Properties

Label 630.2.ce.c.53.3
Level $630$
Weight $2$
Character 630.53
Analytic conductor $5.031$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(53,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 53.3
Character \(\chi\) \(=\) 630.53
Dual form 630.2.ce.c.107.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(0.923861 + 2.03629i) q^{5} +(-2.56861 - 0.634242i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-2.20602 + 0.365351i) q^{10} +(-4.28438 - 2.47359i) q^{11} +(-4.34735 - 4.34735i) q^{13} +(1.27744 - 2.31693i) q^{14} +(0.500000 + 0.866025i) q^{16} +(4.25035 - 1.13888i) q^{17} +(-3.22874 + 1.86412i) q^{19} +(0.218058 - 2.22541i) q^{20} +(3.49819 - 3.49819i) q^{22} +(-1.87844 - 0.503327i) q^{23} +(-3.29296 + 3.76250i) q^{25} +(5.32440 - 3.07404i) q^{26} +(1.90736 + 1.83357i) q^{28} +3.56555 q^{29} +(-0.272207 + 0.471476i) q^{31} +(-0.965926 + 0.258819i) q^{32} +4.40029i q^{34} +(-1.08153 - 5.81638i) q^{35} +(-1.62530 - 0.435499i) q^{37} +(-0.964938 - 3.60120i) q^{38} +(2.09314 + 0.786607i) q^{40} -0.268424i q^{41} +(-8.39666 - 8.39666i) q^{43} +(2.47359 + 4.28438i) q^{44} +(0.972352 - 1.68416i) q^{46} +(-0.240094 + 0.896043i) q^{47} +(6.19547 + 3.25824i) q^{49} +(-2.78202 - 4.15456i) q^{50} +(1.59124 + 5.93859i) q^{52} +(-2.06426 - 7.70392i) q^{53} +(1.07877 - 11.0095i) q^{55} +(-2.26476 + 1.36780i) q^{56} +(-0.922831 + 3.44405i) q^{58} +(-4.90077 + 8.48838i) q^{59} +(-5.71103 - 9.89179i) q^{61} +(-0.384959 - 0.384959i) q^{62} -1.00000i q^{64} +(4.83612 - 12.8688i) q^{65} +(-0.0109452 - 0.0408482i) q^{67} +(-4.25035 - 1.13888i) q^{68} +(5.89811 + 0.460709i) q^{70} +16.3109i q^{71} +(8.42396 - 2.25719i) q^{73} +(0.841319 - 1.45721i) q^{74} +3.72823 q^{76} +(9.43604 + 9.07102i) q^{77} +(-6.93305 + 4.00280i) q^{79} +(-1.30155 + 1.81823i) q^{80} +(0.259278 + 0.0694733i) q^{82} +(1.30281 - 1.30281i) q^{83} +(6.24583 + 7.60279i) q^{85} +(10.2838 - 5.93734i) q^{86} +(-4.77861 + 1.28042i) q^{88} +(0.229324 + 0.397201i) q^{89} +(8.40936 + 13.9239i) q^{91} +(1.37511 + 1.37511i) q^{92} +(-0.803371 - 0.463826i) q^{94} +(-6.77880 - 4.85248i) q^{95} +(-10.6198 + 10.6198i) q^{97} +(-4.75072 + 5.14107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 12 q^{7} + 8 q^{13} + 16 q^{16} + 32 q^{22} - 16 q^{25} - 56 q^{31} + 20 q^{37} + 4 q^{40} + 24 q^{46} + 4 q^{52} + 12 q^{58} - 48 q^{61} + 8 q^{67} + 24 q^{70} + 48 q^{73} - 36 q^{82} - 136 q^{85}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.258819 + 0.965926i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) 0.923861 + 2.03629i 0.413163 + 0.910657i
\(6\) 0 0
\(7\) −2.56861 0.634242i −0.970842 0.239721i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −2.20602 + 0.365351i −0.697604 + 0.115534i
\(11\) −4.28438 2.47359i −1.29179 0.745816i −0.312819 0.949813i \(-0.601273\pi\)
−0.978971 + 0.203997i \(0.934607\pi\)
\(12\) 0 0
\(13\) −4.34735 4.34735i −1.20574 1.20574i −0.972394 0.233344i \(-0.925033\pi\)
−0.233344 0.972394i \(-0.574967\pi\)
\(14\) 1.27744 2.31693i 0.341409 0.619225i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 4.25035 1.13888i 1.03086 0.276219i 0.296541 0.955020i \(-0.404167\pi\)
0.734322 + 0.678802i \(0.237500\pi\)
\(18\) 0 0
\(19\) −3.22874 + 1.86412i −0.740725 + 0.427658i −0.822333 0.569007i \(-0.807328\pi\)
0.0816079 + 0.996665i \(0.473994\pi\)
\(20\) 0.218058 2.22541i 0.0487593 0.497617i
\(21\) 0 0
\(22\) 3.49819 3.49819i 0.745816 0.745816i
\(23\) −1.87844 0.503327i −0.391682 0.104951i 0.0576026 0.998340i \(-0.481654\pi\)
−0.449284 + 0.893389i \(0.648321\pi\)
\(24\) 0 0
\(25\) −3.29296 + 3.76250i −0.658592 + 0.752500i
\(26\) 5.32440 3.07404i 1.04420 0.602869i
\(27\) 0 0
\(28\) 1.90736 + 1.83357i 0.360457 + 0.346513i
\(29\) 3.56555 0.662105 0.331053 0.943612i \(-0.392596\pi\)
0.331053 + 0.943612i \(0.392596\pi\)
\(30\) 0 0
\(31\) −0.272207 + 0.471476i −0.0488898 + 0.0846796i −0.889435 0.457062i \(-0.848902\pi\)
0.840545 + 0.541742i \(0.182235\pi\)
\(32\) −0.965926 + 0.258819i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) 4.40029i 0.754644i
\(35\) −1.08153 5.81638i −0.182813 0.983148i
\(36\) 0 0
\(37\) −1.62530 0.435499i −0.267198 0.0715955i 0.122732 0.992440i \(-0.460834\pi\)
−0.389931 + 0.920844i \(0.627501\pi\)
\(38\) −0.964938 3.60120i −0.156534 0.584191i
\(39\) 0 0
\(40\) 2.09314 + 0.786607i 0.330955 + 0.124373i
\(41\) 0.268424i 0.0419208i −0.999780 0.0209604i \(-0.993328\pi\)
0.999780 0.0209604i \(-0.00667239\pi\)
\(42\) 0 0
\(43\) −8.39666 8.39666i −1.28048 1.28048i −0.940395 0.340084i \(-0.889545\pi\)
−0.340084 0.940395i \(-0.610455\pi\)
\(44\) 2.47359 + 4.28438i 0.372908 + 0.645895i
\(45\) 0 0
\(46\) 0.972352 1.68416i 0.143366 0.248316i
\(47\) −0.240094 + 0.896043i −0.0350213 + 0.130701i −0.981223 0.192875i \(-0.938219\pi\)
0.946202 + 0.323577i \(0.104885\pi\)
\(48\) 0 0
\(49\) 6.19547 + 3.25824i 0.885068 + 0.465462i
\(50\) −2.78202 4.15456i −0.393436 0.587544i
\(51\) 0 0
\(52\) 1.59124 + 5.93859i 0.220665 + 0.823534i
\(53\) −2.06426 7.70392i −0.283548 1.05822i −0.949894 0.312573i \(-0.898809\pi\)
0.666346 0.745643i \(-0.267857\pi\)
\(54\) 0 0
\(55\) 1.07877 11.0095i 0.145462 1.48452i
\(56\) −2.26476 + 1.36780i −0.302641 + 0.182780i
\(57\) 0 0
\(58\) −0.922831 + 3.44405i −0.121174 + 0.452226i
\(59\) −4.90077 + 8.48838i −0.638026 + 1.10509i 0.347840 + 0.937554i \(0.386915\pi\)
−0.985865 + 0.167539i \(0.946418\pi\)
\(60\) 0 0
\(61\) −5.71103 9.89179i −0.731222 1.26651i −0.956361 0.292187i \(-0.905617\pi\)
0.225139 0.974327i \(-0.427716\pi\)
\(62\) −0.384959 0.384959i −0.0488898 0.0488898i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.83612 12.8688i 0.599847 1.59618i
\(66\) 0 0
\(67\) −0.0109452 0.0408482i −0.00133717 0.00499040i 0.965254 0.261313i \(-0.0841556\pi\)
−0.966591 + 0.256323i \(0.917489\pi\)
\(68\) −4.25035 1.13888i −0.515431 0.138109i
\(69\) 0 0
\(70\) 5.89811 + 0.460709i 0.704959 + 0.0550652i
\(71\) 16.3109i 1.93574i 0.251443 + 0.967872i \(0.419095\pi\)
−0.251443 + 0.967872i \(0.580905\pi\)
\(72\) 0 0
\(73\) 8.42396 2.25719i 0.985950 0.264185i 0.270402 0.962748i \(-0.412844\pi\)
0.715548 + 0.698563i \(0.246177\pi\)
\(74\) 0.841319 1.45721i 0.0978013 0.169397i
\(75\) 0 0
\(76\) 3.72823 0.427658
\(77\) 9.43604 + 9.07102i 1.07534 + 1.03374i
\(78\) 0 0
\(79\) −6.93305 + 4.00280i −0.780029 + 0.450350i −0.836440 0.548058i \(-0.815367\pi\)
0.0564118 + 0.998408i \(0.482034\pi\)
\(80\) −1.30155 + 1.81823i −0.145518 + 0.203285i
\(81\) 0 0
\(82\) 0.259278 + 0.0694733i 0.0286324 + 0.00767204i
\(83\) 1.30281 1.30281i 0.143002 0.143002i −0.631981 0.774984i \(-0.717758\pi\)
0.774984 + 0.631981i \(0.217758\pi\)
\(84\) 0 0
\(85\) 6.24583 + 7.60279i 0.677455 + 0.824639i
\(86\) 10.2838 5.93734i 1.10893 0.640239i
\(87\) 0 0
\(88\) −4.77861 + 1.28042i −0.509402 + 0.136494i
\(89\) 0.229324 + 0.397201i 0.0243083 + 0.0421033i 0.877924 0.478801i \(-0.158928\pi\)
−0.853615 + 0.520904i \(0.825595\pi\)
\(90\) 0 0
\(91\) 8.40936 + 13.9239i 0.881540 + 1.45962i
\(92\) 1.37511 + 1.37511i 0.143366 + 0.143366i
\(93\) 0 0
\(94\) −0.803371 0.463826i −0.0828613 0.0478400i
\(95\) −6.77880 4.85248i −0.695490 0.497854i
\(96\) 0 0
\(97\) −10.6198 + 10.6198i −1.07828 + 1.07828i −0.0816181 + 0.996664i \(0.526009\pi\)
−0.996664 + 0.0816181i \(0.973991\pi\)
\(98\) −4.75072 + 5.14107i −0.479895 + 0.519327i
\(99\) 0 0
\(100\) 4.73304 1.61194i 0.473304 0.161194i
\(101\) −4.33656 2.50371i −0.431504 0.249129i 0.268483 0.963284i \(-0.413478\pi\)
−0.699987 + 0.714156i \(0.746811\pi\)
\(102\) 0 0
\(103\) 4.73881 17.6855i 0.466929 1.74260i −0.183486 0.983022i \(-0.558738\pi\)
0.650415 0.759579i \(-0.274595\pi\)
\(104\) −6.14808 −0.602869
\(105\) 0 0
\(106\) 7.97569 0.774667
\(107\) −1.00810 + 3.76228i −0.0974568 + 0.363714i −0.997380 0.0723338i \(-0.976955\pi\)
0.899924 + 0.436047i \(0.143622\pi\)
\(108\) 0 0
\(109\) 7.47396 + 4.31509i 0.715875 + 0.413311i 0.813233 0.581939i \(-0.197706\pi\)
−0.0973573 + 0.995249i \(0.531039\pi\)
\(110\) 10.3552 + 3.89148i 0.987326 + 0.371039i
\(111\) 0 0
\(112\) −0.735033 2.54160i −0.0694541 0.240159i
\(113\) −13.9091 + 13.9091i −1.30845 + 1.30845i −0.385925 + 0.922530i \(0.626118\pi\)
−0.922530 + 0.385925i \(0.873882\pi\)
\(114\) 0 0
\(115\) −0.710499 4.29005i −0.0662544 0.400050i
\(116\) −3.08785 1.78277i −0.286700 0.165526i
\(117\) 0 0
\(118\) −6.93073 6.93073i −0.638026 0.638026i
\(119\) −11.6398 + 0.229577i −1.06702 + 0.0210453i
\(120\) 0 0
\(121\) 6.73730 + 11.6693i 0.612482 + 1.06085i
\(122\) 11.0329 2.95625i 0.998868 0.267646i
\(123\) 0 0
\(124\) 0.471476 0.272207i 0.0423398 0.0244449i
\(125\) −10.7038 3.22940i −0.957376 0.288846i
\(126\) 0 0
\(127\) −0.200145 + 0.200145i −0.0177600 + 0.0177600i −0.715931 0.698171i \(-0.753998\pi\)
0.698171 + 0.715931i \(0.253998\pi\)
\(128\) 0.965926 + 0.258819i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 11.1786 + 8.00203i 0.980432 + 0.701824i
\(131\) 13.5876 7.84483i 1.18716 0.685406i 0.229498 0.973309i \(-0.426291\pi\)
0.957660 + 0.287903i \(0.0929581\pi\)
\(132\) 0 0
\(133\) 9.47568 2.74038i 0.821645 0.237621i
\(134\) 0.0422892 0.00365323
\(135\) 0 0
\(136\) 2.20015 3.81076i 0.188661 0.326770i
\(137\) −2.44530 + 0.655217i −0.208916 + 0.0559789i −0.361759 0.932272i \(-0.617824\pi\)
0.152843 + 0.988250i \(0.451157\pi\)
\(138\) 0 0
\(139\) 2.80784i 0.238158i 0.992885 + 0.119079i \(0.0379942\pi\)
−0.992885 + 0.119079i \(0.962006\pi\)
\(140\) −1.97155 + 5.57790i −0.166627 + 0.471419i
\(141\) 0 0
\(142\) −15.7551 4.22156i −1.32214 0.354266i
\(143\) 7.87216 + 29.3793i 0.658303 + 2.45682i
\(144\) 0 0
\(145\) 3.29407 + 7.26049i 0.273558 + 0.602951i
\(146\) 8.72113i 0.721766i
\(147\) 0 0
\(148\) 1.18980 + 1.18980i 0.0978013 + 0.0978013i
\(149\) 9.80410 + 16.9812i 0.803184 + 1.39115i 0.917510 + 0.397712i \(0.130196\pi\)
−0.114327 + 0.993443i \(0.536471\pi\)
\(150\) 0 0
\(151\) 1.25264 2.16964i 0.101939 0.176563i −0.810545 0.585677i \(-0.800829\pi\)
0.912483 + 0.409114i \(0.134162\pi\)
\(152\) −0.964938 + 3.60120i −0.0782668 + 0.292096i
\(153\) 0 0
\(154\) −11.2042 + 6.76676i −0.902857 + 0.545281i
\(155\) −1.21154 0.118714i −0.0973136 0.00953533i
\(156\) 0 0
\(157\) −5.05560 18.8678i −0.403481 1.50581i −0.806840 0.590770i \(-0.798824\pi\)
0.403360 0.915042i \(-0.367842\pi\)
\(158\) −2.07200 7.73281i −0.164839 0.615189i
\(159\) 0 0
\(160\) −1.41941 1.72779i −0.112214 0.136594i
\(161\) 4.50574 + 2.48423i 0.355102 + 0.195785i
\(162\) 0 0
\(163\) 0.00961679 0.0358904i 0.000753245 0.00281115i −0.965548 0.260224i \(-0.916203\pi\)
0.966301 + 0.257413i \(0.0828701\pi\)
\(164\) −0.134212 + 0.232462i −0.0104802 + 0.0181522i
\(165\) 0 0
\(166\) 0.921227 + 1.59561i 0.0715011 + 0.123844i
\(167\) −9.26150 9.26150i −0.716676 0.716676i 0.251247 0.967923i \(-0.419159\pi\)
−0.967923 + 0.251247i \(0.919159\pi\)
\(168\) 0 0
\(169\) 24.7989i 1.90761i
\(170\) −8.96027 + 4.06526i −0.687221 + 0.311791i
\(171\) 0 0
\(172\) 3.07339 + 11.4701i 0.234344 + 0.874583i
\(173\) −0.706925 0.189420i −0.0537465 0.0144013i 0.231846 0.972753i \(-0.425524\pi\)
−0.285592 + 0.958351i \(0.592190\pi\)
\(174\) 0 0
\(175\) 10.8447 7.57585i 0.819779 0.572680i
\(176\) 4.94718i 0.372908i
\(177\) 0 0
\(178\) −0.443021 + 0.118707i −0.0332058 + 0.00889747i
\(179\) −3.20263 + 5.54712i −0.239376 + 0.414611i −0.960535 0.278158i \(-0.910276\pi\)
0.721159 + 0.692769i \(0.243610\pi\)
\(180\) 0 0
\(181\) −8.70196 −0.646812 −0.323406 0.946260i \(-0.604828\pi\)
−0.323406 + 0.946260i \(0.604828\pi\)
\(182\) −15.6260 + 4.51904i −1.15827 + 0.334974i
\(183\) 0 0
\(184\) −1.68416 + 0.972352i −0.124158 + 0.0716828i
\(185\) −0.614753 3.71193i −0.0451975 0.272907i
\(186\) 0 0
\(187\) −21.0273 5.63424i −1.53767 0.412016i
\(188\) 0.655949 0.655949i 0.0478400 0.0478400i
\(189\) 0 0
\(190\) 6.44162 5.29190i 0.467324 0.383915i
\(191\) −6.91128 + 3.99023i −0.500083 + 0.288723i −0.728748 0.684782i \(-0.759897\pi\)
0.228665 + 0.973505i \(0.426564\pi\)
\(192\) 0 0
\(193\) −18.8317 + 5.04593i −1.35553 + 0.363214i −0.862174 0.506612i \(-0.830898\pi\)
−0.493358 + 0.869826i \(0.664231\pi\)
\(194\) −7.50936 13.0066i −0.539141 0.933819i
\(195\) 0 0
\(196\) −3.73632 5.91945i −0.266880 0.422818i
\(197\) 10.0960 + 10.0960i 0.719312 + 0.719312i 0.968464 0.249153i \(-0.0801520\pi\)
−0.249153 + 0.968464i \(0.580152\pi\)
\(198\) 0 0
\(199\) −11.0002 6.35098i −0.779785 0.450209i 0.0565691 0.998399i \(-0.481984\pi\)
−0.836354 + 0.548190i \(0.815317\pi\)
\(200\) 0.332015 + 4.98896i 0.0234770 + 0.352773i
\(201\) 0 0
\(202\) 3.54078 3.54078i 0.249129 0.249129i
\(203\) −9.15848 2.26142i −0.642800 0.158721i
\(204\) 0 0
\(205\) 0.546590 0.247987i 0.0381755 0.0173201i
\(206\) 15.8564 + 9.15468i 1.10477 + 0.637837i
\(207\) 0 0
\(208\) 1.59124 5.93859i 0.110333 0.411767i
\(209\) 18.4442 1.27582
\(210\) 0 0
\(211\) 18.8900 1.30044 0.650220 0.759746i \(-0.274677\pi\)
0.650220 + 0.759746i \(0.274677\pi\)
\(212\) −2.06426 + 7.70392i −0.141774 + 0.529108i
\(213\) 0 0
\(214\) −3.37317 1.94750i −0.230585 0.133128i
\(215\) 9.34069 24.8554i 0.637030 1.69512i
\(216\) 0 0
\(217\) 0.998223 1.03839i 0.0677638 0.0704906i
\(218\) −6.10246 + 6.10246i −0.413311 + 0.413311i
\(219\) 0 0
\(220\) −6.43900 + 8.99513i −0.434117 + 0.606451i
\(221\) −23.4289 13.5267i −1.57600 0.909903i
\(222\) 0 0
\(223\) 2.93799 + 2.93799i 0.196743 + 0.196743i 0.798602 0.601859i \(-0.205573\pi\)
−0.601859 + 0.798602i \(0.705573\pi\)
\(224\) 2.64524 0.0521732i 0.176742 0.00348597i
\(225\) 0 0
\(226\) −9.83520 17.0351i −0.654227 1.13316i
\(227\) 0.861758 0.230907i 0.0571969 0.0153259i −0.230107 0.973165i \(-0.573908\pi\)
0.287304 + 0.957839i \(0.407241\pi\)
\(228\) 0 0
\(229\) 17.8423 10.3013i 1.17905 0.680728i 0.223259 0.974759i \(-0.428330\pi\)
0.955796 + 0.294032i \(0.0949971\pi\)
\(230\) 4.32777 + 0.424059i 0.285364 + 0.0279616i
\(231\) 0 0
\(232\) 2.52122 2.52122i 0.165526 0.165526i
\(233\) 4.65452 + 1.24718i 0.304928 + 0.0817052i 0.408038 0.912965i \(-0.366213\pi\)
−0.103111 + 0.994670i \(0.532880\pi\)
\(234\) 0 0
\(235\) −2.04642 + 0.338918i −0.133494 + 0.0221086i
\(236\) 8.48838 4.90077i 0.552547 0.319013i
\(237\) 0 0
\(238\) 2.79085 11.3026i 0.180904 0.732640i
\(239\) 15.7251 1.01717 0.508585 0.861012i \(-0.330169\pi\)
0.508585 + 0.861012i \(0.330169\pi\)
\(240\) 0 0
\(241\) −3.64485 + 6.31306i −0.234785 + 0.406660i −0.959210 0.282693i \(-0.908772\pi\)
0.724425 + 0.689354i \(0.242105\pi\)
\(242\) −13.0155 + 3.48748i −0.836666 + 0.224184i
\(243\) 0 0
\(244\) 11.4221i 0.731222i
\(245\) −0.910960 + 15.6259i −0.0581991 + 0.998305i
\(246\) 0 0
\(247\) 22.1405 + 5.93252i 1.40876 + 0.377477i
\(248\) 0.140905 + 0.525863i 0.00894746 + 0.0333924i
\(249\) 0 0
\(250\) 5.88970 9.50323i 0.372497 0.601037i
\(251\) 8.22912i 0.519418i −0.965687 0.259709i \(-0.916373\pi\)
0.965687 0.259709i \(-0.0836266\pi\)
\(252\) 0 0
\(253\) 6.80294 + 6.80294i 0.427697 + 0.427697i
\(254\) −0.141524 0.245127i −0.00888001 0.0153806i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.337836 + 1.26082i −0.0210736 + 0.0786479i −0.975662 0.219281i \(-0.929629\pi\)
0.954588 + 0.297928i \(0.0962957\pi\)
\(258\) 0 0
\(259\) 3.89855 + 2.14946i 0.242244 + 0.133561i
\(260\) −10.6226 + 8.72666i −0.658787 + 0.541205i
\(261\) 0 0
\(262\) 4.06078 + 15.1550i 0.250876 + 0.936282i
\(263\) −3.82344 14.2693i −0.235763 0.879881i −0.977803 0.209525i \(-0.932808\pi\)
0.742040 0.670356i \(-0.233859\pi\)
\(264\) 0 0
\(265\) 13.7803 11.3208i 0.846520 0.695431i
\(266\) 0.194514 + 9.86206i 0.0119264 + 0.604682i
\(267\) 0 0
\(268\) −0.0109452 + 0.0408482i −0.000668587 + 0.00249520i
\(269\) 10.5069 18.1984i 0.640615 1.10958i −0.344680 0.938720i \(-0.612013\pi\)
0.985296 0.170858i \(-0.0546539\pi\)
\(270\) 0 0
\(271\) 4.95098 + 8.57534i 0.300750 + 0.520915i 0.976306 0.216394i \(-0.0694296\pi\)
−0.675556 + 0.737309i \(0.736096\pi\)
\(272\) 3.11148 + 3.11148i 0.188661 + 0.188661i
\(273\) 0 0
\(274\) 2.53156i 0.152937i
\(275\) 23.4152 7.97456i 1.41199 0.480884i
\(276\) 0 0
\(277\) 5.36596 + 20.0261i 0.322410 + 1.20325i 0.916890 + 0.399139i \(0.130691\pi\)
−0.594481 + 0.804110i \(0.702642\pi\)
\(278\) −2.71217 0.726722i −0.162665 0.0435859i
\(279\) 0 0
\(280\) −4.87756 3.34804i −0.291490 0.200084i
\(281\) 24.6495i 1.47046i −0.677816 0.735232i \(-0.737073\pi\)
0.677816 0.735232i \(-0.262927\pi\)
\(282\) 0 0
\(283\) −5.33016 + 1.42821i −0.316845 + 0.0848985i −0.413737 0.910396i \(-0.635777\pi\)
0.0968916 + 0.995295i \(0.469110\pi\)
\(284\) 8.15543 14.1256i 0.483936 0.838202i
\(285\) 0 0
\(286\) −30.4157 −1.79852
\(287\) −0.170246 + 0.689476i −0.0100493 + 0.0406985i
\(288\) 0 0
\(289\) 2.04603 1.18128i 0.120355 0.0694870i
\(290\) −7.86566 + 1.30267i −0.461888 + 0.0764957i
\(291\) 0 0
\(292\) −8.42396 2.25719i −0.492975 0.132092i
\(293\) 13.1648 13.1648i 0.769096 0.769096i −0.208851 0.977947i \(-0.566972\pi\)
0.977947 + 0.208851i \(0.0669725\pi\)
\(294\) 0 0
\(295\) −21.8124 2.13731i −1.26997 0.124439i
\(296\) −1.45721 + 0.841319i −0.0846984 + 0.0489007i
\(297\) 0 0
\(298\) −18.9401 + 5.07498i −1.09717 + 0.293986i
\(299\) 5.97810 + 10.3544i 0.345723 + 0.598809i
\(300\) 0 0
\(301\) 16.2422 + 26.8932i 0.936185 + 1.55010i
\(302\) 1.77151 + 1.77151i 0.101939 + 0.101939i
\(303\) 0 0
\(304\) −3.22874 1.86412i −0.185181 0.106914i
\(305\) 14.8664 20.7680i 0.851245 1.18917i
\(306\) 0 0
\(307\) 16.9282 16.9282i 0.966145 0.966145i −0.0333006 0.999445i \(-0.510602\pi\)
0.999445 + 0.0333006i \(0.0106019\pi\)
\(308\) −3.63634 12.5738i −0.207200 0.716456i
\(309\) 0 0
\(310\) 0.428240 1.13954i 0.0243224 0.0647213i
\(311\) −23.6318 13.6438i −1.34004 0.773671i −0.353225 0.935539i \(-0.614915\pi\)
−0.986812 + 0.161868i \(0.948248\pi\)
\(312\) 0 0
\(313\) 1.92449 7.18228i 0.108778 0.405967i −0.889968 0.456023i \(-0.849273\pi\)
0.998746 + 0.0500564i \(0.0159401\pi\)
\(314\) 19.5333 1.10233
\(315\) 0 0
\(316\) 8.00559 0.450350
\(317\) 8.08855 30.1869i 0.454298 1.69546i −0.235845 0.971791i \(-0.575786\pi\)
0.690143 0.723673i \(-0.257548\pi\)
\(318\) 0 0
\(319\) −15.2762 8.81970i −0.855302 0.493809i
\(320\) 2.03629 0.923861i 0.113832 0.0516454i
\(321\) 0 0
\(322\) −3.56576 + 3.70925i −0.198712 + 0.206708i
\(323\) −11.6003 + 11.6003i −0.645458 + 0.645458i
\(324\) 0 0
\(325\) 30.6726 2.04125i 1.70141 0.113228i
\(326\) 0.0321784 + 0.0185782i 0.00178220 + 0.00102895i
\(327\) 0 0
\(328\) −0.189805 0.189805i −0.0104802 0.0104802i
\(329\) 1.18502 2.14930i 0.0653320 0.118495i
\(330\) 0 0
\(331\) −5.38534 9.32768i −0.296005 0.512696i 0.679213 0.733941i \(-0.262321\pi\)
−0.975218 + 0.221245i \(0.928988\pi\)
\(332\) −1.77967 + 0.476862i −0.0976723 + 0.0261712i
\(333\) 0 0
\(334\) 11.3430 6.54887i 0.620660 0.358338i
\(335\) 0.0730669 0.0600258i 0.00399207 0.00327956i
\(336\) 0 0
\(337\) −21.8140 + 21.8140i −1.18828 + 1.18828i −0.210740 + 0.977542i \(0.567587\pi\)
−0.977542 + 0.210740i \(0.932413\pi\)
\(338\) −23.9539 6.41843i −1.30292 0.349117i
\(339\) 0 0
\(340\) −1.60765 9.70712i −0.0871870 0.526443i
\(341\) 2.33248 1.34666i 0.126311 0.0729256i
\(342\) 0 0
\(343\) −13.8472 12.2986i −0.747680 0.664060i
\(344\) −11.8747 −0.640239
\(345\) 0 0
\(346\) 0.365931 0.633812i 0.0196726 0.0340739i
\(347\) −5.94688 + 1.59346i −0.319245 + 0.0855415i −0.414883 0.909875i \(-0.636178\pi\)
0.0956379 + 0.995416i \(0.469511\pi\)
\(348\) 0 0
\(349\) 0.197242i 0.0105581i −0.999986 0.00527907i \(-0.998320\pi\)
0.999986 0.00527907i \(-0.00168039\pi\)
\(350\) 4.51090 + 12.4359i 0.241118 + 0.664727i
\(351\) 0 0
\(352\) 4.77861 + 1.28042i 0.254701 + 0.0682469i
\(353\) −2.64401 9.86759i −0.140727 0.525199i −0.999908 0.0135287i \(-0.995694\pi\)
0.859182 0.511670i \(-0.170973\pi\)
\(354\) 0 0
\(355\) −33.2137 + 15.0690i −1.76280 + 0.799778i
\(356\) 0.458649i 0.0243083i
\(357\) 0 0
\(358\) −4.52921 4.52921i −0.239376 0.239376i
\(359\) −7.63203 13.2191i −0.402803 0.697676i 0.591260 0.806481i \(-0.298631\pi\)
−0.994063 + 0.108805i \(0.965297\pi\)
\(360\) 0 0
\(361\) −2.55014 + 4.41697i −0.134218 + 0.232472i
\(362\) 2.25223 8.40545i 0.118375 0.441781i
\(363\) 0 0
\(364\) −0.320765 16.2631i −0.0168127 0.852420i
\(365\) 12.3789 + 15.0683i 0.647940 + 0.788711i
\(366\) 0 0
\(367\) −6.14181 22.9216i −0.320600 1.19650i −0.918662 0.395045i \(-0.870729\pi\)
0.598062 0.801450i \(-0.295938\pi\)
\(368\) −0.503327 1.87844i −0.0262377 0.0979205i
\(369\) 0 0
\(370\) 3.74456 + 0.366913i 0.194670 + 0.0190749i
\(371\) 0.416117 + 21.0976i 0.0216037 + 1.09533i
\(372\) 0 0
\(373\) 4.81825 17.9820i 0.249480 0.931071i −0.721599 0.692311i \(-0.756593\pi\)
0.971079 0.238760i \(-0.0767408\pi\)
\(374\) 10.8845 18.8525i 0.562825 0.974841i
\(375\) 0 0
\(376\) 0.463826 + 0.803371i 0.0239200 + 0.0414307i
\(377\) −15.5007 15.5007i −0.798326 0.798326i
\(378\) 0 0
\(379\) 34.8805i 1.79169i −0.444367 0.895845i \(-0.646571\pi\)
0.444367 0.895845i \(-0.353429\pi\)
\(380\) 3.44437 + 7.59177i 0.176692 + 0.389449i
\(381\) 0 0
\(382\) −2.06549 7.70853i −0.105680 0.394403i
\(383\) 30.0303 + 8.04661i 1.53448 + 0.411162i 0.924477 0.381238i \(-0.124502\pi\)
0.610002 + 0.792400i \(0.291169\pi\)
\(384\) 0 0
\(385\) −9.75364 + 27.5949i −0.497091 + 1.40637i
\(386\) 19.4960i 0.992319i
\(387\) 0 0
\(388\) 14.5070 3.88713i 0.736480 0.197339i
\(389\) −9.96369 + 17.2576i −0.505179 + 0.874996i 0.494803 + 0.869005i \(0.335240\pi\)
−0.999982 + 0.00599092i \(0.998093\pi\)
\(390\) 0 0
\(391\) −8.55726 −0.432759
\(392\) 6.68478 2.07694i 0.337633 0.104901i
\(393\) 0 0
\(394\) −12.3651 + 7.13897i −0.622942 + 0.359656i
\(395\) −14.5560 10.4197i −0.732393 0.524271i
\(396\) 0 0
\(397\) −12.5094 3.35189i −0.627831 0.168227i −0.0691456 0.997607i \(-0.522027\pi\)
−0.558685 + 0.829380i \(0.688694\pi\)
\(398\) 8.98164 8.98164i 0.450209 0.450209i
\(399\) 0 0
\(400\) −4.90490 0.970538i −0.245245 0.0485269i
\(401\) 1.57729 0.910650i 0.0787662 0.0454757i −0.460100 0.887867i \(-0.652186\pi\)
0.538866 + 0.842392i \(0.318853\pi\)
\(402\) 0 0
\(403\) 3.23305 0.866294i 0.161050 0.0431532i
\(404\) 2.50371 + 4.33656i 0.124564 + 0.215752i
\(405\) 0 0
\(406\) 4.55475 8.26112i 0.226049 0.409992i
\(407\) 5.88618 + 5.88618i 0.291767 + 0.291767i
\(408\) 0 0
\(409\) −17.8771 10.3214i −0.883967 0.510359i −0.0120026 0.999928i \(-0.503821\pi\)
−0.871964 + 0.489569i \(0.837154\pi\)
\(410\) 0.0980689 + 0.592149i 0.00484328 + 0.0292441i
\(411\) 0 0
\(412\) −12.9467 + 12.9467i −0.637837 + 0.637837i
\(413\) 17.9718 18.6950i 0.884336 0.919922i
\(414\) 0 0
\(415\) 3.85652 + 1.44929i 0.189309 + 0.0711427i
\(416\) 5.32440 + 3.07404i 0.261050 + 0.150717i
\(417\) 0 0
\(418\) −4.77372 + 17.8158i −0.233490 + 0.871398i
\(419\) −12.8948 −0.629954 −0.314977 0.949099i \(-0.601997\pi\)
−0.314977 + 0.949099i \(0.601997\pi\)
\(420\) 0 0
\(421\) −16.9311 −0.825170 −0.412585 0.910919i \(-0.635374\pi\)
−0.412585 + 0.910919i \(0.635374\pi\)
\(422\) −4.88909 + 18.2463i −0.237997 + 0.888217i
\(423\) 0 0
\(424\) −6.90715 3.98784i −0.335441 0.193667i
\(425\) −9.71122 + 19.7422i −0.471063 + 0.957639i
\(426\) 0 0
\(427\) 8.39559 + 29.0303i 0.406291 + 1.40487i
\(428\) 2.75418 2.75418i 0.133128 0.133128i
\(429\) 0 0
\(430\) 21.5909 + 15.4555i 1.04121 + 0.745329i
\(431\) −25.7429 14.8627i −1.23999 0.715910i −0.270901 0.962607i \(-0.587321\pi\)
−0.969093 + 0.246697i \(0.920655\pi\)
\(432\) 0 0
\(433\) 20.0190 + 20.0190i 0.962052 + 0.962052i 0.999306 0.0372534i \(-0.0118609\pi\)
−0.0372534 + 0.999306i \(0.511861\pi\)
\(434\) 0.744650 + 1.23296i 0.0357444 + 0.0591842i
\(435\) 0 0
\(436\) −4.31509 7.47396i −0.206655 0.357938i
\(437\) 7.00326 1.87652i 0.335012 0.0897661i
\(438\) 0 0
\(439\) −5.54137 + 3.19931i −0.264475 + 0.152695i −0.626374 0.779522i \(-0.715462\pi\)
0.361899 + 0.932217i \(0.382128\pi\)
\(440\) −7.02209 8.54771i −0.334765 0.407496i
\(441\) 0 0
\(442\) 19.1296 19.1296i 0.909903 0.909903i
\(443\) −0.328032 0.0878959i −0.0155853 0.00417606i 0.251018 0.967982i \(-0.419235\pi\)
−0.266603 + 0.963806i \(0.585901\pi\)
\(444\) 0 0
\(445\) −0.596954 + 0.833930i −0.0282983 + 0.0395321i
\(446\) −3.59829 + 2.07747i −0.170384 + 0.0983713i
\(447\) 0 0
\(448\) −0.634242 + 2.56861i −0.0299651 + 0.121355i
\(449\) 11.8831 0.560800 0.280400 0.959883i \(-0.409533\pi\)
0.280400 + 0.959883i \(0.409533\pi\)
\(450\) 0 0
\(451\) −0.663971 + 1.15003i −0.0312652 + 0.0541529i
\(452\) 19.0001 5.09107i 0.893691 0.239464i
\(453\) 0 0
\(454\) 0.892157i 0.0418710i
\(455\) −20.5840 + 29.9877i −0.964995 + 1.40584i
\(456\) 0 0
\(457\) 19.4777 + 5.21904i 0.911129 + 0.244136i 0.683790 0.729679i \(-0.260331\pi\)
0.227340 + 0.973816i \(0.426997\pi\)
\(458\) 5.33233 + 19.9005i 0.249164 + 0.929891i
\(459\) 0 0
\(460\) −1.52972 + 4.07055i −0.0713234 + 0.189790i
\(461\) 19.5952i 0.912638i 0.889816 + 0.456319i \(0.150832\pi\)
−0.889816 + 0.456319i \(0.849168\pi\)
\(462\) 0 0
\(463\) 19.2239 + 19.2239i 0.893411 + 0.893411i 0.994843 0.101432i \(-0.0323423\pi\)
−0.101432 + 0.994843i \(0.532342\pi\)
\(464\) 1.78277 + 3.08785i 0.0827632 + 0.143350i
\(465\) 0 0
\(466\) −2.40936 + 4.17313i −0.111611 + 0.193316i
\(467\) −7.83232 + 29.2306i −0.362437 + 1.35263i 0.508426 + 0.861105i \(0.330227\pi\)
−0.870863 + 0.491526i \(0.836439\pi\)
\(468\) 0 0
\(469\) 0.00220636 + 0.111865i 0.000101880 + 0.00516544i
\(470\) 0.202282 2.06441i 0.00933058 0.0952240i
\(471\) 0 0
\(472\) 2.53682 + 9.46756i 0.116767 + 0.435780i
\(473\) 15.2046 + 56.7444i 0.699109 + 2.60911i
\(474\) 0 0
\(475\) 3.61839 18.2866i 0.166023 0.839048i
\(476\) 10.1952 + 5.62109i 0.467294 + 0.257642i
\(477\) 0 0
\(478\) −4.06995 + 15.1892i −0.186155 + 0.694740i
\(479\) 0.818104 1.41700i 0.0373801 0.0647443i −0.846730 0.532023i \(-0.821432\pi\)
0.884110 + 0.467278i \(0.154765\pi\)
\(480\) 0 0
\(481\) 5.17250 + 8.95903i 0.235846 + 0.408497i
\(482\) −5.15460 5.15460i −0.234785 0.234785i
\(483\) 0 0
\(484\) 13.4746i 0.612482i
\(485\) −31.4364 11.8138i −1.42745 0.536438i
\(486\) 0 0
\(487\) −1.86735 6.96906i −0.0846178 0.315798i 0.910624 0.413237i \(-0.135602\pi\)
−0.995242 + 0.0974385i \(0.968935\pi\)
\(488\) −11.0329 2.95625i −0.499434 0.133823i
\(489\) 0 0
\(490\) −14.8577 4.92421i −0.671204 0.222453i
\(491\) 23.4235i 1.05709i 0.848907 + 0.528543i \(0.177261\pi\)
−0.848907 + 0.528543i \(0.822739\pi\)
\(492\) 0 0
\(493\) 15.1548 4.06073i 0.682540 0.182886i
\(494\) −11.4607 + 19.8506i −0.515643 + 0.893120i
\(495\) 0 0
\(496\) −0.544414 −0.0244449
\(497\) 10.3450 41.8962i 0.464039 1.87930i
\(498\) 0 0
\(499\) 25.5933 14.7763i 1.14571 0.661477i 0.197873 0.980228i \(-0.436597\pi\)
0.947838 + 0.318751i \(0.103263\pi\)
\(500\) 7.65505 + 8.14863i 0.342344 + 0.364418i
\(501\) 0 0
\(502\) 7.94872 + 2.12985i 0.354769 + 0.0950600i
\(503\) 16.6368 16.6368i 0.741797 0.741797i −0.231127 0.972924i \(-0.574241\pi\)
0.972924 + 0.231127i \(0.0742413\pi\)
\(504\) 0 0
\(505\) 1.09191 11.1436i 0.0485893 0.495883i
\(506\) −8.33186 + 4.81040i −0.370396 + 0.213848i
\(507\) 0 0
\(508\) 0.273404 0.0732583i 0.0121303 0.00325031i
\(509\) −4.84247 8.38740i −0.214639 0.371765i 0.738522 0.674229i \(-0.235524\pi\)
−0.953161 + 0.302464i \(0.902191\pi\)
\(510\) 0 0
\(511\) −23.0694 + 0.455009i −1.02053 + 0.0201284i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −1.13042 0.652649i −0.0498608 0.0287871i
\(515\) 40.3908 6.68933i 1.77983 0.294767i
\(516\) 0 0
\(517\) 3.24510 3.24510i 0.142719 0.142719i
\(518\) −3.08524 + 3.20939i −0.135558 + 0.141013i
\(519\) 0 0
\(520\) −5.67997 12.5193i −0.249083 0.549007i
\(521\) 18.3916 + 10.6184i 0.805750 + 0.465200i 0.845478 0.534011i \(-0.179316\pi\)
−0.0397281 + 0.999211i \(0.512649\pi\)
\(522\) 0 0
\(523\) 0.0569475 0.212531i 0.00249014 0.00929332i −0.964670 0.263463i \(-0.915135\pi\)
0.967160 + 0.254169i \(0.0818021\pi\)
\(524\) −15.6897 −0.685406
\(525\) 0 0
\(526\) 14.7726 0.644118
\(527\) −0.620022 + 2.31395i −0.0270086 + 0.100797i
\(528\) 0 0
\(529\) −16.6434 9.60906i −0.723625 0.417785i
\(530\) 7.36843 + 16.2408i 0.320064 + 0.705456i
\(531\) 0 0
\(532\) −9.57636 2.36460i −0.415188 0.102519i
\(533\) −1.16693 + 1.16693i −0.0505455 + 0.0505455i
\(534\) 0 0
\(535\) −8.59245 + 1.42304i −0.371484 + 0.0615234i
\(536\) −0.0366235 0.0211446i −0.00158189 0.000913307i
\(537\) 0 0
\(538\) 14.8590 + 14.8590i 0.640615 + 0.640615i
\(539\) −18.4842 29.2846i −0.796173 1.26138i
\(540\) 0 0
\(541\) −21.0652 36.4861i −0.905666 1.56866i −0.820021 0.572333i \(-0.806038\pi\)
−0.0856442 0.996326i \(-0.527295\pi\)
\(542\) −9.56455 + 2.56281i −0.410833 + 0.110082i
\(543\) 0 0
\(544\) −3.81076 + 2.20015i −0.163385 + 0.0943305i
\(545\) −1.88188 + 19.2057i −0.0806110 + 0.822682i
\(546\) 0 0
\(547\) 10.6450 10.6450i 0.455147 0.455147i −0.441911 0.897059i \(-0.645699\pi\)
0.897059 + 0.441911i \(0.145699\pi\)
\(548\) 2.44530 + 0.655217i 0.104458 + 0.0279895i
\(549\) 0 0
\(550\) 1.64254 + 24.6813i 0.0700380 + 1.05241i
\(551\) −11.5122 + 6.64660i −0.490438 + 0.283154i
\(552\) 0 0
\(553\) 20.3470 5.88438i 0.865243 0.250229i
\(554\) −20.7325 −0.880839
\(555\) 0 0
\(556\) 1.40392 2.43166i 0.0595395 0.103125i
\(557\) −30.4049 + 8.14696i −1.28830 + 0.345198i −0.837013 0.547183i \(-0.815700\pi\)
−0.451283 + 0.892381i \(0.649033\pi\)
\(558\) 0 0
\(559\) 73.0065i 3.08784i
\(560\) 4.49637 3.84483i 0.190006 0.162474i
\(561\) 0 0
\(562\) 23.8096 + 6.37975i 1.00435 + 0.269114i
\(563\) −0.0168462 0.0628710i −0.000709984 0.00264969i 0.965570 0.260144i \(-0.0837699\pi\)
−0.966280 + 0.257494i \(0.917103\pi\)
\(564\) 0 0
\(565\) −41.1730 15.4729i −1.73216 0.650948i
\(566\) 5.51819i 0.231947i
\(567\) 0 0
\(568\) 11.5335 + 11.5335i 0.483936 + 0.483936i
\(569\) 13.5754 + 23.5133i 0.569110 + 0.985728i 0.996654 + 0.0817335i \(0.0260456\pi\)
−0.427544 + 0.903995i \(0.640621\pi\)
\(570\) 0 0
\(571\) 13.3600 23.1403i 0.559101 0.968391i −0.438471 0.898745i \(-0.644480\pi\)
0.997572 0.0696454i \(-0.0221868\pi\)
\(572\) 7.87216 29.3793i 0.329151 1.22841i
\(573\) 0 0
\(574\) −0.621920 0.342894i −0.0259584 0.0143121i
\(575\) 8.07940 5.41020i 0.336934 0.225621i
\(576\) 0 0
\(577\) 3.91412 + 14.6077i 0.162947 + 0.608127i 0.998293 + 0.0584023i \(0.0186006\pi\)
−0.835346 + 0.549724i \(0.814733\pi\)
\(578\) 0.611475 + 2.28205i 0.0254340 + 0.0949210i
\(579\) 0 0
\(580\) 0.777496 7.93480i 0.0322838 0.329475i
\(581\) −4.17271 + 2.52011i −0.173113 + 0.104552i
\(582\) 0 0
\(583\) −10.2123 + 38.1127i −0.422949 + 1.57847i
\(584\) 4.36056 7.55272i 0.180441 0.312534i
\(585\) 0 0
\(586\) 9.30892 + 16.1235i 0.384548 + 0.666057i
\(587\) 0.814359 + 0.814359i 0.0336122 + 0.0336122i 0.723713 0.690101i \(-0.242434\pi\)
−0.690101 + 0.723713i \(0.742434\pi\)
\(588\) 0 0
\(589\) 2.02970i 0.0836324i
\(590\) 7.70995 20.5160i 0.317414 0.844631i
\(591\) 0 0
\(592\) −0.435499 1.62530i −0.0178989 0.0667996i
\(593\) 0.591195 + 0.158410i 0.0242775 + 0.00650513i 0.270937 0.962597i \(-0.412666\pi\)
−0.246660 + 0.969102i \(0.579333\pi\)
\(594\) 0 0
\(595\) −11.2211 23.4899i −0.460018 0.962994i
\(596\) 19.6082i 0.803184i
\(597\) 0 0
\(598\) −11.5488 + 3.09449i −0.472266 + 0.126543i
\(599\) −6.50281 + 11.2632i −0.265698 + 0.460202i −0.967746 0.251927i \(-0.918936\pi\)
0.702049 + 0.712129i \(0.252269\pi\)
\(600\) 0 0
\(601\) −12.4846 −0.509258 −0.254629 0.967039i \(-0.581953\pi\)
−0.254629 + 0.967039i \(0.581953\pi\)
\(602\) −30.1807 + 8.72828i −1.23007 + 0.355738i
\(603\) 0 0
\(604\) −2.16964 + 1.25264i −0.0882816 + 0.0509694i
\(605\) −17.5379 + 24.5000i −0.713015 + 0.996065i
\(606\) 0 0
\(607\) 8.60280 + 2.30511i 0.349177 + 0.0935616i 0.429145 0.903236i \(-0.358815\pi\)
−0.0799678 + 0.996797i \(0.525482\pi\)
\(608\) 2.63626 2.63626i 0.106914 0.106914i
\(609\) 0 0
\(610\) 16.2126 + 19.7349i 0.656429 + 0.799045i
\(611\) 4.93919 2.85164i 0.199818 0.115365i
\(612\) 0 0
\(613\) −27.7729 + 7.44173i −1.12174 + 0.300569i −0.771586 0.636125i \(-0.780536\pi\)
−0.350151 + 0.936693i \(0.613870\pi\)
\(614\) 11.9701 + 20.7328i 0.483072 + 0.836706i
\(615\) 0 0
\(616\) 13.0865 0.258110i 0.527269 0.0103996i
\(617\) −3.97067 3.97067i −0.159853 0.159853i 0.622649 0.782502i \(-0.286057\pi\)
−0.782502 + 0.622649i \(0.786057\pi\)
\(618\) 0 0
\(619\) 29.1348 + 16.8210i 1.17103 + 0.676092i 0.953921 0.300057i \(-0.0970056\pi\)
0.217104 + 0.976148i \(0.430339\pi\)
\(620\) 0.989871 + 0.708581i 0.0397542 + 0.0284573i
\(621\) 0 0
\(622\) 19.2953 19.2953i 0.773671 0.773671i
\(623\) −0.337122 1.16570i −0.0135065 0.0467028i
\(624\) 0 0
\(625\) −3.31282 24.7795i −0.132513 0.991181i
\(626\) 6.43946 + 3.71782i 0.257373 + 0.148594i
\(627\) 0 0
\(628\) −5.05560 + 18.8678i −0.201740 + 0.752906i
\(629\) −7.40409 −0.295221
\(630\) 0 0
\(631\) −15.9081 −0.633292 −0.316646 0.948544i \(-0.602557\pi\)
−0.316646 + 0.948544i \(0.602557\pi\)
\(632\) −2.07200 + 7.73281i −0.0824197 + 0.307595i
\(633\) 0 0
\(634\) 27.0648 + 15.6259i 1.07488 + 0.620583i
\(635\) −0.592460 0.222648i −0.0235111 0.00883550i
\(636\) 0 0
\(637\) −12.7692 41.0986i −0.505934 1.62839i
\(638\) 12.4729 12.4729i 0.493809 0.493809i
\(639\) 0 0
\(640\) 0.365351 + 2.20602i 0.0144417 + 0.0872005i
\(641\) 31.4224 + 18.1417i 1.24111 + 0.716555i 0.969320 0.245802i \(-0.0790513\pi\)
0.271789 + 0.962357i \(0.412385\pi\)
\(642\) 0 0
\(643\) 2.60079 + 2.60079i 0.102565 + 0.102565i 0.756527 0.653962i \(-0.226894\pi\)
−0.653962 + 0.756527i \(0.726894\pi\)
\(644\) −2.65997 4.40428i −0.104818 0.173553i
\(645\) 0 0
\(646\) −8.20266 14.2074i −0.322729 0.558983i
\(647\) 7.66073 2.05269i 0.301174 0.0806994i −0.105067 0.994465i \(-0.533506\pi\)
0.406242 + 0.913766i \(0.366839\pi\)
\(648\) 0 0
\(649\) 41.9936 24.2450i 1.64839 0.951699i
\(650\) −5.96694 + 30.1557i −0.234043 + 1.18281i
\(651\) 0 0
\(652\) −0.0262736 + 0.0262736i −0.00102895 + 0.00102895i
\(653\) −45.9484 12.3118i −1.79810 0.481799i −0.804421 0.594060i \(-0.797524\pi\)
−0.993679 + 0.112260i \(0.964191\pi\)
\(654\) 0 0
\(655\) 28.5275 + 20.4209i 1.11466 + 0.797909i
\(656\) 0.232462 0.134212i 0.00907612 0.00524010i
\(657\) 0 0
\(658\) 1.76936 + 1.70092i 0.0689770 + 0.0663087i
\(659\) −40.4379 −1.57524 −0.787618 0.616164i \(-0.788686\pi\)
−0.787618 + 0.616164i \(0.788686\pi\)
\(660\) 0 0
\(661\) 15.3620 26.6078i 0.597513 1.03492i −0.395674 0.918391i \(-0.629489\pi\)
0.993187 0.116532i \(-0.0371777\pi\)
\(662\) 10.4037 2.78766i 0.404350 0.108345i
\(663\) 0 0
\(664\) 1.84245i 0.0715011i
\(665\) 14.3344 + 16.7635i 0.555865 + 0.650061i
\(666\) 0 0
\(667\) −6.69767 1.79463i −0.259335 0.0694885i
\(668\) 3.38994 + 12.6514i 0.131161 + 0.489499i
\(669\) 0 0
\(670\) 0.0390693 + 0.0861130i 0.00150938 + 0.00332684i
\(671\) 56.5070i 2.18143i
\(672\) 0 0
\(673\) 2.13524 + 2.13524i 0.0823073 + 0.0823073i 0.747062 0.664755i \(-0.231464\pi\)
−0.664755 + 0.747062i \(0.731464\pi\)
\(674\) −15.4248 26.7165i −0.594141 1.02908i
\(675\) 0 0
\(676\) 12.3995 21.4765i 0.476902 0.826019i
\(677\) −0.625198 + 2.33327i −0.0240283 + 0.0896749i −0.976899 0.213703i \(-0.931448\pi\)
0.952870 + 0.303378i \(0.0981143\pi\)
\(678\) 0 0
\(679\) 34.0137 20.5426i 1.30533 0.788354i
\(680\) 9.79245 + 0.959519i 0.375523 + 0.0367959i
\(681\) 0 0
\(682\) 0.697081 + 2.60154i 0.0266926 + 0.0996182i
\(683\) 5.33754 + 19.9200i 0.204235 + 0.762216i 0.989681 + 0.143286i \(0.0457669\pi\)
−0.785446 + 0.618930i \(0.787566\pi\)
\(684\) 0 0
\(685\) −3.59333 4.37402i −0.137294 0.167123i
\(686\) 15.4634 10.1923i 0.590396 0.389143i
\(687\) 0 0
\(688\) 3.07339 11.4701i 0.117172 0.437292i
\(689\) −24.5176 + 42.4657i −0.934046 + 1.61782i
\(690\) 0 0
\(691\) 20.3078 + 35.1742i 0.772546 + 1.33809i 0.936163 + 0.351566i \(0.114351\pi\)
−0.163617 + 0.986524i \(0.552316\pi\)
\(692\) 0.517505 + 0.517505i 0.0196726 + 0.0196726i
\(693\) 0 0
\(694\) 6.15667i 0.233704i
\(695\) −5.71758 + 2.59405i −0.216880 + 0.0983981i
\(696\) 0 0
\(697\) −0.305703 1.14090i −0.0115793 0.0432146i
\(698\) 0.190521 + 0.0510501i 0.00721134 + 0.00193227i
\(699\) 0 0
\(700\) −13.1797 + 1.13855i −0.498145 + 0.0430330i
\(701\) 16.4455i 0.621140i −0.950551 0.310570i \(-0.899480\pi\)
0.950551 0.310570i \(-0.100520\pi\)
\(702\) 0 0
\(703\) 6.05951 1.62364i 0.228539 0.0612368i
\(704\) −2.47359 + 4.28438i −0.0932270 + 0.161474i
\(705\) 0 0
\(706\) 10.2157 0.384472
\(707\) 9.55095 + 9.18148i 0.359200 + 0.345305i
\(708\) 0 0
\(709\) 17.3375 10.0098i 0.651122 0.375926i −0.137764 0.990465i \(-0.543991\pi\)
0.788886 + 0.614539i \(0.210658\pi\)
\(710\) −5.95919 35.9821i −0.223644 1.35038i
\(711\) 0 0
\(712\) 0.443021 + 0.118707i 0.0166029 + 0.00444873i
\(713\) 0.748631 0.748631i 0.0280365 0.0280365i
\(714\) 0 0
\(715\) −52.5520 + 43.1724i −1.96533 + 1.61456i
\(716\) 5.54712 3.20263i 0.207306 0.119688i
\(717\) 0 0
\(718\) 14.7440 3.95063i 0.550239 0.147436i
\(719\) −20.2948 35.1516i −0.756868 1.31093i −0.944440 0.328683i \(-0.893395\pi\)
0.187572 0.982251i \(-0.439938\pi\)
\(720\) 0 0
\(721\) −23.3890 + 42.4215i −0.871052 + 1.57986i
\(722\) −3.60644 3.60644i −0.134218 0.134218i
\(723\) 0 0
\(724\) 7.53612 + 4.35098i 0.280078 + 0.161703i
\(725\) −11.7412 + 13.4154i −0.436057 + 0.498234i
\(726\) 0 0
\(727\) 17.5089 17.5089i 0.649368 0.649368i −0.303473 0.952840i \(-0.598146\pi\)
0.952840 + 0.303473i \(0.0981461\pi\)
\(728\) 15.7920 + 3.89937i 0.585290 + 0.144520i
\(729\) 0 0
\(730\) −17.7587 + 8.05711i −0.657281 + 0.298207i
\(731\) −45.2516 26.1260i −1.67369 0.966305i
\(732\) 0 0
\(733\) 1.36477 5.09340i 0.0504090 0.188129i −0.936130 0.351653i \(-0.885620\pi\)
0.986539 + 0.163524i \(0.0522862\pi\)
\(734\) 23.7301 0.875896
\(735\) 0 0
\(736\) 1.94470 0.0716828
\(737\) −0.0541481 + 0.202083i −0.00199457 + 0.00744384i
\(738\) 0 0
\(739\) 3.95782 + 2.28505i 0.145591 + 0.0840570i 0.571026 0.820932i \(-0.306546\pi\)
−0.425435 + 0.904989i \(0.639879\pi\)
\(740\) −1.32357 + 3.52200i −0.0486555 + 0.129471i
\(741\) 0 0
\(742\) −20.4864 5.05852i −0.752080 0.185704i
\(743\) 12.0060 12.0060i 0.440459 0.440459i −0.451707 0.892166i \(-0.649185\pi\)
0.892166 + 0.451707i \(0.149185\pi\)
\(744\) 0 0
\(745\) −25.5210 + 35.6523i −0.935019 + 1.30620i
\(746\) 16.1222 + 9.30815i 0.590275 + 0.340796i
\(747\) 0 0
\(748\) 15.3930 + 15.3930i 0.562825 + 0.562825i
\(749\) 4.97561 9.02444i 0.181805 0.329746i
\(750\) 0 0
\(751\) 7.40868 + 12.8322i 0.270347 + 0.468254i 0.968951 0.247255i \(-0.0795284\pi\)
−0.698604 + 0.715509i \(0.746195\pi\)
\(752\) −0.896043 + 0.240094i −0.0326753 + 0.00875533i
\(753\) 0 0
\(754\) 18.9844 10.9606i 0.691370 0.399163i
\(755\) 5.57530 + 0.546299i 0.202906 + 0.0198818i
\(756\) 0 0
\(757\) −15.0073 + 15.0073i −0.545448 + 0.545448i −0.925121 0.379673i \(-0.876037\pi\)
0.379673 + 0.925121i \(0.376037\pi\)
\(758\) 33.6920 + 9.02773i 1.22375 + 0.327902i
\(759\) 0 0
\(760\) −8.22455 + 1.36211i −0.298336 + 0.0494090i
\(761\) −2.48525 + 1.43486i −0.0900904 + 0.0520137i −0.544368 0.838846i \(-0.683231\pi\)
0.454278 + 0.890860i \(0.349897\pi\)
\(762\) 0 0
\(763\) −16.4608 15.8241i −0.595922 0.572870i
\(764\) 7.98046 0.288723
\(765\) 0 0
\(766\) −15.5448 + 26.9245i −0.561658 + 0.972821i
\(767\) 58.2073 15.5966i 2.10174 0.563161i
\(768\) 0 0
\(769\) 35.3321i 1.27411i −0.770819 0.637055i \(-0.780153\pi\)
0.770819 0.637055i \(-0.219847\pi\)
\(770\) −24.1302 16.5634i −0.869591 0.596902i
\(771\) 0 0
\(772\) 18.8317 + 5.04593i 0.677766 + 0.181607i
\(773\) −3.63582 13.5691i −0.130771 0.488045i 0.869208 0.494446i \(-0.164629\pi\)
−0.999980 + 0.00640103i \(0.997962\pi\)
\(774\) 0 0
\(775\) −0.877563 2.57673i −0.0315230 0.0925589i
\(776\) 15.0187i 0.539141i
\(777\) 0 0
\(778\) −14.0908 14.0908i −0.505179 0.505179i
\(779\) 0.500374 + 0.866673i 0.0179278 + 0.0310518i
\(780\) 0 0
\(781\) 40.3464 69.8820i 1.44371 2.50058i
\(782\) 2.21478 8.26568i 0.0792005 0.295580i
\(783\) 0 0
\(784\) 0.276021 + 6.99456i 0.00985789 + 0.249806i
\(785\) 33.7496 27.7259i 1.20457 0.989579i
\(786\) 0 0
\(787\) −3.81054 14.2211i −0.135831 0.506929i −0.999993 0.00371495i \(-0.998817\pi\)
0.864162 0.503214i \(-0.167849\pi\)
\(788\) −3.69540 13.7914i −0.131643 0.491299i
\(789\) 0 0
\(790\) 13.8320 11.3632i 0.492121 0.404286i
\(791\) 44.5486 26.9052i 1.58397 0.956639i
\(792\) 0 0
\(793\) −18.1752 + 67.8309i −0.645422 + 2.40875i
\(794\) 6.47536 11.2157i 0.229802 0.398029i
\(795\) 0 0
\(796\) 6.35098 + 11.0002i 0.225105 + 0.389892i
\(797\) −17.8544 17.8544i −0.632437 0.632437i 0.316242 0.948679i \(-0.397579\pi\)
−0.948679 + 0.316242i \(0.897579\pi\)
\(798\) 0 0
\(799\) 4.08194i 0.144409i
\(800\) 2.20695 4.48658i 0.0780274 0.158624i
\(801\) 0 0
\(802\) 0.471387 + 1.75924i 0.0166453 + 0.0621210i
\(803\) −41.6749 11.1667i −1.47067 0.394066i
\(804\) 0 0
\(805\) −0.895942 + 11.4701i −0.0315778 + 0.404268i
\(806\) 3.34710i 0.117897i
\(807\) 0 0
\(808\) −4.83680 + 1.29602i −0.170158 + 0.0455937i
\(809\) 8.23813 14.2689i 0.289637 0.501666i −0.684086 0.729401i \(-0.739799\pi\)
0.973723 + 0.227735i \(0.0731320\pi\)
\(810\) 0 0
\(811\) −24.1358 −0.847522 −0.423761 0.905774i \(-0.639290\pi\)
−0.423761 + 0.905774i \(0.639290\pi\)
\(812\) 6.80077 + 6.53769i 0.238660 + 0.229428i
\(813\) 0 0
\(814\) −7.20907 + 4.16216i −0.252678 + 0.145884i
\(815\) 0.0819678 0.0135751i 0.00287121 0.000475516i
\(816\) 0 0
\(817\) 42.7630 + 11.4583i 1.49609 + 0.400876i
\(818\) 14.5966 14.5966i 0.510359 0.510359i
\(819\) 0 0
\(820\) −0.597354 0.0585321i −0.0208605 0.00204403i
\(821\) −22.7639 + 13.1427i −0.794464 + 0.458684i −0.841532 0.540207i \(-0.818346\pi\)
0.0470674 + 0.998892i \(0.485012\pi\)
\(822\) 0 0
\(823\) 22.4829 6.02428i 0.783705 0.209993i 0.155287 0.987869i \(-0.450370\pi\)
0.628417 + 0.777876i \(0.283703\pi\)
\(824\) −9.15468 15.8564i −0.318918 0.552383i
\(825\) 0 0
\(826\) 13.4066 + 22.1981i 0.466474 + 0.772370i
\(827\) −3.56023 3.56023i −0.123801 0.123801i 0.642492 0.766293i \(-0.277901\pi\)
−0.766293 + 0.642492i \(0.777901\pi\)
\(828\) 0 0
\(829\) −25.5490 14.7507i −0.887354 0.512314i −0.0142776 0.999898i \(-0.504545\pi\)
−0.873076 + 0.487584i \(0.837878\pi\)
\(830\) −2.39804 + 3.35001i −0.0832373 + 0.116281i
\(831\) 0 0
\(832\) −4.34735 + 4.34735i −0.150717 + 0.150717i
\(833\) 30.0437 + 6.79277i 1.04095 + 0.235355i
\(834\) 0 0
\(835\) 10.3028 27.4155i 0.356542 0.948751i
\(836\) −15.9732 9.22212i −0.552444 0.318954i
\(837\) 0 0
\(838\) 3.33743 12.4555i 0.115290 0.430267i
\(839\) −18.9600 −0.654573 −0.327286 0.944925i \(-0.606134\pi\)
−0.327286 + 0.944925i \(0.606134\pi\)
\(840\) 0 0
\(841\) −16.2869 −0.561616
\(842\) 4.38208 16.3542i 0.151017 0.563601i
\(843\) 0 0
\(844\) −16.3592 9.44499i −0.563107 0.325110i
\(845\) −50.4978 + 22.9108i −1.73718 + 0.788154i
\(846\) 0 0
\(847\) −9.90428 34.2470i −0.340315 1.17674i
\(848\) 5.63966 5.63966i 0.193667 0.193667i
\(849\) 0 0
\(850\) −16.5561 14.4900i −0.567869 0.497002i
\(851\) 2.83384 + 1.63612i 0.0971427 + 0.0560854i
\(852\) 0 0
\(853\) 14.2865 + 14.2865i 0.489159 + 0.489159i 0.908041 0.418882i \(-0.137578\pi\)
−0.418882 + 0.908041i \(0.637578\pi\)
\(854\) −30.2140 + 0.595925i −1.03390 + 0.0203921i
\(855\) 0 0
\(856\) 1.94750 + 3.37317i 0.0665642 + 0.115293i
\(857\) 14.9651 4.00989i 0.511199 0.136975i 0.00600644 0.999982i \(-0.498088\pi\)
0.505193 + 0.863007i \(0.331421\pi\)
\(858\) 0 0
\(859\) −42.4333 + 24.4989i −1.44781 + 0.835891i −0.998351 0.0574123i \(-0.981715\pi\)
−0.449455 + 0.893303i \(0.648382\pi\)
\(860\) −20.5170 + 16.8551i −0.699623 + 0.574753i
\(861\) 0 0
\(862\) 21.0190 21.0190i 0.715910 0.715910i
\(863\) 50.5379 + 13.5416i 1.72033 + 0.460961i 0.977919 0.208984i \(-0.0670157\pi\)
0.742411 + 0.669945i \(0.233682\pi\)
\(864\) 0 0
\(865\) −0.267387 1.61450i −0.00909142 0.0548948i
\(866\) −24.5182 + 14.1556i −0.833162 + 0.481026i
\(867\) 0 0
\(868\) −1.38368 + 0.400162i −0.0469652 + 0.0135824i
\(869\) 39.6051 1.34351
\(870\) 0 0
\(871\) −0.129999 + 0.225164i −0.00440484 + 0.00762940i
\(872\) 8.33612 2.23366i 0.282297 0.0756411i
\(873\) 0 0
\(874\) 7.25031i 0.245245i
\(875\) 25.4456 + 15.0838i 0.860218 + 0.509927i
\(876\) 0 0
\(877\) −19.1533 5.13210i −0.646760 0.173299i −0.0794965 0.996835i \(-0.525331\pi\)
−0.567264 + 0.823536i \(0.691998\pi\)
\(878\) −1.65609 6.18060i −0.0558902 0.208585i
\(879\) 0 0
\(880\) 10.0739 4.57051i 0.339591 0.154072i
\(881\) 22.4079i 0.754943i 0.926021 + 0.377471i \(0.123206\pi\)
−0.926021 + 0.377471i \(0.876794\pi\)
\(882\) 0 0
\(883\) −24.7816 24.7816i −0.833966 0.833966i 0.154091 0.988057i \(-0.450755\pi\)
−0.988057 + 0.154091i \(0.950755\pi\)
\(884\) 13.5267 + 23.4289i 0.454951 + 0.787999i
\(885\) 0 0
\(886\) 0.169802 0.294105i 0.00570460 0.00988066i
\(887\) −9.95542 + 37.1542i −0.334270 + 1.24751i 0.570387 + 0.821376i \(0.306793\pi\)
−0.904658 + 0.426139i \(0.859874\pi\)
\(888\) 0 0
\(889\) 0.641035 0.387154i 0.0214996 0.0129847i
\(890\) −0.651012 0.792450i −0.0218220 0.0265630i
\(891\) 0 0
\(892\) −1.07538 4.01337i −0.0360064 0.134378i
\(893\) −0.895127 3.34066i −0.0299543 0.111791i
\(894\) 0 0
\(895\) −14.2543 1.39672i −0.476470 0.0466872i
\(896\) −2.31693 1.27744i −0.0774032 0.0426761i
\(897\) 0 0
\(898\) −3.07558 + 11.4782i −0.102633 + 0.383033i
\(899\) −0.970567 + 1.68107i −0.0323702 + 0.0560668i
\(900\) 0 0
\(901\) −17.5477 30.3935i −0.584598 1.01255i
\(902\) −0.938997 0.938997i −0.0312652 0.0312652i
\(903\) 0 0
\(904\) 19.6704i 0.654227i
\(905\) −8.03940 17.7197i −0.267239 0.589023i
\(906\) 0 0
\(907\) 8.21125 + 30.6448i 0.272650 + 1.01754i 0.957400 + 0.288766i \(0.0932448\pi\)
−0.684750 + 0.728778i \(0.740089\pi\)
\(908\) −0.861758 0.230907i −0.0285984 0.00766293i
\(909\) 0 0
\(910\) −23.6383 27.6440i −0.783602 0.916391i
\(911\) 38.5994i 1.27886i 0.768851 + 0.639428i \(0.220829\pi\)
−0.768851 + 0.639428i \(0.779171\pi\)
\(912\) 0 0
\(913\) −8.80437 + 2.35912i −0.291382 + 0.0780756i
\(914\) −10.0824 + 17.4632i −0.333496 + 0.577633i
\(915\) 0 0
\(916\) −20.6026 −0.680728
\(917\) −39.8768 + 11.5324i −1.31685 + 0.380834i
\(918\) 0 0
\(919\) −3.71713 + 2.14609i −0.122617 + 0.0707928i −0.560054 0.828456i \(-0.689220\pi\)
0.437437 + 0.899249i \(0.355886\pi\)
\(920\) −3.53593 2.53113i −0.116576 0.0834488i
\(921\) 0 0
\(922\) −18.9275 5.07160i −0.623343 0.167024i
\(923\) 70.9091 70.9091i 2.33400 2.33400i
\(924\) 0 0
\(925\) 6.99062 4.68112i 0.229850 0.153914i
\(926\) −23.5444 + 13.5934i −0.773716 + 0.446705i
\(927\) 0 0
\(928\) −3.44405 + 0.922831i −0.113057 + 0.0302934i
\(929\) −8.99774 15.5845i −0.295206 0.511312i 0.679827 0.733373i \(-0.262055\pi\)
−0.975033 + 0.222061i \(0.928722\pi\)
\(930\) 0 0
\(931\) −26.0773 + 1.02907i −0.854650 + 0.0337264i
\(932\) −3.40735 3.40735i −0.111611 0.111611i
\(933\) 0 0
\(934\) −26.2075 15.1309i −0.857534 0.495098i
\(935\) −7.95333 48.0229i −0.260102 1.57052i
\(936\) 0 0
\(937\) 25.1463 25.1463i 0.821495 0.821495i −0.164828 0.986322i \(-0.552707\pi\)
0.986322 + 0.164828i \(0.0527068\pi\)
\(938\) −0.108624 0.0268216i −0.00354671 0.000875756i
\(939\) 0 0
\(940\) 1.94171 + 0.729697i 0.0633316 + 0.0238001i
\(941\) −19.8371 11.4529i −0.646670 0.373355i 0.140509 0.990079i \(-0.455126\pi\)
−0.787179 + 0.616724i \(0.788459\pi\)
\(942\) 0 0
\(943\) −0.135105 + 0.504219i −0.00439962 + 0.0164196i
\(944\) −9.80154 −0.319013
\(945\) 0 0
\(946\) −58.7462 −1.91000
\(947\) −5.17572 + 19.3161i −0.168188 + 0.627687i 0.829424 + 0.558620i \(0.188669\pi\)
−0.997612 + 0.0690674i \(0.977998\pi\)
\(948\) 0 0
\(949\) −46.4347 26.8091i −1.50733 0.870260i
\(950\) 16.7270 + 8.22802i 0.542696 + 0.266952i
\(951\) 0 0
\(952\) −8.06825 + 8.39292i −0.261494 + 0.272016i
\(953\) −5.12950 + 5.12950i −0.166161 + 0.166161i −0.785289 0.619129i \(-0.787486\pi\)
0.619129 + 0.785289i \(0.287486\pi\)
\(954\) 0 0
\(955\) −14.5103 10.3870i −0.469543 0.336114i
\(956\) −13.6183 7.86253i −0.440448 0.254293i
\(957\) 0 0
\(958\) 1.15697 + 1.15697i 0.0373801 + 0.0373801i
\(959\) 6.69658 0.132080i 0.216244 0.00426508i
\(960\) 0 0
\(961\) 15.3518 + 26.5901i 0.495220 + 0.857745i
\(962\) −9.99250 + 2.67748i −0.322171 + 0.0863255i
\(963\) 0 0
\(964\) 6.31306 3.64485i 0.203330 0.117393i
\(965\) −27.6728 33.6850i −0.890819 1.08436i
\(966\) 0 0
\(967\) −19.0930 + 19.0930i −0.613989 + 0.613989i −0.943983 0.329994i \(-0.892953\pi\)
0.329994 + 0.943983i \(0.392953\pi\)
\(968\) 13.0155 + 3.48748i 0.418333 + 0.112092i
\(969\) 0 0
\(970\) 19.5476 27.3075i 0.627636 0.876792i
\(971\) 38.4438 22.1955i 1.23372 0.712289i 0.265917 0.963996i \(-0.414325\pi\)
0.967804 + 0.251707i \(0.0809918\pi\)
\(972\) 0 0
\(973\) 1.78085 7.21223i 0.0570915 0.231214i
\(974\) 7.21490 0.231180
\(975\) 0 0
\(976\) 5.71103 9.89179i 0.182806 0.316628i
\(977\) 8.10250 2.17106i 0.259222 0.0694583i −0.126868 0.991920i \(-0.540492\pi\)
0.386089 + 0.922461i \(0.373826\pi\)
\(978\) 0 0
\(979\) 2.26902i 0.0725181i
\(980\) 8.60189 13.0770i 0.274777 0.417729i
\(981\) 0 0
\(982\) −22.6253 6.06244i −0.722003 0.193460i
\(983\) 0.734462 + 2.74105i 0.0234257 + 0.0874259i 0.976649 0.214841i \(-0.0689233\pi\)
−0.953223 + 0.302267i \(0.902257\pi\)
\(984\) 0 0
\(985\) −11.2311 + 29.8858i −0.357853 + 0.952239i
\(986\) 15.6894i 0.499654i
\(987\) 0 0
\(988\) −16.2079 16.2079i −0.515643 0.515643i
\(989\) 11.5464 + 19.9989i 0.367153 + 0.635928i
\(990\) 0 0
\(991\) 17.4678 30.2552i 0.554884 0.961088i −0.443028 0.896508i \(-0.646096\pi\)
0.997913 0.0645801i \(-0.0205708\pi\)
\(992\) 0.140905 0.525863i 0.00447373 0.0166962i
\(993\) 0 0
\(994\) 37.7911 + 20.8361i 1.19866 + 0.660880i
\(995\) 2.76977 28.2671i 0.0878075 0.896126i
\(996\) 0 0
\(997\) −0.417054 1.55647i −0.0132082 0.0492938i 0.959007 0.283382i \(-0.0914563\pi\)
−0.972215 + 0.234088i \(0.924790\pi\)
\(998\) 7.64876 + 28.5456i 0.242117 + 0.903594i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.ce.c.53.3 32
3.2 odd 2 inner 630.2.ce.c.53.6 yes 32
5.2 odd 4 inner 630.2.ce.c.557.2 yes 32
7.2 even 3 inner 630.2.ce.c.233.7 yes 32
15.2 even 4 inner 630.2.ce.c.557.7 yes 32
21.2 odd 6 inner 630.2.ce.c.233.2 yes 32
35.2 odd 12 inner 630.2.ce.c.107.6 yes 32
105.2 even 12 inner 630.2.ce.c.107.3 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.ce.c.53.3 32 1.1 even 1 trivial
630.2.ce.c.53.6 yes 32 3.2 odd 2 inner
630.2.ce.c.107.3 yes 32 105.2 even 12 inner
630.2.ce.c.107.6 yes 32 35.2 odd 12 inner
630.2.ce.c.233.2 yes 32 21.2 odd 6 inner
630.2.ce.c.233.7 yes 32 7.2 even 3 inner
630.2.ce.c.557.2 yes 32 5.2 odd 4 inner
630.2.ce.c.557.7 yes 32 15.2 even 4 inner