Properties

Label 630.2.bv.b.577.2
Level $630$
Weight $2$
Character 630.577
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(73,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 577.2
Root \(0.277956 + 0.213283i\) of defining polynomial
Character \(\chi\) \(=\) 630.577
Dual form 630.2.bv.b.523.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(2.21628 + 0.296818i) q^{5} +(-1.87796 - 1.86367i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-0.860320 + 2.06394i) q^{10} +(2.74315 - 4.75127i) q^{11} +(-2.41668 - 2.41668i) q^{13} +(2.28622 - 1.33161i) q^{14} +(0.500000 + 0.866025i) q^{16} +(0.548242 + 2.04607i) q^{17} +(-3.49797 - 6.05866i) q^{19} +(-1.77095 - 1.36519i) q^{20} +(3.87940 + 3.87940i) q^{22} +(-1.69461 - 0.454069i) q^{23} +(4.82380 + 1.31566i) q^{25} +(2.95981 - 1.70885i) q^{26} +(0.694523 + 2.55297i) q^{28} -0.684610i q^{29} +(4.82932 + 2.78821i) q^{31} +(-0.965926 + 0.258819i) q^{32} -2.11825 q^{34} +(-3.60891 - 4.68783i) q^{35} +(2.53646 - 9.46620i) q^{37} +(6.75755 - 1.81068i) q^{38} +(1.77703 - 1.35727i) q^{40} +2.50597i q^{41} +(-1.95305 + 1.95305i) q^{43} +(-4.75127 + 2.74315i) q^{44} +(0.877194 - 1.51935i) q^{46} +(3.40506 + 0.912383i) q^{47} +(0.0534500 + 6.99980i) q^{49} +(-2.51932 + 4.31891i) q^{50} +(0.884566 + 3.30124i) q^{52} +(2.43353 + 9.08204i) q^{53} +(7.48985 - 9.71594i) q^{55} +(-2.64573 + 0.0101012i) q^{56} +(0.661282 + 0.177190i) q^{58} +(5.08015 - 8.79907i) q^{59} +(1.01469 - 0.585830i) q^{61} +(-3.94312 + 3.94312i) q^{62} -1.00000i q^{64} +(-4.63872 - 6.07335i) q^{65} +(-9.61398 + 2.57606i) q^{67} +(0.548242 - 2.04607i) q^{68} +(5.46215 - 2.27264i) q^{70} +11.9716 q^{71} +(4.70482 - 1.26065i) q^{73} +(8.48716 + 4.90007i) q^{74} +6.99593i q^{76} +(-14.0063 + 3.81036i) q^{77} +(7.21474 - 4.16543i) q^{79} +(0.851088 + 2.06776i) q^{80} +(-2.42058 - 0.648592i) q^{82} +(4.05281 + 4.05281i) q^{83} +(0.607749 + 4.69739i) q^{85} +(-1.38101 - 2.39198i) q^{86} +(-1.41996 - 5.29936i) q^{88} +(3.59178 + 6.22115i) q^{89} +(0.0345228 + 9.04232i) q^{91} +(1.24054 + 1.24054i) q^{92} +(-1.76259 + 3.05289i) q^{94} +(-5.95416 - 14.4659i) q^{95} +(-13.1212 + 13.1212i) q^{97} +(-6.77512 - 1.76005i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{5} - 4 q^{7} + 4 q^{10} - 4 q^{11} + 16 q^{13} + 16 q^{14} + 8 q^{16} - 12 q^{17} + 8 q^{19} - 8 q^{20} + 4 q^{22} + 40 q^{23} + 16 q^{25} + 12 q^{26} - 4 q^{28} - 24 q^{31} - 16 q^{34} + 44 q^{35}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.258819 + 0.965926i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) 2.21628 + 0.296818i 0.991151 + 0.132741i
\(6\) 0 0
\(7\) −1.87796 1.86367i −0.709801 0.704402i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −0.860320 + 2.06394i −0.272057 + 0.652675i
\(11\) 2.74315 4.75127i 0.827091 1.43256i −0.0732202 0.997316i \(-0.523328\pi\)
0.900311 0.435247i \(-0.143339\pi\)
\(12\) 0 0
\(13\) −2.41668 2.41668i −0.670266 0.670266i 0.287511 0.957777i \(-0.407172\pi\)
−0.957777 + 0.287511i \(0.907172\pi\)
\(14\) 2.28622 1.33161i 0.611018 0.355889i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 0.548242 + 2.04607i 0.132968 + 0.496244i 0.999998 0.00201209i \(-0.000640467\pi\)
−0.867030 + 0.498256i \(0.833974\pi\)
\(18\) 0 0
\(19\) −3.49797 6.05866i −0.802489 1.38995i −0.917974 0.396642i \(-0.870176\pi\)
0.115485 0.993309i \(-0.463158\pi\)
\(20\) −1.77095 1.36519i −0.395996 0.305266i
\(21\) 0 0
\(22\) 3.87940 + 3.87940i 0.827091 + 0.827091i
\(23\) −1.69461 0.454069i −0.353350 0.0946800i 0.0777776 0.996971i \(-0.475218\pi\)
−0.431128 + 0.902291i \(0.641884\pi\)
\(24\) 0 0
\(25\) 4.82380 + 1.31566i 0.964760 + 0.263133i
\(26\) 2.95981 1.70885i 0.580467 0.335133i
\(27\) 0 0
\(28\) 0.694523 + 2.55297i 0.131252 + 0.482465i
\(29\) 0.684610i 0.127129i −0.997978 0.0635644i \(-0.979753\pi\)
0.997978 0.0635644i \(-0.0202468\pi\)
\(30\) 0 0
\(31\) 4.82932 + 2.78821i 0.867371 + 0.500777i 0.866474 0.499223i \(-0.166381\pi\)
0.000897301 1.00000i \(0.499714\pi\)
\(32\) −0.965926 + 0.258819i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) −2.11825 −0.363276
\(35\) −3.60891 4.68783i −0.610017 0.792388i
\(36\) 0 0
\(37\) 2.53646 9.46620i 0.416992 1.55623i −0.363821 0.931469i \(-0.618528\pi\)
0.780813 0.624765i \(-0.214805\pi\)
\(38\) 6.75755 1.81068i 1.09622 0.293731i
\(39\) 0 0
\(40\) 1.77703 1.35727i 0.280973 0.214602i
\(41\) 2.50597i 0.391366i 0.980667 + 0.195683i \(0.0626924\pi\)
−0.980667 + 0.195683i \(0.937308\pi\)
\(42\) 0 0
\(43\) −1.95305 + 1.95305i −0.297837 + 0.297837i −0.840166 0.542329i \(-0.817543\pi\)
0.542329 + 0.840166i \(0.317543\pi\)
\(44\) −4.75127 + 2.74315i −0.716282 + 0.413545i
\(45\) 0 0
\(46\) 0.877194 1.51935i 0.129335 0.224015i
\(47\) 3.40506 + 0.912383i 0.496679 + 0.133085i 0.498458 0.866914i \(-0.333900\pi\)
−0.00177938 + 0.999998i \(0.500566\pi\)
\(48\) 0 0
\(49\) 0.0534500 + 6.99980i 0.00763571 + 0.999971i
\(50\) −2.51932 + 4.31891i −0.356286 + 0.610787i
\(51\) 0 0
\(52\) 0.884566 + 3.30124i 0.122667 + 0.457800i
\(53\) 2.43353 + 9.08204i 0.334270 + 1.24751i 0.904658 + 0.426138i \(0.140126\pi\)
−0.570388 + 0.821376i \(0.693207\pi\)
\(54\) 0 0
\(55\) 7.48985 9.71594i 1.00993 1.31010i
\(56\) −2.64573 + 0.0101012i −0.353551 + 0.00134983i
\(57\) 0 0
\(58\) 0.661282 + 0.177190i 0.0868306 + 0.0232662i
\(59\) 5.08015 8.79907i 0.661379 1.14554i −0.318875 0.947797i \(-0.603305\pi\)
0.980253 0.197745i \(-0.0633618\pi\)
\(60\) 0 0
\(61\) 1.01469 0.585830i 0.129917 0.0750079i −0.433633 0.901090i \(-0.642768\pi\)
0.563550 + 0.826082i \(0.309435\pi\)
\(62\) −3.94312 + 3.94312i −0.500777 + 0.500777i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −4.63872 6.07335i −0.575363 0.753306i
\(66\) 0 0
\(67\) −9.61398 + 2.57606i −1.17454 + 0.314716i −0.792757 0.609538i \(-0.791355\pi\)
−0.381778 + 0.924254i \(0.624688\pi\)
\(68\) 0.548242 2.04607i 0.0664841 0.248122i
\(69\) 0 0
\(70\) 5.46215 2.27264i 0.652852 0.271632i
\(71\) 11.9716 1.42077 0.710383 0.703816i \(-0.248522\pi\)
0.710383 + 0.703816i \(0.248522\pi\)
\(72\) 0 0
\(73\) 4.70482 1.26065i 0.550657 0.147548i 0.0272467 0.999629i \(-0.491326\pi\)
0.523411 + 0.852081i \(0.324659\pi\)
\(74\) 8.48716 + 4.90007i 0.986613 + 0.569621i
\(75\) 0 0
\(76\) 6.99593i 0.802489i
\(77\) −14.0063 + 3.81036i −1.59617 + 0.434231i
\(78\) 0 0
\(79\) 7.21474 4.16543i 0.811722 0.468648i −0.0358316 0.999358i \(-0.511408\pi\)
0.847553 + 0.530710i \(0.178075\pi\)
\(80\) 0.851088 + 2.06776i 0.0951546 + 0.231183i
\(81\) 0 0
\(82\) −2.42058 0.648592i −0.267308 0.0716250i
\(83\) 4.05281 + 4.05281i 0.444854 + 0.444854i 0.893639 0.448786i \(-0.148143\pi\)
−0.448786 + 0.893639i \(0.648143\pi\)
\(84\) 0 0
\(85\) 0.607749 + 4.69739i 0.0659197 + 0.509503i
\(86\) −1.38101 2.39198i −0.148918 0.257934i
\(87\) 0 0
\(88\) −1.41996 5.29936i −0.151368 0.564913i
\(89\) 3.59178 + 6.22115i 0.380728 + 0.659440i 0.991166 0.132623i \(-0.0423401\pi\)
−0.610439 + 0.792064i \(0.709007\pi\)
\(90\) 0 0
\(91\) 0.0345228 + 9.04232i 0.00361897 + 0.947892i
\(92\) 1.24054 + 1.24054i 0.129335 + 0.129335i
\(93\) 0 0
\(94\) −1.76259 + 3.05289i −0.181797 + 0.314882i
\(95\) −5.95416 14.4659i −0.610884 1.48417i
\(96\) 0 0
\(97\) −13.1212 + 13.1212i −1.33226 + 1.33226i −0.428909 + 0.903348i \(0.641102\pi\)
−0.903348 + 0.428909i \(0.858898\pi\)
\(98\) −6.77512 1.76005i −0.684390 0.177792i
\(99\) 0 0
\(100\) −3.51970 3.55130i −0.351970 0.355130i
\(101\) −7.16001 4.13383i −0.712447 0.411332i 0.0995192 0.995036i \(-0.468270\pi\)
−0.811967 + 0.583704i \(0.801603\pi\)
\(102\) 0 0
\(103\) −2.40862 + 8.98910i −0.237329 + 0.885722i 0.739757 + 0.672874i \(0.234941\pi\)
−0.977085 + 0.212848i \(0.931726\pi\)
\(104\) −3.41770 −0.335133
\(105\) 0 0
\(106\) −9.40242 −0.913244
\(107\) 3.17510 11.8496i 0.306949 1.14555i −0.624306 0.781180i \(-0.714618\pi\)
0.931255 0.364369i \(-0.118715\pi\)
\(108\) 0 0
\(109\) −0.291523 0.168311i −0.0279228 0.0161213i 0.485974 0.873973i \(-0.338465\pi\)
−0.513896 + 0.857852i \(0.671798\pi\)
\(110\) 7.44636 + 9.74931i 0.709983 + 0.929560i
\(111\) 0 0
\(112\) 0.675009 2.55820i 0.0637823 0.241727i
\(113\) −10.1896 + 10.1896i −0.958555 + 0.958555i −0.999175 0.0406198i \(-0.987067\pi\)
0.0406198 + 0.999175i \(0.487067\pi\)
\(114\) 0 0
\(115\) −3.62095 1.50933i −0.337656 0.140746i
\(116\) −0.342305 + 0.592889i −0.0317822 + 0.0550484i
\(117\) 0 0
\(118\) 7.18441 + 7.18441i 0.661379 + 0.661379i
\(119\) 2.78362 4.86417i 0.255174 0.445898i
\(120\) 0 0
\(121\) −9.54974 16.5406i −0.868158 1.50369i
\(122\) 0.303248 + 1.13174i 0.0274548 + 0.102463i
\(123\) 0 0
\(124\) −2.78821 4.82932i −0.250388 0.433686i
\(125\) 10.3004 + 4.34767i 0.921294 + 0.388867i
\(126\) 0 0
\(127\) −4.77054 4.77054i −0.423317 0.423317i 0.463027 0.886344i \(-0.346763\pi\)
−0.886344 + 0.463027i \(0.846763\pi\)
\(128\) 0.965926 + 0.258819i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 7.06700 2.90876i 0.619817 0.255116i
\(131\) −15.7695 + 9.10455i −1.37779 + 0.795468i −0.991893 0.127074i \(-0.959442\pi\)
−0.385898 + 0.922542i \(0.626108\pi\)
\(132\) 0 0
\(133\) −4.72232 + 17.8970i −0.409477 + 1.55186i
\(134\) 9.95313i 0.859819i
\(135\) 0 0
\(136\) 1.83445 + 1.05912i 0.157303 + 0.0908190i
\(137\) 2.11024 0.565438i 0.180290 0.0483086i −0.167544 0.985865i \(-0.553584\pi\)
0.347835 + 0.937556i \(0.386917\pi\)
\(138\) 0 0
\(139\) −18.1446 −1.53900 −0.769501 0.638645i \(-0.779495\pi\)
−0.769501 + 0.638645i \(0.779495\pi\)
\(140\) 0.781491 + 5.86424i 0.0660481 + 0.495618i
\(141\) 0 0
\(142\) −3.09847 + 11.5637i −0.260018 + 0.970401i
\(143\) −18.1116 + 4.85299i −1.51457 + 0.405828i
\(144\) 0 0
\(145\) 0.203204 1.51729i 0.0168752 0.126004i
\(146\) 4.87079i 0.403109i
\(147\) 0 0
\(148\) −6.92974 + 6.92974i −0.569621 + 0.569621i
\(149\) 0.167711 0.0968279i 0.0137394 0.00793245i −0.493115 0.869964i \(-0.664142\pi\)
0.506854 + 0.862032i \(0.330808\pi\)
\(150\) 0 0
\(151\) 10.6614 18.4660i 0.867610 1.50274i 0.00317777 0.999995i \(-0.498988\pi\)
0.864432 0.502750i \(-0.167678\pi\)
\(152\) −6.75755 1.81068i −0.548110 0.146866i
\(153\) 0 0
\(154\) −0.0554181 14.5153i −0.00446571 1.16967i
\(155\) 9.87553 + 7.61288i 0.793222 + 0.611481i
\(156\) 0 0
\(157\) −0.952462 3.55464i −0.0760147 0.283691i 0.917447 0.397859i \(-0.130247\pi\)
−0.993461 + 0.114168i \(0.963580\pi\)
\(158\) 2.15619 + 8.04700i 0.171537 + 0.640185i
\(159\) 0 0
\(160\) −2.21758 + 0.286912i −0.175315 + 0.0226824i
\(161\) 2.33617 + 4.01092i 0.184116 + 0.316105i
\(162\) 0 0
\(163\) 13.6012 + 3.64443i 1.06533 + 0.285454i 0.748572 0.663054i \(-0.230740\pi\)
0.316756 + 0.948507i \(0.397406\pi\)
\(164\) 1.25298 2.17023i 0.0978416 0.169467i
\(165\) 0 0
\(166\) −4.96366 + 2.86577i −0.385255 + 0.222427i
\(167\) −6.07259 + 6.07259i −0.469911 + 0.469911i −0.901886 0.431974i \(-0.857817\pi\)
0.431974 + 0.901886i \(0.357817\pi\)
\(168\) 0 0
\(169\) 1.31933i 0.101487i
\(170\) −4.69463 0.628733i −0.360061 0.0482216i
\(171\) 0 0
\(172\) 2.66791 0.714864i 0.203426 0.0545079i
\(173\) 1.04797 3.91108i 0.0796757 0.297354i −0.914577 0.404412i \(-0.867476\pi\)
0.994253 + 0.107058i \(0.0341430\pi\)
\(174\) 0 0
\(175\) −6.60692 11.4607i −0.499437 0.866350i
\(176\) 5.48630 0.413545
\(177\) 0 0
\(178\) −6.93879 + 1.85924i −0.520084 + 0.139356i
\(179\) −3.17428 1.83267i −0.237256 0.136980i 0.376659 0.926352i \(-0.377073\pi\)
−0.613915 + 0.789372i \(0.710406\pi\)
\(180\) 0 0
\(181\) 2.39985i 0.178379i 0.996015 + 0.0891896i \(0.0284277\pi\)
−0.996015 + 0.0891896i \(0.971572\pi\)
\(182\) −8.74314 2.30698i −0.648085 0.171005i
\(183\) 0 0
\(184\) −1.51935 + 0.877194i −0.112008 + 0.0646676i
\(185\) 8.43125 20.2269i 0.619878 1.48711i
\(186\) 0 0
\(187\) 11.2253 + 3.00782i 0.820878 + 0.219954i
\(188\) −2.49268 2.49268i −0.181797 0.181797i
\(189\) 0 0
\(190\) 15.5141 2.00721i 1.12551 0.145619i
\(191\) 4.03766 + 6.99344i 0.292155 + 0.506027i 0.974319 0.225172i \(-0.0722944\pi\)
−0.682164 + 0.731199i \(0.738961\pi\)
\(192\) 0 0
\(193\) −0.445821 1.66383i −0.0320909 0.119765i 0.948022 0.318204i \(-0.103080\pi\)
−0.980113 + 0.198439i \(0.936413\pi\)
\(194\) −9.27809 16.0701i −0.666128 1.15377i
\(195\) 0 0
\(196\) 3.45361 6.08873i 0.246686 0.434909i
\(197\) −6.01174 6.01174i −0.428319 0.428319i 0.459737 0.888055i \(-0.347944\pi\)
−0.888055 + 0.459737i \(0.847944\pi\)
\(198\) 0 0
\(199\) 5.50897 9.54181i 0.390520 0.676401i −0.601998 0.798498i \(-0.705628\pi\)
0.992518 + 0.122097i \(0.0389618\pi\)
\(200\) 4.34125 2.48063i 0.306973 0.175407i
\(201\) 0 0
\(202\) 5.84612 5.84612i 0.411332 0.411332i
\(203\) −1.27589 + 1.28567i −0.0895498 + 0.0902362i
\(204\) 0 0
\(205\) −0.743816 + 5.55393i −0.0519503 + 0.387903i
\(206\) −8.05941 4.65310i −0.561526 0.324197i
\(207\) 0 0
\(208\) 0.884566 3.30124i 0.0613336 0.228900i
\(209\) −38.3818 −2.65492
\(210\) 0 0
\(211\) 10.3323 0.711302 0.355651 0.934619i \(-0.384259\pi\)
0.355651 + 0.934619i \(0.384259\pi\)
\(212\) 2.43353 9.08204i 0.167135 0.623757i
\(213\) 0 0
\(214\) 10.6241 + 6.13383i 0.726249 + 0.419300i
\(215\) −4.90820 + 3.74880i −0.334736 + 0.255666i
\(216\) 0 0
\(217\) −3.87295 14.2364i −0.262913 0.966430i
\(218\) 0.238027 0.238027i 0.0161213 0.0161213i
\(219\) 0 0
\(220\) −11.3444 + 4.66933i −0.764837 + 0.314806i
\(221\) 3.61976 6.26961i 0.243492 0.421740i
\(222\) 0 0
\(223\) 3.41183 + 3.41183i 0.228473 + 0.228473i 0.812054 0.583582i \(-0.198349\pi\)
−0.583582 + 0.812054i \(0.698349\pi\)
\(224\) 2.29632 + 1.31412i 0.153429 + 0.0878032i
\(225\) 0 0
\(226\) −7.20512 12.4796i −0.479277 0.830133i
\(227\) 4.68301 + 17.4772i 0.310822 + 1.16000i 0.927816 + 0.373037i \(0.121684\pi\)
−0.616994 + 0.786968i \(0.711650\pi\)
\(228\) 0 0
\(229\) 4.82375 + 8.35497i 0.318762 + 0.552112i 0.980230 0.197861i \(-0.0633996\pi\)
−0.661468 + 0.749973i \(0.730066\pi\)
\(230\) 2.39508 3.10693i 0.157927 0.204865i
\(231\) 0 0
\(232\) −0.484092 0.484092i −0.0317822 0.0317822i
\(233\) 13.9801 + 3.74597i 0.915870 + 0.245407i 0.685819 0.727772i \(-0.259444\pi\)
0.230051 + 0.973179i \(0.426111\pi\)
\(234\) 0 0
\(235\) 7.27575 + 3.03278i 0.474618 + 0.197837i
\(236\) −8.79907 + 5.08015i −0.572771 + 0.330689i
\(237\) 0 0
\(238\) 3.97798 + 3.94772i 0.257854 + 0.255892i
\(239\) 29.9736i 1.93883i 0.245427 + 0.969415i \(0.421072\pi\)
−0.245427 + 0.969415i \(0.578928\pi\)
\(240\) 0 0
\(241\) 14.3934 + 8.31003i 0.927161 + 0.535296i 0.885912 0.463853i \(-0.153533\pi\)
0.0412481 + 0.999149i \(0.486867\pi\)
\(242\) 18.4487 4.94331i 1.18593 0.317768i
\(243\) 0 0
\(244\) −1.17166 −0.0750079
\(245\) −1.95920 + 15.5294i −0.125169 + 0.992135i
\(246\) 0 0
\(247\) −6.18836 + 23.0953i −0.393756 + 1.46952i
\(248\) 5.38640 1.44328i 0.342037 0.0916485i
\(249\) 0 0
\(250\) −6.86546 + 8.82414i −0.434210 + 0.558088i
\(251\) 10.7660i 0.679546i 0.940508 + 0.339773i \(0.110350\pi\)
−0.940508 + 0.339773i \(0.889650\pi\)
\(252\) 0 0
\(253\) −6.80597 + 6.80597i −0.427888 + 0.427888i
\(254\) 5.84270 3.37328i 0.366604 0.211659i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 14.5299 + 3.89328i 0.906352 + 0.242856i 0.681742 0.731593i \(-0.261223\pi\)
0.224610 + 0.974449i \(0.427889\pi\)
\(258\) 0 0
\(259\) −22.4053 + 13.0500i −1.39220 + 0.810887i
\(260\) 0.980578 + 7.57904i 0.0608128 + 0.470032i
\(261\) 0 0
\(262\) −4.71286 17.5886i −0.291161 1.08663i
\(263\) −5.83157 21.7637i −0.359590 1.34201i −0.874609 0.484829i \(-0.838882\pi\)
0.515019 0.857179i \(-0.327785\pi\)
\(264\) 0 0
\(265\) 2.69766 + 20.8507i 0.165716 + 1.28085i
\(266\) −16.0649 9.19348i −0.985003 0.563689i
\(267\) 0 0
\(268\) 9.61398 + 2.57606i 0.587268 + 0.157358i
\(269\) −5.52122 + 9.56304i −0.336635 + 0.583069i −0.983797 0.179283i \(-0.942622\pi\)
0.647163 + 0.762352i \(0.275955\pi\)
\(270\) 0 0
\(271\) 4.34433 2.50820i 0.263899 0.152362i −0.362213 0.932095i \(-0.617979\pi\)
0.626112 + 0.779733i \(0.284645\pi\)
\(272\) −1.49783 + 1.49783i −0.0908190 + 0.0908190i
\(273\) 0 0
\(274\) 2.18468i 0.131982i
\(275\) 19.4835 19.3101i 1.17490 1.16444i
\(276\) 0 0
\(277\) −6.11920 + 1.63963i −0.367667 + 0.0985161i −0.437922 0.899013i \(-0.644285\pi\)
0.0702549 + 0.997529i \(0.477619\pi\)
\(278\) 4.69616 17.5263i 0.281657 1.05116i
\(279\) 0 0
\(280\) −5.86668 0.762913i −0.350601 0.0455928i
\(281\) 29.4723 1.75817 0.879085 0.476665i \(-0.158154\pi\)
0.879085 + 0.476665i \(0.158154\pi\)
\(282\) 0 0
\(283\) −0.0944925 + 0.0253192i −0.00561700 + 0.00150507i −0.261626 0.965169i \(-0.584259\pi\)
0.256009 + 0.966674i \(0.417592\pi\)
\(284\) −10.3677 5.98579i −0.615210 0.355191i
\(285\) 0 0
\(286\) 18.7505i 1.10874i
\(287\) 4.67030 4.70610i 0.275679 0.277792i
\(288\) 0 0
\(289\) 10.8366 6.25652i 0.637447 0.368030i
\(290\) 1.41299 + 0.588983i 0.0829738 + 0.0345863i
\(291\) 0 0
\(292\) −4.70482 1.26065i −0.275329 0.0737741i
\(293\) 14.0076 + 14.0076i 0.818330 + 0.818330i 0.985866 0.167536i \(-0.0535810\pi\)
−0.167536 + 0.985866i \(0.553581\pi\)
\(294\) 0 0
\(295\) 13.8708 17.9933i 0.807587 1.04761i
\(296\) −4.90007 8.48716i −0.284811 0.493306i
\(297\) 0 0
\(298\) 0.0501218 + 0.187057i 0.00290348 + 0.0108359i
\(299\) 2.99799 + 5.19266i 0.173378 + 0.300300i
\(300\) 0 0
\(301\) 7.30758 0.0278997i 0.421202 0.00160811i
\(302\) 15.0775 + 15.0775i 0.867610 + 0.867610i
\(303\) 0 0
\(304\) 3.49797 6.05866i 0.200622 0.347488i
\(305\) 2.42272 0.997187i 0.138724 0.0570987i
\(306\) 0 0
\(307\) −3.05320 + 3.05320i −0.174255 + 0.174255i −0.788846 0.614591i \(-0.789321\pi\)
0.614591 + 0.788846i \(0.289321\pi\)
\(308\) 14.0350 + 3.70330i 0.799720 + 0.211015i
\(309\) 0 0
\(310\) −9.90945 + 7.56867i −0.562819 + 0.429872i
\(311\) 7.31386 + 4.22266i 0.414731 + 0.239445i 0.692820 0.721110i \(-0.256368\pi\)
−0.278089 + 0.960555i \(0.589701\pi\)
\(312\) 0 0
\(313\) −5.02358 + 18.7482i −0.283949 + 1.05971i 0.665654 + 0.746260i \(0.268153\pi\)
−0.949604 + 0.313453i \(0.898514\pi\)
\(314\) 3.68003 0.207676
\(315\) 0 0
\(316\) −8.33087 −0.468648
\(317\) 4.02471 15.0204i 0.226050 0.843632i −0.755931 0.654652i \(-0.772815\pi\)
0.981981 0.188980i \(-0.0605181\pi\)
\(318\) 0 0
\(319\) −3.25277 1.87799i −0.182120 0.105147i
\(320\) 0.296818 2.21628i 0.0165926 0.123894i
\(321\) 0 0
\(322\) −4.47890 + 1.21846i −0.249599 + 0.0679023i
\(323\) 10.4787 10.4787i 0.583050 0.583050i
\(324\) 0 0
\(325\) −8.47803 14.8371i −0.470277 0.823014i
\(326\) −7.04050 + 12.1945i −0.389937 + 0.675391i
\(327\) 0 0
\(328\) 1.77199 + 1.77199i 0.0978416 + 0.0978416i
\(329\) −4.69417 8.05933i −0.258798 0.444325i
\(330\) 0 0
\(331\) −8.09296 14.0174i −0.444830 0.770467i 0.553211 0.833041i \(-0.313402\pi\)
−0.998040 + 0.0625739i \(0.980069\pi\)
\(332\) −1.48343 5.53624i −0.0814139 0.303841i
\(333\) 0 0
\(334\) −4.29397 7.43738i −0.234956 0.406955i
\(335\) −22.0719 + 2.85567i −1.20592 + 0.156022i
\(336\) 0 0
\(337\) 19.2055 + 19.2055i 1.04619 + 1.04619i 0.998880 + 0.0473073i \(0.0150640\pi\)
0.0473073 + 0.998880i \(0.484936\pi\)
\(338\) 1.27438 + 0.341468i 0.0693169 + 0.0185734i
\(339\) 0 0
\(340\) 1.82237 4.37193i 0.0988318 0.237101i
\(341\) 26.4951 15.2969i 1.43479 0.828376i
\(342\) 0 0
\(343\) 12.9450 13.2449i 0.698962 0.715159i
\(344\) 2.76202i 0.148918i
\(345\) 0 0
\(346\) 3.50658 + 2.02452i 0.188515 + 0.108839i
\(347\) 9.91592 2.65696i 0.532315 0.142633i 0.0173577 0.999849i \(-0.494475\pi\)
0.514957 + 0.857216i \(0.327808\pi\)
\(348\) 0 0
\(349\) 6.61441 0.354061 0.177031 0.984205i \(-0.443351\pi\)
0.177031 + 0.984205i \(0.443351\pi\)
\(350\) 12.7802 3.41554i 0.683132 0.182568i
\(351\) 0 0
\(352\) −1.41996 + 5.29936i −0.0756841 + 0.282457i
\(353\) −13.1604 + 3.52633i −0.700460 + 0.187688i −0.591436 0.806352i \(-0.701439\pi\)
−0.109023 + 0.994039i \(0.534772\pi\)
\(354\) 0 0
\(355\) 26.5324 + 3.55338i 1.40819 + 0.188594i
\(356\) 7.18356i 0.380728i
\(357\) 0 0
\(358\) 2.59178 2.59178i 0.136980 0.136980i
\(359\) 14.9791 8.64822i 0.790569 0.456435i −0.0495937 0.998769i \(-0.515793\pi\)
0.840163 + 0.542334i \(0.182459\pi\)
\(360\) 0 0
\(361\) −14.9715 + 25.9315i −0.787976 + 1.36481i
\(362\) −2.31807 0.621126i −0.121835 0.0326457i
\(363\) 0 0
\(364\) 4.49126 7.84814i 0.235406 0.411354i
\(365\) 10.8014 1.39749i 0.565370 0.0731477i
\(366\) 0 0
\(367\) −6.69852 24.9992i −0.349660 1.30495i −0.887073 0.461629i \(-0.847265\pi\)
0.537413 0.843319i \(-0.319402\pi\)
\(368\) −0.454069 1.69461i −0.0236700 0.0883376i
\(369\) 0 0
\(370\) 17.3555 + 13.3791i 0.902270 + 0.695544i
\(371\) 12.3559 21.5910i 0.641486 1.12095i
\(372\) 0 0
\(373\) −8.85404 2.37243i −0.458445 0.122840i 0.0222033 0.999753i \(-0.492932\pi\)
−0.480648 + 0.876914i \(0.659599\pi\)
\(374\) −5.81066 + 10.0644i −0.300462 + 0.520416i
\(375\) 0 0
\(376\) 3.05289 1.76259i 0.157441 0.0908985i
\(377\) −1.65448 + 1.65448i −0.0852101 + 0.0852101i
\(378\) 0 0
\(379\) 18.6871i 0.959891i −0.877298 0.479946i \(-0.840656\pi\)
0.877298 0.479946i \(-0.159344\pi\)
\(380\) −2.07652 + 15.5049i −0.106523 + 0.795387i
\(381\) 0 0
\(382\) −7.80016 + 2.09005i −0.399091 + 0.106936i
\(383\) 5.13534 19.1654i 0.262404 0.979304i −0.701417 0.712752i \(-0.747449\pi\)
0.963820 0.266553i \(-0.0858846\pi\)
\(384\) 0 0
\(385\) −32.1730 + 4.28750i −1.63969 + 0.218511i
\(386\) 1.72252 0.0876740
\(387\) 0 0
\(388\) 17.9239 4.80269i 0.909948 0.243820i
\(389\) 4.44026 + 2.56359i 0.225130 + 0.129979i 0.608323 0.793689i \(-0.291842\pi\)
−0.383193 + 0.923668i \(0.625176\pi\)
\(390\) 0 0
\(391\) 3.71623i 0.187938i
\(392\) 4.98740 + 4.91181i 0.251902 + 0.248084i
\(393\) 0 0
\(394\) 7.36285 4.25094i 0.370935 0.214159i
\(395\) 17.2263 7.09030i 0.866747 0.356752i
\(396\) 0 0
\(397\) 25.4941 + 6.83113i 1.27951 + 0.342844i 0.833668 0.552266i \(-0.186237\pi\)
0.445845 + 0.895110i \(0.352903\pi\)
\(398\) 7.79086 + 7.79086i 0.390520 + 0.390520i
\(399\) 0 0
\(400\) 1.27250 + 4.83536i 0.0636251 + 0.241768i
\(401\) −8.61471 14.9211i −0.430198 0.745125i 0.566692 0.823930i \(-0.308223\pi\)
−0.996890 + 0.0788050i \(0.974890\pi\)
\(402\) 0 0
\(403\) −4.93271 18.4091i −0.245716 0.917023i
\(404\) 4.13383 + 7.16001i 0.205666 + 0.356224i
\(405\) 0 0
\(406\) −0.911636 1.56517i −0.0452437 0.0776780i
\(407\) −38.0186 38.0186i −1.88451 1.88451i
\(408\) 0 0
\(409\) −17.8569 + 30.9290i −0.882967 + 1.52934i −0.0349400 + 0.999389i \(0.511124\pi\)
−0.848027 + 0.529954i \(0.822209\pi\)
\(410\) −5.17217 2.15593i −0.255435 0.106474i
\(411\) 0 0
\(412\) 6.58048 6.58048i 0.324197 0.324197i
\(413\) −25.9389 + 7.05656i −1.27637 + 0.347230i
\(414\) 0 0
\(415\) 7.77922 + 10.1851i 0.381867 + 0.499967i
\(416\) 2.95981 + 1.70885i 0.145117 + 0.0837832i
\(417\) 0 0
\(418\) 9.93394 37.0740i 0.485885 1.81335i
\(419\) −14.0414 −0.685966 −0.342983 0.939342i \(-0.611437\pi\)
−0.342983 + 0.939342i \(0.611437\pi\)
\(420\) 0 0
\(421\) 24.4332 1.19080 0.595401 0.803429i \(-0.296993\pi\)
0.595401 + 0.803429i \(0.296993\pi\)
\(422\) −2.67419 + 9.98020i −0.130177 + 0.485829i
\(423\) 0 0
\(424\) 8.14273 + 4.70121i 0.395446 + 0.228311i
\(425\) −0.0473258 + 10.5911i −0.00229564 + 0.513745i
\(426\) 0 0
\(427\) −2.99734 0.790881i −0.145051 0.0382734i
\(428\) −8.67454 + 8.67454i −0.419300 + 0.419300i
\(429\) 0 0
\(430\) −2.35073 5.71121i −0.113362 0.275419i
\(431\) −19.3886 + 33.5820i −0.933914 + 1.61759i −0.157354 + 0.987542i \(0.550296\pi\)
−0.776559 + 0.630044i \(0.783037\pi\)
\(432\) 0 0
\(433\) −7.85700 7.85700i −0.377583 0.377583i 0.492646 0.870230i \(-0.336030\pi\)
−0.870230 + 0.492646i \(0.836030\pi\)
\(434\) 14.7537 0.0563283i 0.708200 0.00270385i
\(435\) 0 0
\(436\) 0.168311 + 0.291523i 0.00806063 + 0.0139614i
\(437\) 3.17664 + 11.8554i 0.151959 + 0.567119i
\(438\) 0 0
\(439\) 10.5640 + 18.2973i 0.504190 + 0.873283i 0.999988 + 0.00484487i \(0.00154217\pi\)
−0.495798 + 0.868438i \(0.665124\pi\)
\(440\) −1.57408 12.1663i −0.0750415 0.580007i
\(441\) 0 0
\(442\) 5.11912 + 5.11912i 0.243492 + 0.243492i
\(443\) 6.48289 + 1.73709i 0.308011 + 0.0825314i 0.409514 0.912304i \(-0.365698\pi\)
−0.101503 + 0.994835i \(0.532365\pi\)
\(444\) 0 0
\(445\) 6.11385 + 14.8539i 0.289824 + 0.704143i
\(446\) −4.17862 + 2.41253i −0.197863 + 0.114236i
\(447\) 0 0
\(448\) −1.86367 + 1.87796i −0.0880502 + 0.0887252i
\(449\) 8.28979i 0.391219i −0.980682 0.195610i \(-0.937331\pi\)
0.980682 0.195610i \(-0.0626685\pi\)
\(450\) 0 0
\(451\) 11.9065 + 6.87424i 0.560657 + 0.323695i
\(452\) 13.9192 3.72964i 0.654705 0.175428i
\(453\) 0 0
\(454\) −18.0938 −0.849182
\(455\) −2.60741 + 20.0506i −0.122237 + 0.939985i
\(456\) 0 0
\(457\) 5.71524 21.3296i 0.267348 0.997755i −0.693450 0.720505i \(-0.743910\pi\)
0.960798 0.277250i \(-0.0894231\pi\)
\(458\) −9.31876 + 2.49695i −0.435437 + 0.116675i
\(459\) 0 0
\(460\) 2.38117 + 3.11760i 0.111023 + 0.145359i
\(461\) 19.0130i 0.885524i −0.896639 0.442762i \(-0.853999\pi\)
0.896639 0.442762i \(-0.146001\pi\)
\(462\) 0 0
\(463\) −16.6091 + 16.6091i −0.771891 + 0.771891i −0.978437 0.206546i \(-0.933778\pi\)
0.206546 + 0.978437i \(0.433778\pi\)
\(464\) 0.592889 0.342305i 0.0275242 0.0158911i
\(465\) 0 0
\(466\) −7.23665 + 12.5343i −0.335232 + 0.580638i
\(467\) −15.4446 4.13837i −0.714691 0.191501i −0.116889 0.993145i \(-0.537292\pi\)
−0.597802 + 0.801644i \(0.703959\pi\)
\(468\) 0 0
\(469\) 22.8556 + 13.0796i 1.05537 + 0.603959i
\(470\) −4.81254 + 6.24290i −0.221986 + 0.287963i
\(471\) 0 0
\(472\) −2.62968 9.81409i −0.121041 0.451730i
\(473\) 3.92196 + 14.6370i 0.180332 + 0.673008i
\(474\) 0 0
\(475\) −8.90234 33.8279i −0.408467 1.55213i
\(476\) −4.84278 + 2.82069i −0.221968 + 0.129286i
\(477\) 0 0
\(478\) −28.9523 7.75773i −1.32425 0.354831i
\(479\) −4.50526 + 7.80333i −0.205850 + 0.356543i −0.950403 0.311020i \(-0.899329\pi\)
0.744553 + 0.667563i \(0.232663\pi\)
\(480\) 0 0
\(481\) −29.0066 + 16.7470i −1.32259 + 0.763595i
\(482\) −11.7522 + 11.7522i −0.535296 + 0.535296i
\(483\) 0 0
\(484\) 19.0995i 0.868158i
\(485\) −32.9749 + 25.1857i −1.49731 + 1.14362i
\(486\) 0 0
\(487\) −9.02186 + 2.41740i −0.408820 + 0.109543i −0.457367 0.889278i \(-0.651207\pi\)
0.0485475 + 0.998821i \(0.484541\pi\)
\(488\) 0.303248 1.13174i 0.0137274 0.0512313i
\(489\) 0 0
\(490\) −14.4931 5.91174i −0.654734 0.267065i
\(491\) −2.08535 −0.0941107 −0.0470554 0.998892i \(-0.514984\pi\)
−0.0470554 + 0.998892i \(0.514984\pi\)
\(492\) 0 0
\(493\) 1.40076 0.375332i 0.0630870 0.0169041i
\(494\) −20.7067 11.9550i −0.931637 0.537881i
\(495\) 0 0
\(496\) 5.57642i 0.250388i
\(497\) −22.4821 22.3111i −1.00846 1.00079i
\(498\) 0 0
\(499\) −11.6260 + 6.71229i −0.520452 + 0.300483i −0.737120 0.675762i \(-0.763815\pi\)
0.216668 + 0.976245i \(0.430481\pi\)
\(500\) −6.74656 8.91538i −0.301715 0.398708i
\(501\) 0 0
\(502\) −10.3992 2.78645i −0.464138 0.124366i
\(503\) 7.19669 + 7.19669i 0.320885 + 0.320885i 0.849106 0.528222i \(-0.177141\pi\)
−0.528222 + 0.849106i \(0.677141\pi\)
\(504\) 0 0
\(505\) −14.6416 11.2869i −0.651542 0.502263i
\(506\) −4.81255 8.33558i −0.213944 0.370562i
\(507\) 0 0
\(508\) 1.74614 + 6.51668i 0.0774724 + 0.289131i
\(509\) −2.14078 3.70794i −0.0948884 0.164352i 0.814674 0.579920i \(-0.196916\pi\)
−0.909562 + 0.415568i \(0.863583\pi\)
\(510\) 0 0
\(511\) −11.1849 6.40079i −0.494791 0.283154i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −7.52124 + 13.0272i −0.331748 + 0.574604i
\(515\) −8.00631 + 19.2074i −0.352800 + 0.846381i
\(516\) 0 0
\(517\) 13.6756 13.6756i 0.601451 0.601451i
\(518\) −6.80642 25.0194i −0.299057 1.09929i
\(519\) 0 0
\(520\) −7.57458 1.01443i −0.332167 0.0444859i
\(521\) 12.6226 + 7.28768i 0.553007 + 0.319279i 0.750334 0.661059i \(-0.229893\pi\)
−0.197327 + 0.980338i \(0.563226\pi\)
\(522\) 0 0
\(523\) 9.85794 36.7904i 0.431058 1.60873i −0.319270 0.947664i \(-0.603438\pi\)
0.750328 0.661066i \(-0.229896\pi\)
\(524\) 18.2091 0.795468
\(525\) 0 0
\(526\) 22.5315 0.982418
\(527\) −3.05723 + 11.4097i −0.133175 + 0.497015i
\(528\) 0 0
\(529\) −17.2531 9.96106i −0.750133 0.433090i
\(530\) −20.8384 2.79081i −0.905162 0.121225i
\(531\) 0 0
\(532\) 13.0381 13.1381i 0.565275 0.569607i
\(533\) 6.05612 6.05612i 0.262319 0.262319i
\(534\) 0 0
\(535\) 10.5541 25.3197i 0.456294 1.09467i
\(536\) −4.97656 + 8.61966i −0.214955 + 0.372313i
\(537\) 0 0
\(538\) −7.80819 7.80819i −0.336635 0.336635i
\(539\) 33.4046 + 18.9475i 1.43884 + 0.816128i
\(540\) 0 0
\(541\) −8.43016 14.6015i −0.362441 0.627766i 0.625921 0.779886i \(-0.284723\pi\)
−0.988362 + 0.152121i \(0.951390\pi\)
\(542\) 1.29834 + 4.84547i 0.0557684 + 0.208131i
\(543\) 0 0
\(544\) −1.05912 1.83445i −0.0454095 0.0786516i
\(545\) −0.596139 0.459553i −0.0255358 0.0196851i
\(546\) 0 0
\(547\) −2.04444 2.04444i −0.0874141 0.0874141i 0.662048 0.749462i \(-0.269688\pi\)
−0.749462 + 0.662048i \(0.769688\pi\)
\(548\) −2.11024 0.565438i −0.0901451 0.0241543i
\(549\) 0 0
\(550\) 13.6095 + 23.8174i 0.580309 + 1.01558i
\(551\) −4.14781 + 2.39474i −0.176703 + 0.102019i
\(552\) 0 0
\(553\) −21.3120 5.62341i −0.906278 0.239132i
\(554\) 6.33506i 0.269151i
\(555\) 0 0
\(556\) 15.7137 + 9.07229i 0.666408 + 0.384751i
\(557\) 4.04187 1.08302i 0.171260 0.0458889i −0.172170 0.985067i \(-0.555078\pi\)
0.343430 + 0.939178i \(0.388411\pi\)
\(558\) 0 0
\(559\) 9.43977 0.399260
\(560\) 2.25533 5.46932i 0.0953050 0.231121i
\(561\) 0 0
\(562\) −7.62799 + 28.4681i −0.321767 + 1.20085i
\(563\) −24.1918 + 6.48217i −1.01956 + 0.273191i −0.729620 0.683853i \(-0.760303\pi\)
−0.289943 + 0.957044i \(0.593636\pi\)
\(564\) 0 0
\(565\) −25.6074 + 19.5585i −1.07731 + 0.822833i
\(566\) 0.0978259i 0.00411193i
\(567\) 0 0
\(568\) 8.46519 8.46519i 0.355191 0.355191i
\(569\) 1.99827 1.15370i 0.0837720 0.0483658i −0.457529 0.889195i \(-0.651265\pi\)
0.541301 + 0.840829i \(0.317932\pi\)
\(570\) 0 0
\(571\) −7.94325 + 13.7581i −0.332415 + 0.575759i −0.982985 0.183687i \(-0.941197\pi\)
0.650570 + 0.759446i \(0.274530\pi\)
\(572\) 18.1116 + 4.85299i 0.757285 + 0.202914i
\(573\) 0 0
\(574\) 3.33698 + 5.72919i 0.139283 + 0.239132i
\(575\) −7.57705 4.41987i −0.315985 0.184321i
\(576\) 0 0
\(577\) 1.03550 + 3.86453i 0.0431084 + 0.160883i 0.984125 0.177479i \(-0.0567941\pi\)
−0.941016 + 0.338361i \(0.890127\pi\)
\(578\) 3.23861 + 12.0867i 0.134709 + 0.502739i
\(579\) 0 0
\(580\) −0.934623 + 1.21241i −0.0388081 + 0.0503425i
\(581\) −0.0578953 15.1641i −0.00240190 0.629114i
\(582\) 0 0
\(583\) 49.8268 + 13.3510i 2.06361 + 0.552944i
\(584\) 2.43539 4.21822i 0.100777 0.174551i
\(585\) 0 0
\(586\) −17.1557 + 9.90484i −0.708695 + 0.409165i
\(587\) 5.31785 5.31785i 0.219491 0.219491i −0.588793 0.808284i \(-0.700397\pi\)
0.808284 + 0.588793i \(0.200397\pi\)
\(588\) 0 0
\(589\) 39.0122i 1.60747i
\(590\) 13.7902 + 18.0551i 0.567734 + 0.743318i
\(591\) 0 0
\(592\) 9.46620 2.53646i 0.389059 0.104248i
\(593\) −4.58156 + 17.0986i −0.188142 + 0.702156i 0.805794 + 0.592196i \(0.201739\pi\)
−0.993936 + 0.109960i \(0.964928\pi\)
\(594\) 0 0
\(595\) 7.61307 9.95414i 0.312105 0.408080i
\(596\) −0.193656 −0.00793245
\(597\) 0 0
\(598\) −5.79167 + 1.55187i −0.236839 + 0.0634608i
\(599\) 27.0972 + 15.6446i 1.10716 + 0.639220i 0.938093 0.346384i \(-0.112591\pi\)
0.169069 + 0.985604i \(0.445924\pi\)
\(600\) 0 0
\(601\) 47.5637i 1.94016i 0.242776 + 0.970082i \(0.421942\pi\)
−0.242776 + 0.970082i \(0.578058\pi\)
\(602\) −1.86439 + 7.06580i −0.0759869 + 0.287980i
\(603\) 0 0
\(604\) −18.4660 + 10.6614i −0.751372 + 0.433805i
\(605\) −16.2553 39.4932i −0.660874 1.60563i
\(606\) 0 0
\(607\) 23.7082 + 6.35260i 0.962287 + 0.257844i 0.705568 0.708642i \(-0.250692\pi\)
0.256719 + 0.966486i \(0.417359\pi\)
\(608\) 4.94687 + 4.94687i 0.200622 + 0.200622i
\(609\) 0 0
\(610\) 0.336163 + 2.59826i 0.0136108 + 0.105200i
\(611\) −6.02400 10.4339i −0.243705 0.422109i
\(612\) 0 0
\(613\) −7.20472 26.8884i −0.290996 1.08601i −0.944345 0.328955i \(-0.893303\pi\)
0.653349 0.757056i \(-0.273363\pi\)
\(614\) −2.15894 3.73939i −0.0871277 0.150910i
\(615\) 0 0
\(616\) −7.20965 + 12.5983i −0.290485 + 0.507600i
\(617\) 24.4884 + 24.4884i 0.985865 + 0.985865i 0.999901 0.0140365i \(-0.00446811\pi\)
−0.0140365 + 0.999901i \(0.504468\pi\)
\(618\) 0 0
\(619\) −15.9137 + 27.5634i −0.639627 + 1.10787i 0.345888 + 0.938276i \(0.387578\pi\)
−0.985515 + 0.169590i \(0.945756\pi\)
\(620\) −4.74602 11.5307i −0.190605 0.463085i
\(621\) 0 0
\(622\) −5.97174 + 5.97174i −0.239445 + 0.239445i
\(623\) 4.84897 18.3770i 0.194270 0.736257i
\(624\) 0 0
\(625\) 21.5381 + 12.6930i 0.861522 + 0.507719i
\(626\) −16.8092 9.70480i −0.671831 0.387882i
\(627\) 0 0
\(628\) −0.952462 + 3.55464i −0.0380074 + 0.141845i
\(629\) 20.7591 0.827719
\(630\) 0 0
\(631\) −34.9471 −1.39122 −0.695610 0.718419i \(-0.744866\pi\)
−0.695610 + 0.718419i \(0.744866\pi\)
\(632\) 2.15619 8.04700i 0.0857685 0.320092i
\(633\) 0 0
\(634\) 13.4670 + 7.77515i 0.534841 + 0.308791i
\(635\) −9.15688 11.9888i −0.363380 0.475763i
\(636\) 0 0
\(637\) 16.7871 17.0454i 0.665128 0.675364i
\(638\) 2.65587 2.65587i 0.105147 0.105147i
\(639\) 0 0
\(640\) 2.06394 + 0.860320i 0.0815844 + 0.0340071i
\(641\) −5.61488 + 9.72526i −0.221774 + 0.384125i −0.955347 0.295487i \(-0.904518\pi\)
0.733572 + 0.679611i \(0.237852\pi\)
\(642\) 0 0
\(643\) 9.89036 + 9.89036i 0.390038 + 0.390038i 0.874701 0.484663i \(-0.161058\pi\)
−0.484663 + 0.874701i \(0.661058\pi\)
\(644\) −0.0177214 4.64164i −0.000698320 0.182906i
\(645\) 0 0
\(646\) 7.40955 + 12.8337i 0.291525 + 0.504936i
\(647\) −4.06147 15.1576i −0.159673 0.595908i −0.998660 0.0517559i \(-0.983518\pi\)
0.838987 0.544152i \(-0.183148\pi\)
\(648\) 0 0
\(649\) −27.8712 48.2744i −1.09404 1.89493i
\(650\) 16.5258 4.34903i 0.648196 0.170583i
\(651\) 0 0
\(652\) −9.95676 9.95676i −0.389937 0.389937i
\(653\) 15.4045 + 4.12761i 0.602823 + 0.161526i 0.547307 0.836932i \(-0.315653\pi\)
0.0555160 + 0.998458i \(0.482320\pi\)
\(654\) 0 0
\(655\) −37.6521 + 15.4975i −1.47119 + 0.605539i
\(656\) −2.17023 + 1.25298i −0.0847333 + 0.0489208i
\(657\) 0 0
\(658\) 8.99966 2.44832i 0.350843 0.0954453i
\(659\) 10.4778i 0.408157i 0.978955 + 0.204078i \(0.0654198\pi\)
−0.978955 + 0.204078i \(0.934580\pi\)
\(660\) 0 0
\(661\) −20.9764 12.1107i −0.815888 0.471053i 0.0331084 0.999452i \(-0.489459\pi\)
−0.848996 + 0.528399i \(0.822793\pi\)
\(662\) 15.6344 4.18923i 0.607648 0.162819i
\(663\) 0 0
\(664\) 5.73154 0.222427
\(665\) −15.7781 + 38.2630i −0.611849 + 1.48378i
\(666\) 0 0
\(667\) −0.310860 + 1.16015i −0.0120366 + 0.0449210i
\(668\) 8.29532 2.22272i 0.320955 0.0859998i
\(669\) 0 0
\(670\) 2.95427 22.0589i 0.114133 0.852211i
\(671\) 6.42808i 0.248153i
\(672\) 0 0
\(673\) −1.16725 + 1.16725i −0.0449943 + 0.0449943i −0.729246 0.684252i \(-0.760129\pi\)
0.684252 + 0.729246i \(0.260129\pi\)
\(674\) −23.5218 + 13.5803i −0.906025 + 0.523094i
\(675\) 0 0
\(676\) −0.659666 + 1.14257i −0.0253718 + 0.0439452i
\(677\) 12.4001 + 3.32260i 0.476575 + 0.127698i 0.489108 0.872223i \(-0.337323\pi\)
−0.0125322 + 0.999921i \(0.503989\pi\)
\(678\) 0 0
\(679\) 49.0947 0.187439i 1.88408 0.00719326i
\(680\) 3.75130 + 2.89181i 0.143856 + 0.110896i
\(681\) 0 0
\(682\) 7.91828 + 29.5514i 0.303207 + 1.13158i
\(683\) −5.52974 20.6373i −0.211589 0.789663i −0.987339 0.158622i \(-0.949295\pi\)
0.775750 0.631040i \(-0.217372\pi\)
\(684\) 0 0
\(685\) 4.84472 0.626811i 0.185107 0.0239492i
\(686\) 9.44322 + 15.9319i 0.360544 + 0.608283i
\(687\) 0 0
\(688\) −2.66791 0.714864i −0.101713 0.0272540i
\(689\) 16.0673 27.8294i 0.612116 1.06022i
\(690\) 0 0
\(691\) −37.0127 + 21.3693i −1.40803 + 0.812927i −0.995198 0.0978797i \(-0.968794\pi\)
−0.412833 + 0.910807i \(0.635461\pi\)
\(692\) −2.86311 + 2.86311i −0.108839 + 0.108839i
\(693\) 0 0
\(694\) 10.2657i 0.389681i
\(695\) −40.2135 5.38563i −1.52538 0.204289i
\(696\) 0 0
\(697\) −5.12738 + 1.37388i −0.194213 + 0.0520393i
\(698\) −1.71194 + 6.38903i −0.0647977 + 0.241828i
\(699\) 0 0
\(700\) −0.00860549 + 13.2288i −0.000325257 + 0.500000i
\(701\) −44.5959 −1.68436 −0.842182 0.539194i \(-0.818729\pi\)
−0.842182 + 0.539194i \(0.818729\pi\)
\(702\) 0 0
\(703\) −66.2249 + 17.7449i −2.49772 + 0.669262i
\(704\) −4.75127 2.74315i −0.179070 0.103386i
\(705\) 0 0
\(706\) 13.6247i 0.512772i
\(707\) 5.74208 + 21.1071i 0.215953 + 0.793813i
\(708\) 0 0
\(709\) 35.8750 20.7125i 1.34732 0.777873i 0.359447 0.933166i \(-0.382965\pi\)
0.987869 + 0.155293i \(0.0496320\pi\)
\(710\) −10.2994 + 24.7086i −0.386529 + 0.927299i
\(711\) 0 0
\(712\) 6.93879 + 1.85924i 0.260042 + 0.0696781i
\(713\) −6.91777 6.91777i −0.259072 0.259072i
\(714\) 0 0
\(715\) −41.5809 + 5.37974i −1.55504 + 0.201191i
\(716\) 1.83267 + 3.17428i 0.0684900 + 0.118628i
\(717\) 0 0
\(718\) 4.47665 + 16.7071i 0.167067 + 0.623502i
\(719\) 11.7839 + 20.4103i 0.439464 + 0.761174i 0.997648 0.0685431i \(-0.0218351\pi\)
−0.558184 + 0.829717i \(0.688502\pi\)
\(720\) 0 0
\(721\) 21.2760 12.3923i 0.792361 0.461512i
\(722\) −21.1730 21.1730i −0.787976 0.787976i
\(723\) 0 0
\(724\) 1.19992 2.07833i 0.0445948 0.0772405i
\(725\) 0.900715 3.30242i 0.0334517 0.122649i
\(726\) 0 0
\(727\) 3.38556 3.38556i 0.125563 0.125563i −0.641532 0.767096i \(-0.721701\pi\)
0.767096 + 0.641532i \(0.221701\pi\)
\(728\) 6.41829 + 6.36947i 0.237878 + 0.236068i
\(729\) 0 0
\(730\) −1.44574 + 10.7950i −0.0535091 + 0.399542i
\(731\) −5.06681 2.92532i −0.187403 0.108197i
\(732\) 0 0
\(733\) 10.1653 37.9373i 0.375463 1.40125i −0.477204 0.878792i \(-0.658350\pi\)
0.852667 0.522454i \(-0.174983\pi\)
\(734\) 25.8811 0.955288
\(735\) 0 0
\(736\) 1.75439 0.0646676
\(737\) −14.1330 + 52.7452i −0.520597 + 1.94289i
\(738\) 0 0
\(739\) 38.6211 + 22.2979i 1.42070 + 0.820242i 0.996359 0.0852593i \(-0.0271719\pi\)
0.424343 + 0.905502i \(0.360505\pi\)
\(740\) −17.4151 + 13.3014i −0.640193 + 0.488968i
\(741\) 0 0
\(742\) 17.6573 + 17.5230i 0.648222 + 0.643291i
\(743\) −24.7787 + 24.7787i −0.909041 + 0.909041i −0.996195 0.0871537i \(-0.972223\pi\)
0.0871537 + 0.996195i \(0.472223\pi\)
\(744\) 0 0
\(745\) 0.400435 0.164818i 0.0146708 0.00603847i
\(746\) 4.58319 7.93832i 0.167802 0.290642i
\(747\) 0 0
\(748\) −8.21752 8.21752i −0.300462 0.300462i
\(749\) −28.0466 + 16.3358i −1.02480 + 0.596897i
\(750\) 0 0
\(751\) −2.54731 4.41207i −0.0929526 0.160999i 0.815800 0.578335i \(-0.196297\pi\)
−0.908752 + 0.417336i \(0.862964\pi\)
\(752\) 0.912383 + 3.40506i 0.0332712 + 0.124170i
\(753\) 0 0
\(754\) −1.16989 2.02632i −0.0426051 0.0737941i
\(755\) 29.1096 37.7614i 1.05941 1.37428i
\(756\) 0 0
\(757\) 18.2623 + 18.2623i 0.663754 + 0.663754i 0.956263 0.292509i \(-0.0944900\pi\)
−0.292509 + 0.956263i \(0.594490\pi\)
\(758\) 18.0503 + 4.83657i 0.655618 + 0.175672i
\(759\) 0 0
\(760\) −14.4392 6.01874i −0.523764 0.218323i
\(761\) −24.3626 + 14.0657i −0.883142 + 0.509882i −0.871693 0.490052i \(-0.836978\pi\)
−0.0114488 + 0.999934i \(0.503644\pi\)
\(762\) 0 0
\(763\) 0.233791 + 0.859384i 0.00846382 + 0.0311118i
\(764\) 8.07532i 0.292155i
\(765\) 0 0
\(766\) 17.1832 + 9.92072i 0.620854 + 0.358450i
\(767\) −33.5416 + 8.98745i −1.21112 + 0.324518i
\(768\) 0 0
\(769\) −3.03517 −0.109451 −0.0547256 0.998501i \(-0.517428\pi\)
−0.0547256 + 0.998501i \(0.517428\pi\)
\(770\) 4.18557 32.1864i 0.150838 1.15992i
\(771\) 0 0
\(772\) −0.445821 + 1.66383i −0.0160455 + 0.0598825i
\(773\) 46.8575 12.5554i 1.68535 0.451588i 0.716166 0.697930i \(-0.245895\pi\)
0.969183 + 0.246342i \(0.0792288\pi\)
\(774\) 0 0
\(775\) 19.6273 + 19.8035i 0.705034 + 0.711363i
\(776\) 18.5562i 0.666128i
\(777\) 0 0
\(778\) −3.62546 + 3.62546i −0.129979 + 0.129979i
\(779\) 15.1828 8.76579i 0.543980 0.314067i
\(780\) 0 0
\(781\) 32.8398 56.8803i 1.17510 2.03534i
\(782\) 3.58960 + 0.961830i 0.128364 + 0.0343950i
\(783\) 0 0
\(784\) −6.03528 + 3.54619i −0.215546 + 0.126650i
\(785\) −1.05584 8.16078i −0.0376847 0.291271i
\(786\) 0 0
\(787\) −9.83063 36.6884i −0.350424 1.30780i −0.886146 0.463406i \(-0.846627\pi\)
0.535722 0.844394i \(-0.320039\pi\)
\(788\) 2.20045 + 8.21219i 0.0783878 + 0.292547i
\(789\) 0 0
\(790\) 2.39022 + 18.4744i 0.0850403 + 0.657290i
\(791\) 38.1256 0.145560i 1.35559 0.00517553i
\(792\) 0 0
\(793\) −3.86794 1.03641i −0.137354 0.0368040i
\(794\) −13.1967 + 22.8574i −0.468334 + 0.811179i
\(795\) 0 0
\(796\) −9.54181 + 5.50897i −0.338200 + 0.195260i
\(797\) 34.4058 34.4058i 1.21871 1.21871i 0.250632 0.968082i \(-0.419362\pi\)
0.968082 0.250632i \(-0.0806384\pi\)
\(798\) 0 0
\(799\) 7.46719i 0.264170i
\(800\) −4.99995 0.0223420i −0.176775 0.000789908i
\(801\) 0 0
\(802\) 16.6423 4.45930i 0.587661 0.157463i
\(803\) 6.91632 25.8120i 0.244071 0.910887i
\(804\) 0 0
\(805\) 3.98709 + 9.58274i 0.140527 + 0.337747i
\(806\) 19.0585 0.671307
\(807\) 0 0
\(808\) −7.98595 + 2.13983i −0.280945 + 0.0752789i
\(809\) −33.6569 19.4318i −1.18331 0.683186i −0.226534 0.974003i \(-0.572740\pi\)
−0.956779 + 0.290817i \(0.906073\pi\)
\(810\) 0 0
\(811\) 15.3545i 0.539168i 0.962977 + 0.269584i \(0.0868862\pi\)
−0.962977 + 0.269584i \(0.913114\pi\)
\(812\) 1.74779 0.475477i 0.0613352 0.0166860i
\(813\) 0 0
\(814\) 46.5631 26.8832i 1.63204 0.942257i
\(815\) 29.0623 + 12.1142i 1.01801 + 0.424340i
\(816\) 0 0
\(817\) 18.6645 + 5.00114i 0.652989 + 0.174968i
\(818\) −25.2535 25.2535i −0.882967 0.882967i
\(819\) 0 0
\(820\) 3.42113 4.43793i 0.119471 0.154979i
\(821\) 11.9561 + 20.7086i 0.417271 + 0.722735i 0.995664 0.0930235i \(-0.0296532\pi\)
−0.578393 + 0.815758i \(0.696320\pi\)
\(822\) 0 0
\(823\) −7.32768 27.3473i −0.255427 0.953267i −0.967852 0.251519i \(-0.919070\pi\)
0.712425 0.701748i \(-0.247597\pi\)
\(824\) 4.65310 + 8.05941i 0.162098 + 0.280763i
\(825\) 0 0
\(826\) −0.102631 26.8814i −0.00357099 0.935324i
\(827\) −20.7600 20.7600i −0.721898 0.721898i 0.247094 0.968992i \(-0.420524\pi\)
−0.968992 + 0.247094i \(0.920524\pi\)
\(828\) 0 0
\(829\) −4.14106 + 7.17253i −0.143825 + 0.249112i −0.928934 0.370246i \(-0.879274\pi\)
0.785109 + 0.619358i \(0.212607\pi\)
\(830\) −11.8515 + 4.87805i −0.411371 + 0.169320i
\(831\) 0 0
\(832\) −2.41668 + 2.41668i −0.0837832 + 0.0837832i
\(833\) −14.2928 + 3.94695i −0.495215 + 0.136754i
\(834\) 0 0
\(835\) −15.2610 + 11.6561i −0.528130 + 0.403377i
\(836\) 33.2396 + 19.1909i 1.14962 + 0.663731i
\(837\) 0 0
\(838\) 3.63417 13.5629i 0.125540 0.468523i
\(839\) 8.03334 0.277342 0.138671 0.990339i \(-0.455717\pi\)
0.138671 + 0.990339i \(0.455717\pi\)
\(840\) 0 0
\(841\) 28.5313 0.983838
\(842\) −6.32378 + 23.6007i −0.217932 + 0.813333i
\(843\) 0 0
\(844\) −8.94800 5.16613i −0.308003 0.177826i
\(845\) 0.391601 2.92401i 0.0134715 0.100589i
\(846\) 0 0
\(847\) −12.8923 + 48.8602i −0.442985 + 1.67886i
\(848\) −6.64852 + 6.64852i −0.228311 + 0.228311i
\(849\) 0 0
\(850\) −10.2180 2.78690i −0.350474 0.0955898i
\(851\) −8.59662 + 14.8898i −0.294688 + 0.510415i
\(852\) 0 0
\(853\) −23.8654 23.8654i −0.817136 0.817136i 0.168556 0.985692i \(-0.446089\pi\)
−0.985692 + 0.168556i \(0.946089\pi\)
\(854\) 1.53970 2.69051i 0.0526875 0.0920673i
\(855\) 0 0
\(856\) −6.13383 10.6241i −0.209650 0.363124i
\(857\) −6.21598 23.1984i −0.212334 0.792441i −0.987088 0.160178i \(-0.948793\pi\)
0.774754 0.632263i \(-0.217874\pi\)
\(858\) 0 0
\(859\) 3.26421 + 5.65377i 0.111373 + 0.192904i 0.916324 0.400437i \(-0.131142\pi\)
−0.804951 + 0.593341i \(0.797808\pi\)
\(860\) 6.12502 0.792457i 0.208862 0.0270226i
\(861\) 0 0
\(862\) −27.4196 27.4196i −0.933914 0.933914i
\(863\) −15.9949 4.28582i −0.544473 0.145891i −0.0239095 0.999714i \(-0.507611\pi\)
−0.520563 + 0.853823i \(0.674278\pi\)
\(864\) 0 0
\(865\) 3.48347 8.35699i 0.118442 0.284146i
\(866\) 9.62282 5.55574i 0.326997 0.188792i
\(867\) 0 0
\(868\) −3.76413 + 14.2656i −0.127763 + 0.484205i
\(869\) 45.7056i 1.55046i
\(870\) 0 0
\(871\) 29.4594 + 17.0084i 0.998194 + 0.576308i
\(872\) −0.325151 + 0.0871241i −0.0110110 + 0.00295039i
\(873\) 0 0
\(874\) −12.2736 −0.415160
\(875\) −11.2410 27.3613i −0.380017 0.924980i
\(876\) 0 0
\(877\) 9.56712 35.7050i 0.323059 1.20567i −0.593190 0.805062i \(-0.702132\pi\)
0.916249 0.400609i \(-0.131202\pi\)
\(878\) −20.4080 + 5.46830i −0.688736 + 0.184546i
\(879\) 0 0
\(880\) 12.1592 + 1.62843i 0.409886 + 0.0548944i
\(881\) 17.4940i 0.589386i 0.955592 + 0.294693i \(0.0952174\pi\)
−0.955592 + 0.294693i \(0.904783\pi\)
\(882\) 0 0
\(883\) −14.0857 + 14.0857i −0.474022 + 0.474022i −0.903214 0.429191i \(-0.858799\pi\)
0.429191 + 0.903214i \(0.358799\pi\)
\(884\) −6.26961 + 3.61976i −0.210870 + 0.121746i
\(885\) 0 0
\(886\) −3.35579 + 5.81240i −0.112740 + 0.195271i
\(887\) 39.6163 + 10.6152i 1.33018 + 0.356422i 0.852784 0.522264i \(-0.174912\pi\)
0.477401 + 0.878686i \(0.341579\pi\)
\(888\) 0 0
\(889\) 0.0681482 + 17.8496i 0.00228562 + 0.598657i
\(890\) −15.9302 + 2.06105i −0.533980 + 0.0690865i
\(891\) 0 0
\(892\) −1.24882 4.66064i −0.0418134 0.156050i
\(893\) −6.38297 23.8216i −0.213598 0.797158i
\(894\) 0 0
\(895\) −6.49112 5.00389i −0.216974 0.167262i
\(896\) −1.33161 2.28622i −0.0444861 0.0763773i
\(897\) 0 0
\(898\) 8.00732 + 2.14555i 0.267208 + 0.0715981i
\(899\) 1.90883 3.30620i 0.0636632 0.110268i
\(900\) 0 0
\(901\) −17.2483 + 9.95832i −0.574625 + 0.331760i
\(902\) −9.72165 + 9.72165i −0.323695 + 0.323695i
\(903\) 0 0
\(904\) 14.4102i 0.479277i
\(905\) −0.712317 + 5.31873i −0.0236782 + 0.176801i
\(906\) 0 0
\(907\) −19.3010 + 5.17169i −0.640879 + 0.171723i −0.564602 0.825364i \(-0.690970\pi\)
−0.0762776 + 0.997087i \(0.524304\pi\)
\(908\) 4.68301 17.4772i 0.155411 0.580002i
\(909\) 0 0
\(910\) −18.6925 7.70803i −0.619650 0.255519i
\(911\) 21.3131 0.706136 0.353068 0.935598i \(-0.385138\pi\)
0.353068 + 0.935598i \(0.385138\pi\)
\(912\) 0 0
\(913\) 30.3735 8.13855i 1.00522 0.269347i
\(914\) 19.1236 + 11.0410i 0.632551 + 0.365204i
\(915\) 0 0
\(916\) 9.64749i 0.318762i
\(917\) 46.5824 + 12.2913i 1.53829 + 0.405894i
\(918\) 0 0
\(919\) −11.4010 + 6.58238i −0.376085 + 0.217133i −0.676114 0.736797i \(-0.736337\pi\)
0.300029 + 0.953930i \(0.403004\pi\)
\(920\) −3.62766 + 1.49314i −0.119600 + 0.0492274i
\(921\) 0 0
\(922\) 18.3652 + 4.92093i 0.604824 + 0.162062i
\(923\) −28.9315 28.9315i −0.952291 0.952291i
\(924\) 0 0
\(925\) 24.6897 42.3259i 0.811793 1.39167i
\(926\) −11.7444 20.3419i −0.385946 0.668478i
\(927\) 0 0
\(928\) 0.177190 + 0.661282i 0.00581655 + 0.0217076i
\(929\) −2.59922 4.50199i −0.0852777 0.147705i 0.820232 0.572031i \(-0.193844\pi\)
−0.905510 + 0.424326i \(0.860511\pi\)
\(930\) 0 0
\(931\) 42.2224 24.8089i 1.38378 0.813078i
\(932\) −10.2342 10.2342i −0.335232 0.335232i
\(933\) 0 0
\(934\) 7.99472 13.8473i 0.261595 0.453096i
\(935\) 23.9857 + 9.99806i 0.784417 + 0.326971i
\(936\) 0 0
\(937\) −3.54515 + 3.54515i −0.115815 + 0.115815i −0.762639 0.646824i \(-0.776097\pi\)
0.646824 + 0.762639i \(0.276097\pi\)
\(938\) −18.5494 + 18.6916i −0.605658 + 0.610301i
\(939\) 0 0
\(940\) −4.78460 6.26434i −0.156056 0.204320i
\(941\) −8.88464 5.12955i −0.289631 0.167219i 0.348144 0.937441i \(-0.386812\pi\)
−0.637775 + 0.770222i \(0.720145\pi\)
\(942\) 0 0
\(943\) 1.13788 4.24663i 0.0370545 0.138289i
\(944\) 10.1603 0.330689
\(945\) 0 0
\(946\) −15.1533 −0.492676
\(947\) −7.26545 + 27.1150i −0.236096 + 0.881120i 0.741556 + 0.670890i \(0.234088\pi\)
−0.977652 + 0.210230i \(0.932579\pi\)
\(948\) 0 0
\(949\) −14.4166 8.32344i −0.467983 0.270190i
\(950\) 34.9793 + 0.156303i 1.13488 + 0.00507113i
\(951\) 0 0
\(952\) −1.47117 5.40781i −0.0476809 0.175268i
\(953\) 29.6648 29.6648i 0.960937 0.960937i −0.0383279 0.999265i \(-0.512203\pi\)
0.999265 + 0.0383279i \(0.0122031\pi\)
\(954\) 0 0
\(955\) 6.87282 + 16.6979i 0.222399 + 0.540330i
\(956\) 14.9868 25.9579i 0.484708 0.839538i
\(957\) 0 0
\(958\) −6.37140 6.37140i −0.205850 0.205850i
\(959\) −5.01674 2.87093i −0.161999 0.0927073i
\(960\) 0 0
\(961\) 0.0482042 + 0.0834922i 0.00155498 + 0.00269330i
\(962\) −8.66886 32.3526i −0.279495 1.04309i
\(963\) 0 0
\(964\) −8.31003 14.3934i −0.267648 0.463580i
\(965\) −0.494211 3.81984i −0.0159092 0.122965i
\(966\) 0 0
\(967\) −3.20889 3.20889i −0.103191 0.103191i 0.653626 0.756817i \(-0.273247\pi\)
−0.756817 + 0.653626i \(0.773247\pi\)
\(968\) −18.4487 4.94331i −0.592963 0.158884i
\(969\) 0 0
\(970\) −15.7930 38.3698i −0.507081 1.23198i
\(971\) −51.1699 + 29.5430i −1.64212 + 0.948079i −0.662042 + 0.749467i \(0.730310\pi\)
−0.980078 + 0.198612i \(0.936357\pi\)
\(972\) 0 0
\(973\) 34.0747 + 33.8155i 1.09239 + 1.08408i
\(974\) 9.34012i 0.299277i
\(975\) 0 0
\(976\) 1.01469 + 0.585830i 0.0324794 + 0.0187520i
\(977\) −11.4234 + 3.06089i −0.365467 + 0.0979266i −0.436879 0.899520i \(-0.643916\pi\)
0.0714120 + 0.997447i \(0.477249\pi\)
\(978\) 0 0
\(979\) 39.4112 1.25959
\(980\) 9.46141 12.4692i 0.302234 0.398315i
\(981\) 0 0
\(982\) 0.539730 2.01430i 0.0172235 0.0642788i
\(983\) 36.7070 9.83561i 1.17077 0.313707i 0.379511 0.925187i \(-0.376092\pi\)
0.791260 + 0.611480i \(0.209425\pi\)
\(984\) 0 0
\(985\) −11.5393 15.1081i −0.367673 0.481384i
\(986\) 1.45017i 0.0461829i
\(987\) 0 0
\(988\) 16.9069 16.9069i 0.537881 0.537881i
\(989\) 4.19647 2.42283i 0.133440 0.0770416i
\(990\) 0 0
\(991\) −4.00630 + 6.93911i −0.127264 + 0.220428i −0.922616 0.385720i \(-0.873953\pi\)
0.795352 + 0.606148i \(0.207286\pi\)
\(992\) −5.38640 1.44328i −0.171018 0.0458243i
\(993\) 0 0
\(994\) 27.3697 15.9415i 0.868114 0.505635i
\(995\) 15.0416 19.5122i 0.476851 0.618577i
\(996\) 0 0
\(997\) 11.0150 + 41.1086i 0.348849 + 1.30192i 0.888051 + 0.459745i \(0.152059\pi\)
−0.539202 + 0.842176i \(0.681274\pi\)
\(998\) −3.47453 12.9671i −0.109984 0.410468i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bv.b.577.2 16
3.2 odd 2 210.2.u.b.157.3 yes 16
5.3 odd 4 630.2.bv.a.73.4 16
7.5 odd 6 630.2.bv.a.397.4 16
15.2 even 4 1050.2.bc.h.493.3 16
15.8 even 4 210.2.u.a.73.1 16
15.14 odd 2 1050.2.bc.g.157.2 16
21.5 even 6 210.2.u.a.187.1 yes 16
21.11 odd 6 1470.2.m.e.97.7 16
21.17 even 6 1470.2.m.d.97.6 16
35.33 even 12 inner 630.2.bv.b.523.2 16
105.38 odd 12 1470.2.m.e.1273.7 16
105.47 odd 12 1050.2.bc.g.943.2 16
105.53 even 12 1470.2.m.d.1273.6 16
105.68 odd 12 210.2.u.b.103.3 yes 16
105.89 even 6 1050.2.bc.h.607.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.u.a.73.1 16 15.8 even 4
210.2.u.a.187.1 yes 16 21.5 even 6
210.2.u.b.103.3 yes 16 105.68 odd 12
210.2.u.b.157.3 yes 16 3.2 odd 2
630.2.bv.a.73.4 16 5.3 odd 4
630.2.bv.a.397.4 16 7.5 odd 6
630.2.bv.b.523.2 16 35.33 even 12 inner
630.2.bv.b.577.2 16 1.1 even 1 trivial
1050.2.bc.g.157.2 16 15.14 odd 2
1050.2.bc.g.943.2 16 105.47 odd 12
1050.2.bc.h.493.3 16 15.2 even 4
1050.2.bc.h.607.3 16 105.89 even 6
1470.2.m.d.97.6 16 21.17 even 6
1470.2.m.d.1273.6 16 105.53 even 12
1470.2.m.e.97.7 16 21.11 odd 6
1470.2.m.e.1273.7 16 105.38 odd 12