.439285i
\(591\) 5.51634 + 23.0354i 0.226912 + 0.947549i
\(592\) 2.93165 + 5.07776i 0.120490 + 0.208695i
\(593\) −12.2179 −0.501730 −0.250865 0.968022i \(-0.580715\pi\)
−0.250865 + 0.968022i \(0.580715\pi\)
\(594\) −12.8492 + 2.35860i −0.527207 + 0.0967747i
\(595\) −0.320884 −0.0131550
\(596\) 5.83502 + 10.1066i 0.239012 + 0.413981i
\(597\) 10.6764 + 44.5829i 0.436955 + 1.82466i
\(598\) −4.66044 + 8.07212i −0.190580 + 0.330094i
\(599\) −8.99093 + 15.5727i −0.367359 + 0.636285i −0.989152 0.146897i \(-0.953071\pi\)
0.621792 + 0.783182i \(0.286405\pi\)
\(600\) 1.25707 1.19154i 0.0513196 0.0486446i
\(601\) 18.8988 + 32.7337i 0.770900 + 1.33524i 0.937070 + 0.349140i \(0.113526\pi\)
−0.166171 + 0.986097i \(0.553140\pi\)
\(602\) 10.0283 0.408722
\(603\) −0.175507 + 3.27699i −0.00714719 + 0.133449i
\(604\) −0.585221 −0.0238123
\(605\) 2.33956 + 4.05223i 0.0951165 + 0.164747i
\(606\) 25.0475 + 7.43502i 1.01748 + 0.302027i
\(607\) −8.05655 + 13.9543i −0.327005 + 0.566390i −0.981916 0.189316i \(-0.939373\pi\)
0.654911 + 0.755706i \(0.272706\pi\)
\(608\) 1.35369 2.34467i 0.0548996 0.0950888i
\(609\) 1.87237 + 0.555788i 0.0758722 + 0.0225217i
\(610\) 0.0966262 + 0.167362i 0.00391228 + 0.00677627i
\(611\) −0.971726 −0.0393118
\(612\) −0.0514834 + 0.961276i −0.00208109 + 0.0388573i
\(613\) 38.1696 1.54166 0.770829 0.637042i \(-0.219842\pi\)
0.770829 + 0.637042i \(0.219842\pi\)
\(614\) −4.60623 7.97822i −0.185892 0.321975i
\(615\) 13.5379 12.8322i 0.545900 0.517445i
\(616\) 1.25707 2.17731i 0.0506487 0.0877262i
\(617\) −0.176384 + 0.305505i −0.00710093 + 0.0122992i −0.869554 0.493838i \(-0.835594\pi\)
0.862453 + 0.506137i \(0.168927\pi\)
\(618\) −1.37964 5.76114i −0.0554971 0.231747i
\(619\) −14.7407 25.5317i −0.592480 1.02621i −0.993897 0.110310i \(-0.964816\pi\)
0.401417 0.915895i \(-0.368518\pi\)
\(620\) 0.386505 0.0155224
\(621\) 31.4614 5.77508i 1.26250 0.231746i
\(622\) 33.3966 1.33908
\(623\) −8.02827 13.9054i −0.321646 0.557107i
\(624\) 0.610763 + 2.55045i 0.0244501 + 0.102100i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −4.38743 + 7.59926i −0.175357 + 0.303727i
\(627\) 8.55655 8.11054i 0.341716 0.323904i
\(628\) 2.97859 + 5.15908i 0.118859 + 0.205870i
\(629\) 1.88144 0.0750179
\(630\) 2.51414 + 1.63680i 0.100166 + 0.0652117i
\(631\) −8.63631 −0.343806 −0.171903 0.985114i \(-0.554992\pi\)
−0.171903 + 0.985114i \(0.554992\pi\)
\(632\) 2.32088 + 4.01989i 0.0923198 + 0.159903i
\(633\) −4.69832 1.39463i −0.186741 0.0554318i
\(634\) −14.1532 + 24.5140i −0.562094 + 0.973576i
\(635\) −2.95032 + 5.11011i −0.117080 + 0.202788i
\(636\) −4.70739 1.39733i −0.186660 0.0554077i
\(637\) −0.757068 1.31128i −0.0299961 0.0519548i
\(638\) 2.83502 0.112240
\(639\) −28.4476 + 14.4537i −1.12537 + 0.571781i
\(640\) 1.00000 0.0395285
\(641\) 16.0611 + 27.8186i 0.634375 + 1.09877i 0.986647 + 0.162872i \(0.0520757\pi\)
−0.352273 + 0.935897i \(0.614591\pi\)
\(642\) −13.8519 + 13.1299i −0.546691 + 0.518195i
\(643\) 20.4791 35.4709i 0.807618 1.39883i −0.106892 0.994271i \(-0.534090\pi\)
0.914510 0.404564i \(-0.132577\pi\)
\(644\) −3.07795 + 5.33117i −0.121288 + 0.210078i
\(645\) 4.04514 + 16.8919i 0.159277 + 0.665117i
\(646\) −0.434380 0.752368i −0.0170904 0.0296015i
\(647\) 6.20418 0.243912 0.121956 0.992536i \(-0.461083\pi\)
0.121956 + 0.992536i \(0.461083\pi\)
\(648\) 5.30675 7.26900i 0.208469 0.285553i
\(649\) −30.9764 −1.21593
\(650\) −0.757068 1.31128i −0.0296947 0.0514327i
\(651\) 0.155906 + 0.651039i 0.00611044 + 0.0255162i
\(652\) 7.88197 13.6520i 0.308682 0.534652i
\(653\) 3.97173 6.87923i 0.155426 0.269205i −0.777788 0.628526i \(-0.783658\pi\)
0.933214 + 0.359321i \(0.116992\pi\)
\(654\) 20.8660 19.7784i 0.815926 0.773397i
\(655\) −7.98133 13.8241i −0.311856 0.540151i
\(656\) 10.7694 0.420474
\(657\) −15.0894 + 7.66664i −0.588692 + 0.299104i
\(658\) −0.641769 −0.0250188
\(659\) −2.67912 4.64036i −0.104364 0.180763i 0.809114 0.587651i \(-0.199947\pi\)
−0.913478 + 0.406888i \(0.866614\pi\)
\(660\) 4.17458 + 1.23917i 0.162495 + 0.0482346i
\(661\) −5.95719 + 10.3182i −0.231708 + 0.401330i −0.958311 0.285728i \(-0.907765\pi\)
0.726603 + 0.687058i \(0.241098\pi\)
\(662\) −2.44852 + 4.24096i −0.0951643 + 0.164829i
\(663\) 0.806748 + 0.239473i 0.0313315 + 0.00930035i
\(664\) 2.83502 + 4.91040i 0.110020 + 0.190561i
\(665\) −2.70739 −0.104988
\(666\) −14.7411 9.59704i −0.571207 0.371878i
\(667\) −6.94160 −0.268780
\(668\) −3.61076 6.25403i −0.139705 0.241976i
\(669\) −16.9412 + 16.0582i −0.654986 + 0.620846i
\(670\) 0.546947 0.947340i 0.0211304 0.0365989i
\(671\) −0.242932 + 0.420770i −0.00937827 + 0.0162436i
\(672\) 0.403374 + 1.68443i 0.0155605 + 0.0649781i
\(673\) −5.54241 9.59974i −0.213644 0.370043i 0.739208 0.673477i \(-0.235200\pi\)
−0.952852 + 0.303434i \(0.901867\pi\)
\(674\) 25.1751 0.969709
\(675\) −1.74293 + 4.89512i −0.0670855 + 0.188413i
\(676\) −10.7074 −0.411823
\(677\) 4.52647 + 7.84008i 0.173966 + 0.301319i 0.939803 0.341717i \(-0.111008\pi\)
−0.765837 + 0.643035i \(0.777675\pi\)
\(678\) −4.74526 19.8155i −0.182241 0.761009i
\(679\) 1.30675 2.26335i 0.0501484 0.0868595i
\(680\) 0.160442 0.277894i 0.00615268 0.0106568i
\(681\) 10.5848 10.0331i 0.405611 0.384469i
\(682\) 0.485863 + 0.841540i 0.0186047 + 0.0322242i
\(683\) −1.74659 −0.0668315 −0.0334157 0.999442i \(-0.510639\pi\)
−0.0334157 + 0.999442i \(0.510639\pi\)
\(684\) −0.434380 + 8.11054i −0.0166089 + 0.310114i
\(685\) 22.2034 0.848348
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) 39.0757 + 11.5991i 1.49083 + 0.442534i
\(688\) −5.01414 + 8.68474i −0.191162 + 0.331103i
\(689\) −2.14631 + 3.71751i −0.0817677 + 0.141626i
\(690\) −10.2215 3.03413i −0.389127 0.115507i
\(691\) −11.2835 19.5437i −0.429246 0.743476i 0.567560 0.823332i \(-0.307887\pi\)
−0.996806 + 0.0798559i \(0.974554\pi\)
\(692\) −7.61350 −0.289422
\(693\) −0.403374 + 7.53162i −0.0153229 + 0.286102i
\(694\) −15.5479 −0.590189
\(695\) −3.62763 6.28324i −0.137604 0.238337i
\(696\) −1.41751 + 1.34362i −0.0537306 + 0.0509299i
\(697\) 1.72787 2.99275i 0.0654476 0.113359i
\(698\) 16.3802 28.3713i 0.619998 1.07387i
\(699\) 0.938388 + 3.91856i 0.0354931 + 0.148214i
\(700\) −0.500000 0.866025i −0.0188982 0.0327327i
\(701\) 41.4778 1.56660 0.783298 0.621646i \(-0.213536\pi\)
0.783298 + 0.621646i \(0.213536\pi\)
\(702\) −5.09936 5.99141i −0.192463 0.226131i
\(703\) 15.8742 0.598708
\(704\) 1.25707 + 2.17731i 0.0473776 + 0.0820603i
\(705\) −0.258873 1.08101i −0.00974971 0.0407133i
\(706\) −4.66498 + 8.07998i −0.175569 + 0.304094i
\(707\) 7.54241 13.0638i 0.283662 0.491316i
\(708\) 15.4882 14.6809i 0.582082 0.551741i
\(709\) 23.0780 + 39.9722i 0.866711 + 1.50119i 0.865338 + 0.501188i \(0.167103\pi\)
0.00137226 + 0.999999i \(0.499563\pi\)
\(710\) 10.6363 0.399173
\(711\) −11.6700 7.59765i −0.437661 0.284934i
\(712\) 16.0565 0.601745
\(713\) −1.18964 2.06052i −0.0445525 0.0771672i
\(714\) 0.532810 + 0.158158i 0.0199399 + 0.00591891i
\(715\) 1.90337 3.29674i 0.0711821 0.123291i
\(716\) −1.66044 + 2.87597i −0.0620536 + 0.107480i
\(717\) −7.28354 2.16202i −0.272009 0.0807423i
\(718\) −12.3519 21.3941i −0.460968 0.798421i
\(719\) −20.7230 −0.772837 −0.386418 0.922324i \(-0.626288\pi\)
−0.386418 + 0.922324i \(0.626288\pi\)
\(720\) −2.67458 + 1.35891i −0.0996757 + 0.0506434i
\(721\) −3.42024 −0.127376
\(722\) 5.83502 + 10.1066i 0.217157 + 0.376127i
\(723\) −2.79261 + 2.64705i −0.103858 + 0.0984448i
\(724\) 5.00000 8.66025i 0.185824 0.321856i
\(725\) 0.563816 0.976558i 0.0209396 0.0362685i
\(726\) −1.88743 7.88162i −0.0700492 0.292514i
\(727\) 7.86603 + 13.6244i 0.291735 + 0.505300i 0.974220 0.225600i \(-0.0724342\pi\)
−0.682485 + 0.730899i \(0.739101\pi\)
\(728\) 1.51414 0.0561176
\(729\) −4.31542 + 26.6529i −0.159830 + 0.987144i
\(730\) 5.64177 0.208811
\(731\) 1.60896 + 2.78680i 0.0595095 + 0.103073i
\(732\) −0.0779530 0.325519i −0.00288122 0.0120315i
\(733\) −17.0406 + 29.5152i −0.629409 + 1.09017i 0.358261 + 0.933621i \(0.383370\pi\)
−0.987670 + 0.156547i \(0.949964\pi\)
\(734\) 8.60169 14.8986i 0.317494 0.549916i
\(735\) 1.25707 1.19154i 0.0463677 0.0439508i
\(736\) −3.07795 5.33117i −0.113455 0.196510i
\(737\) 2.75020 0.101305
\(738\) −28.8036 + 14.6346i −1.06028 + 0.538707i
\(739\) −8.50321 −0.312796 −0.156398 0.987694i \(-0.549988\pi\)
−0.156398 + 0.987694i \(0.549988\pi\)
\(740\) 2.93165 + 5.07776i 0.107770 + 0.186662i
\(741\) 6.80675 + 2.02050i 0.250052 + 0.0742247i
\(742\) −1.41751 + 2.45520i −0.0520385 + 0.0901332i
\(743\) 14.6700 25.4093i 0.538192 0.932175i −0.460810 0.887499i \(-0.652441\pi\)
0.999002 0.0446764i \(-0.0142257\pi\)
\(744\) −0.641769 0.190501i −0.0235284 0.00698410i
\(745\) 5.83502 + 10.1066i 0.213779 + 0.370275i
\(746\) 13.0101 0.476335
\(747\) −14.2553 9.28073i −0.521573 0.339564i
\(748\) 0.806748 0.0294976
\(749\) 5.50960 + 9.54291i 0.201316 + 0.348690i
\(750\) 1.25707 1.19154i 0.0459017 0.0435091i
\(751\) 17.6017 30.4870i 0.642295 1.11249i −0.342624 0.939472i \(-0.611316\pi\)
0.984919 0.173015i \(-0.0553508\pi\)
\(752\) 0.320884 0.555788i 0.0117015 0.0202675i
\(753\) −7.08610 29.5904i −0.258232 1.07834i
\(754\) 0.853695 + 1.47864i 0.0310897 + 0.0538490i
\(755\) −0.585221 −0.0212984
\(756\) −3.36783 3.95698i −0.122487 0.143914i
\(757\) −36.8350 −1.33879 −0.669396 0.742906i \(-0.733447\pi\)
−0.669396 + 0.742906i \(0.733447\pi\)
\(758\) 13.4316 + 23.2643i 0.487859 + 0.844997i
\(759\) −6.24293 26.0695i −0.226604 0.946263i
\(760\) 1.35369 2.34467i 0.0491037 0.0850500i
\(761\) −3.40571 + 5.89886i −0.123457 + 0.213833i −0.921129 0.389258i \(-0.872731\pi\)
0.797672 + 0.603092i \(0.206065\pi\)
\(762\) 7.41751 7.03088i 0.268708 0.254702i
\(763\) −8.29948 14.3751i −0.300461 0.520414i
\(764\) 6.97173 0.252228
\(765\) −0.0514834 + 0.961276i −0.00186139 + 0.0347550i
\(766\) −3.74474 −0.135303
\(767\) −9.32775 16.1561i −0.336806 0.583364i
\(768\) −1.66044 0.492881i −0.0599160 0.0177853i
\(769\) 14.9476 25.8900i 0.539024 0.933617i −0.459933 0.887954i \(-0.652127\pi\)
0.998957 0.0456631i \(-0.0145401\pi\)
\(770\) 1.25707 2.17731i 0.0453016 0.0784647i
\(771\) 32.1600 + 9.54629i 1.15822 + 0.343801i
\(772\) −2.69598 4.66958i −0.0970306 0.168062i
\(773\) −42.0137 −1.51113 −0.755565 0.655074i \(-0.772637\pi\)
−0.755565 + 0.655074i \(0.772637\pi\)
\(774\) 1.60896 30.0418i 0.0578328 1.07983i
\(775\) 0.386505 0.0138837
\(776\) 1.30675 + 2.26335i 0.0469095 + 0.0812496i
\(777\) −7.37056 + 6.98638i −0.264417 + 0.250635i
\(778\) 1.70739 2.95729i 0.0612129 0.106024i
\(779\) 14.5785 25.2507i 0.522328 0.904699i
\(780\) 0.610763 + 2.55045i 0.0218688 + 0.0913208i
\(781\) 13.3706 + 23.1585i 0.478436 + 0.828676i
\(782\) −1.97533 −0.0706378
\(783\) 1.96539 5.51989i 0.0702371 0.197265i
\(784\) 1.00000 0.0357143
\(785\) 2.97859 + 5.15908i 0.106311 + 0.184135i
\(786\) 6.43892 + 26.8879i 0.229669 + 0.959060i
\(787\) −20.7603 + 35.9579i −0.740026 + 1.28176i 0.212457 + 0.977170i \(0.431853\pi\)
−0.952483 + 0.304592i \(0.901480\pi\)
\(788\) −6.83775 + 11.8433i −0.243585 + 0.421901i
\(789\) −8.95992 + 8.49289i −0.318982 + 0.302355i
\(790\) 2.32088 + 4.01989i 0.0825734 + 0.143021i
\(791\) −11.7639 −0.418277
\(792\) −6.32088 4.11514i −0.224603 0.146225i
\(793\) −0.292611 −0.0103909
\(794\) 6.53554 + 11.3199i 0.231938 + 0.401728i
\(795\) −4.70739 1.39733i −0.166954 0.0495581i
\(796\) −13.2339 + 22.9217i −0.469062 + 0.812439i
\(797\) −17.5051 + 30.3197i −0.620061 + 1.07398i 0.369413 + 0.929265i \(0.379559\pi\)
−0.989474 + 0.144712i \(0.953774\pi\)
\(798\) 4.49546 + 1.33442i 0.159138 + 0.0472380i
\(799\) −0.102967 0.178344i −0.00364271 0.00630935i
\(800\) 1.00000 0.0353553
\(801\) −42.9445 + 21.8193i −1.51737 + 0.770949i
\(802\) −9.82956 −0.347094
\(803\) 7.09209 + 12.2839i 0.250274 + 0.433488i
\(804\) −1.37510 + 1.30342i −0.0484960 + 0.0459682i
\(805\) −3.07795 + 5.33117i −0.108484 + 0.187899i
\(806\) −0.292611 + 0.506816i −0.0103068 + 0.0178518i
\(807\) 6.31868 + 26.3858i 0.222428 + 0.928825i
\(808\) 7.54241 + 13.0638i 0.265341 + 0.459584i
\(809\) −50.1040 −1.76156 −0.880782 0.473522i \(-0.842982\pi\)
−0.880782 + 0.473522i \(0.842982\pi\)
\(810\) 5.30675 7.26900i 0.186460 0.255407i
\(811\) −34.7749 −1.22111 −0.610555 0.791974i \(-0.709054\pi\)
−0.610555 + 0.791974i \(0.709054\pi\)
\(812\) 0.563816 + 0.976558i 0.0197861 + 0.0342705i
\(813\) −8.54514 35.6832i −0.299691 1.25146i
\(814\) −7.37056 + 12.7662i −0.258338 + 0.447455i
\(815\) 7.88197 13.6520i 0.276093 0.478208i
\(816\) −0.403374 + 0.382348i −0.0141209 + 0.0133849i
\(817\) 13.5752 + 23.5130i 0.474937 + 0.822615i
\(818\) −31.3255 −1.09527
\(819\) −4.04968 + 2.05757i −0.141507 + 0.0718973i
\(820\) 10.7694 0.376084
\(821\) 17.4271 + 30.1846i 0.608210 + 1.05345i 0.991535 + 0.129838i \(0.0414456\pi\)
−0.383325 + 0.923614i \(0.625221\pi\)
\(822\) −36.8674 10.9436i −1.28590 0.381703i
\(823\) 11.7425 20.3387i 0.409319 0.708961i −0.585495 0.810676i \(-0.699100\pi\)
0.994814 + 0.101715i \(0.0324330\pi\)
\(824\) 1.71012 2.96202i 0.0595749 0.103187i
\(825\) 4.17458 + 1.23917i 0.145340 + 0.0431424i
\(826\) −6.16044 10.6702i −0.214349 0.371264i
\(827\) −33.6327 −1.16952 −0.584762 0.811205i \(-0.698812\pi\)
−0.584762 + 0.811205i \(0.698812\pi\)
\(828\) 15.4768 + 10.0760i 0.537856 + 0.350165i
\(829\) 52.4249 1.82079 0.910396 0.413738i \(-0.135777\pi\)
0.910396 + 0.413738i \(0.135777\pi\)
\(830\) 2.83502 + 4.91040i 0.0984050 + 0.170443i
\(831\) −37.6182 + 35.6573i −1.30496 + 1.23694i
\(832\) −0.757068 + 1.31128i −0.0262466 + 0.0454605i
\(833\) 0.160442 0.277894i 0.00555899 0.00962846i
\(834\) 2.92658 + 12.2210i 0.101339 + 0.423177i
\(835\) −3.61076 6.25403i −0.124956 0.216429i
\(836\) 6.80675 0.235416
\(837\) 1.97533 0.362594i 0.0682776 0.0125331i
\(838\) 27.9627 0.965954
\(839\) −1.22373 2.11956i −0.0422479 0.0731754i 0.844128 0.536141i \(-0.180119\pi\)
−0.886376 + 0.462966i \(0.846785\pi\)
\(840\) 0.403374 + 1.68443i 0.0139177 + 0.0581182i
\(841\) 13.8642 24.0135i 0.478077 0.828053i
\(842\) −4.30494 + 7.45638i −0.148358 + 0.256964i
\(843\) −38.7927 + 36.7707i −1.33609 + 1.26645i
\(844\) −1.41478 2.45047i −0.0486987 0.0843486i
\(845\) −10.7074 −0.368345
\(846\) −0.102967 + 1.92255i −0.00354007 + 0.0660987i
\(847\) −4.67912 −0.160776
\(848\) −1.41751 2.45520i −0.0486775 0.0843119i
\(849\) −34.0384 10.1039i −1.16819 0.346764i
\(850\) 0.160442 0.277894i 0.00550312 0.00953169i
\(851\) 18.0469 31.2582i 0.618641 1.07152i
\(852\) −17.6610 5.24243i −0.605055 0.179603i
\(853\) 6.35462 + 11.0065i 0.217578 + 0.376856i 0.954067 0.299593i \(-0.0968510\pi\)
−0.736489 + 0.676450i \(0.763518\pi\)
\(854\) −0.193252 −0.00661296
\(855\) −0.434380 + 8.11054i −0.0148555 + 0.277375i
\(856\) −11.0192 −0.376629
\(857\) −20.0041 34.6482i −0.683328 1.18356i −0.973959 0.226724i \(-0.927198\pi\)
0.290631 0.956835i \(-0.406135\pi\)
\(858\) −4.78534 + 4.53591i −0.163369 + 0.154853i
\(859\) 21.0292 36.4236i 0.717507 1.24276i −0.244477 0.969655i \(-0.578616\pi\)
0.961985 0.273104i \(-0.0880502\pi\)
\(860\) −5.01414 + 8.68474i −0.170981 + 0.296147i
\(861\) 4.34409 + 18.1403i 0.148046 + 0.618218i
\(862\) 18.7977 + 32.5585i 0.640251 + 1.10895i
\(863\) −12.6599 −0.430948 −0.215474 0.976510i \(-0.569130\pi\)
−0.215474 + 0.976510i \(0.569130\pi\)
\(864\) 5.11076 0.938136i 0.173872 0.0319161i
\(865\) −7.61350 −0.258867
\(866\) −14.2639 24.7059i −0.484708 0.839539i
\(867\) −6.81582 28.4618i −0.231477 0.966613i
\(868\) −0.193252 + 0.334723i −0.00655941 + 0.0113612i
\(869\) −5.83502 + 10.1066i −0.197940 + 0.342841i
\(870\) −1.41751 + 1.34362i −0.0480581 + 0.0455531i
\(871\) 0.828153 + 1.43440i 0.0280609 + 0.0486029i
\(872\) 16.5990 0.562112
\(873\) −6.57068 4.27777i −0.222384 0.144781i
\(874\) −16.6664 −0.563751
\(875\) −0.500000 0.866025i −0.0169031 0.0292770i
\(876\) −9.36783 2.78072i −0.316510 0.0939518i
\(877\) 24.8004 42.9556i 0.837450 1.45051i −0.0545695 0.998510i \(-0.517379\pi\)
0.892020 0.451996i \(-0.149288\pi\)
\(878\) −14.6113 + 25.3075i −0.493107 + 0.854087i
\(879\) −13.7603 4.08458i −0.464124 0.137769i
\(880\) 1.25707 + 2.17731i 0.0423758 + 0.0733970i
\(881\) −6.87783 −0.231720 −0.115860 0.993266i \(-0.536962\pi\)
−0.115860 + 0.993266i \(0.536962\pi\)
\(882\) −2.67458 + 1.35891i −0.0900578 + 0.0457568i
\(883\) 51.6044 1.73663 0.868314 0.496016i \(-0.165204\pi\)
0.868314 + 0.496016i \(0.165204\pi\)
\(884\) 0.242932 + 0.420770i 0.00817067 + 0.0141520i
\(885\) 15.4882 14.6809i 0.520630 0.493493i
\(886\) 8.30675 14.3877i 0.279071 0.483365i
\(887\) −5.34916 + 9.26501i −0.179607 + 0.311089i −0.941746 0.336325i \(-0.890816\pi\)
0.762139 + 0.647414i \(0.224149\pi\)
\(888\) −2.36510 9.87628i −0.0793675 0.331426i
\(889\) −2.95032 5.11011i −0.0989506 0.171387i
\(890\) 16.0565 0.538217
\(891\) 22.4978 + 2.41678i 0.753705 + 0.0809651i
\(892\) −13.4768 −0.451236
\(893\) −0.868759 1.50474i −0.0290719 0.0503540i
\(894\) −4.70739 19.6573i −0.157439 0.657439i
\(895\) −1.66044 + 2.87597i −0.0555025 + 0.0961331i
\(896\) −0.500000 + 0.866025i −0.0167038 + 0.0289319i
\(897\) 11.7170 11.1063i 0.391219 0.370827i
\(898\) 4.21699 + 7.30404i 0.140723 + 0.243739i
\(899\) −0.435835 −0.0145359
\(900\) −2.67458 + 1.35891i −0.0891526 + 0.0452969i
\(901\) −0.909714 −0.0303070
\(902\) 13.5379 + 23.4483i 0.450762 + 0.780743i
\(903\) −16.6514 4.94274i −0.554123 0.164484i
\(904\) 5.88197 10.1879i 0.195631 0.338843i
\(905\) 5.00000 8.66025i 0.166206 0.287877i
\(906\) 0.971726 + 0.288444i 0.0322834 + 0.00958292i
\(907\) −16.5752 28.7091i −0.550371 0.953271i −0.998248 0.0591754i \(-0.981153\pi\)
0.447876 0.894095i \(-0.352180\pi\)
\(908\) 8.42024 0.279436
\(909\) −37.9253 24.6908i −1.25790 0.818944i
\(910\) 1.51414 0.0501932
\(911\) 3.04008 + 5.26557i 0.100722 + 0.174456i 0.911982 0.410229i \(-0.134551\pi\)
−0.811260 + 0.584685i \(0.801218\pi\)
\(912\) −3.40337 + 3.22598i −0.112697 + 0.106823i
\(913\) −7.12763 + 12.3454i −0.235890 + 0.408574i
\(914\) −10.7621 + 18.6406i −0.355980 + 0.616575i
\(915\) −0.0779530 0.325519i −0.00257705 0.0107613i
\(916\) 11.7667 + 20.3805i 0.388782 + 0.673390i
\(917\) 15.9627 0.527133
\(918\) 0.559280 1.57077i 0.0184590 0.0518431i
\(919\) 47.3165 1.56083 0.780413 0.625264i \(-0.215009\pi\)
0.780413 + 0.625264i \(0.215009\pi\)
\(920\) −3.07795 5.33117i −0.101477 0.175764i
\(921\) 3.71606 + 15.5177i 0.122448 + 0.511325i
\(922\) −5.06835 + 8.77864i −0.166917 + 0.289109i
\(923\) −8.05241 + 13.9472i −0.265048 + 0.459077i
\(924\) −3.16044 + 2.99571i −0.103971 + 0.0985515i
\(925\) 2.93165 + 5.07776i 0.0963920 + 0.166956i
\(926\) −3.67004 −0.120605
\(927\) −0.548751 + 10.2460i −0.0180234 + 0.336524i
\(928\) −1.12763 −0.0370163
\(929\) 9.48586 + 16.4300i 0.311221 + 0.539051i 0.978627 0.205643i \(-0.0659287\pi\)
−0.667406 + 0.744694i \(0.732595\pi\)
\(930\) −0.641769 0.190501i −0.0210444 0.00624677i
\(931\) 1.35369 2.34467i 0.0443656 0.0768434i
\(932\) −1.16317 + 2.01468i −0.0381010 + 0.0659929i
\(933\) −55.4532 16.4606i −1.81546 0.538895i
\(934\) −4.85189 8.40372i −0.158759 0.274978i
\(935\) 0.806748 0.0263835
\(936\) 0.242932 4.53591i 0.00794047 0.148261i
\(937\) −2.33823 −0.0763867 −0.0381933 0.999270i \(-0.512160\pi\)
−0.0381933 + 0.999270i \(0.512160\pi\)
\(938\) 0.546947 + 0.947340i 0.0178585 + 0.0309318i
\(939\) 11.0306 10.4556i 0.359970 0.341207i
\(940\) 0.320884 0.555788i 0.0104661 0.0181278i
\(941\) −5.42024 + 9.38814i −0.176695 + 0.306044i −0.940747 0.339111i \(-0.889874\pi\)
0.764052 + 0.645155i \(0.223207\pi\)
\(942\) −2.40297 10.0344i −0.0782931 0.326940i
\(943\) −33.1477 57.4135i −1.07944 1.86964i
\(944\) 12.3209 0.401011
\(945\) −3.36783 3.95698i −0.109556 0.128721i
\(946\) −25.2125 −0.819728
\(947\) 21.8720 + 37.8834i 0.710743 + 1.23104i 0.964578 + 0.263796i \(0.0849747\pi\)
−0.253835 + 0.967248i \(0.581692\pi\)
\(948\) −1.87237 7.81871i −0.0608117 0.253940i
\(949\) −4.27121 + 7.39794i −0.138649 + 0.240147i
\(950\) 1.35369 2.34467i 0.0439197 0.0760711i
\(951\) 35.5830 33.7283i 1.15386 1.09371i
\(952\) 0.160442 + 0.277894i 0.00519996 + 0.00900660i
\(953\) −18.0529 −0.584792 −0.292396 0.956297i \(-0.594453\pi\)
−0.292396 + 0.956297i \(0.594453\pi\)
\(954\) 7.12763 + 4.64036i 0.230766 + 0.150237i
\(955\) 6.97173 0.225600
\(956\) −2.19325 3.79882i −0.0709349 0.122863i
\(957\) −4.70739 1.39733i −0.152168 0.0451692i
\(958\) −14.6541 + 25.3816i −0.473453 + 0.820044i
\(959\) −11.1017 + 19.2287i −0.358492 + 0.620927i
\(960\) −1.66044 0.492881i −0.0535905 0.0159077i
\(961\) 15.4253 + 26.7174i 0.497591 + 0.861852i
\(962\) −8.87783 −0.286233
\(963\) 29.4717 14.9741i 0.949713 0.482532i
\(964\) −2.22153 −0.0715505
\(965\) −2.69598 4.66958i −0.0867868 0.150319i
\(966\) 7.73840 7.33504i 0.248979 0.236001i
\(967\) 17.1468 29.6992i 0.551405 0.955061i −0.446769 0.894650i \(-0.647425\pi\)
0.998174 0.0604119i \(-0.0192414\pi\)
\(968\) 2.33956 4.05223i 0.0751962 0.130244i
\(969\) 0.350435 + 1.46336i 0.0112576 + 0.0470099i
\(970\) 1.30675 + 2.26335i 0.0419571 + 0.0726719i
\(971\) −51.8506 −1.66397 −0.831983 0.554802i \(-0.812794\pi\)
−0.831983 + 0.554802i \(0.812794\pi\)
\(972\) −12.3943 + 9.45417i −0.397547 + 0.303243i
\(973\) 7.25526 0.232593
\(974\) −8.22153 14.2401i −0.263435 0.456282i
\(975\) 0.610763 + 2.55045i 0.0195601 + 0.0816798i
\(976\) 0.0966262 0.167362i 0.00309293 0.00535711i
\(977\) 20.3378 35.2260i 0.650662 1.12698i −0.332300 0.943174i \(-0.607825\pi\)
0.982962 0.183807i \(-0.0588420\pi\)
\(978\) −19.8163 + 18.7834i −0.633657 + 0.600628i
\(979\) 20.1842 + 34.9600i 0.645089 + 1.11733i
\(980\) 1.00000 0.0319438
\(981\) −44.3952 + 22.5564i −1.41743 + 0.720171i
\(982\) −6.99454 −0.223205
\(983\) 10.3865 + 17.9900i 0.331278 + 0.573790i 0.982763 0.184871i \(-0.0591869\pi\)
−0.651485 + 0.758662i \(0.725854\pi\)
\(984\) −17.8820 5.30803i −0.570056 0.169214i
\(985\) −6.83775 + 11.8433i −0.217869 + 0.377360i
\(986\) −0.180920 + 0.313362i −0.00576166 + 0.00997949i
\(987\) 1.06562 + 0.316316i 0.0339191 + 0.0100684i
\(988\) 2.04968 + 3.55015i 0.0652090 + 0.112945i
\(989\) 61.7331 1.96300
\(990\) −6.32088 4.11514i −0.200891 0.130788i
\(991\) 28.0675 0.891593 0.445796 0.895134i \(-0.352921\pi\)
0.445796 + 0.895134i \(0.352921\pi\)
\(992\) −0.193252 0.334723i −0.00613577 0.0106275i
\(993\) 6.15591 5.83503i 0.195352 0.185169i
\(994\) −5.31815 + 9.21131i −0.168682 + 0.292165i
\(995\) −13.2339 + 22.9217i −0.419542 + 0.726667i
\(996\) −2.28715 9.55077i −0.0724710 0.302628i
\(997\) 22.5051 + 38.9799i 0.712743 + 1.23451i 0.963824 + 0.266540i \(0.0858805\pi\)
−0.251081 + 0.967966i \(0.580786\pi\)
\(998\) −27.0812 −0.857241
\(999\) 19.7466 + 23.2010i 0.624754 + 0.734046i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.j.k.211.2 6
3.2 odd 2 1890.2.j.j.631.1 6
9.2 odd 6 1890.2.j.j.1261.1 6
9.4 even 3 5670.2.a.bt.1.1 3
9.5 odd 6 5670.2.a.bp.1.3 3
9.7 even 3 inner 630.2.j.k.421.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.j.k.211.2 6 1.1 even 1 trivial
630.2.j.k.421.2 yes 6 9.7 even 3 inner
1890.2.j.j.631.1 6 3.2 odd 2
1890.2.j.j.1261.1 6 9.2 odd 6
5670.2.a.bp.1.3 3 9.5 odd 6
5670.2.a.bt.1.1 3 9.4 even 3