Properties

Label 63.8.e.b.37.1
Level $63$
Weight $8$
Character 63.37
Analytic conductor $19.680$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,8,Mod(37,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.37"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6802566055\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 103x^{6} - 378x^{5} + 9744x^{4} - 22680x^{3} + 149400x^{2} + 216000x + 810000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(-5.15962 - 8.93672i\) of defining polynomial
Character \(\chi\) \(=\) 63.37
Dual form 63.8.e.b.46.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-10.4120 + 18.0342i) q^{2} +(-152.821 - 264.694i) q^{4} +(96.7016 - 167.492i) q^{5} +(612.373 + 669.733i) q^{7} +3699.23 q^{8} +(2013.72 + 3487.87i) q^{10} +(151.972 + 263.223i) q^{11} -9891.04 q^{13} +(-18454.1 + 4070.37i) q^{14} +(-18955.5 + 32831.8i) q^{16} +(6242.26 + 10811.9i) q^{17} +(-561.837 + 973.131i) q^{19} -59112.1 q^{20} -6329.35 q^{22} +(-22359.5 + 38727.8i) q^{23} +(20360.1 + 35264.8i) q^{25} +(102986. - 178377. i) q^{26} +(83690.6 - 264441. i) q^{28} -51216.6 q^{29} +(-12816.5 - 22198.9i) q^{31} +(-157979. - 273628. i) q^{32} -259978. q^{34} +(171392. - 37803.5i) q^{35} +(21054.5 - 36467.4i) q^{37} +(-11699.7 - 20264.6i) q^{38} +(357722. - 619592. i) q^{40} -787100. q^{41} -629737. q^{43} +(46449.0 - 80452.1i) q^{44} +(-465616. - 806470. i) q^{46} +(313344. - 542727. i) q^{47} +(-73540.5 + 820253. i) q^{49} -847961. q^{50} +(1.51156e6 + 2.61810e6i) q^{52} +(-268306. - 464719. i) q^{53} +58783.7 q^{55} +(2.26531e6 + 2.47750e6i) q^{56} +(533269. - 923649. i) q^{58} +(1.06004e6 + 1.83605e6i) q^{59} +(-1.35734e6 + 2.35098e6i) q^{61} +533785. q^{62} +1.72694e6 q^{64} +(-956479. + 1.65667e6i) q^{65} +(-1.88702e6 - 3.26842e6i) q^{67} +(1.90790e6 - 3.30457e6i) q^{68} +(-1.10279e6 + 3.48453e6i) q^{70} -4.31646e6 q^{71} +(355018. + 614910. i) q^{73} +(438440. + 759401. i) q^{74} +343442. q^{76} +(-83225.5 + 262971. i) q^{77} +(-1.39606e6 + 2.41804e6i) q^{79} +(3.66605e6 + 6.34978e6i) q^{80} +(8.19532e6 - 1.41947e7i) q^{82} -538991. q^{83} +2.41454e6 q^{85} +(6.55684e6 - 1.13568e7i) q^{86} +(562180. + 973724. i) q^{88} +(-1.09927e6 + 1.90400e6i) q^{89} +(-6.05701e6 - 6.62435e6i) q^{91} +1.36680e7 q^{92} +(6.52509e6 + 1.13018e7i) q^{94} +(108661. + 188207. i) q^{95} -1.16799e7 q^{97} +(-1.40269e7 - 9.86675e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - 348 q^{4} + 252 q^{5} + 672 q^{7} + 1968 q^{8} - 4774 q^{10} - 3972 q^{11} - 2352 q^{13} - 47502 q^{14} - 57264 q^{16} + 56364 q^{17} - 41748 q^{19} - 324744 q^{20} - 305908 q^{22} + 131748 q^{23}+ \cdots - 60255006 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −10.4120 + 18.0342i −0.920303 + 1.59401i −0.121357 + 0.992609i \(0.538724\pi\)
−0.798946 + 0.601402i \(0.794609\pi\)
\(3\) 0 0
\(4\) −152.821 264.694i −1.19391 2.06792i
\(5\) 96.7016 167.492i 0.345970 0.599238i −0.639559 0.768742i \(-0.720883\pi\)
0.985530 + 0.169504i \(0.0542166\pi\)
\(6\) 0 0
\(7\) 612.373 + 669.733i 0.674797 + 0.738003i
\(8\) 3699.23 2.55445
\(9\) 0 0
\(10\) 2013.72 + 3487.87i 0.636794 + 1.10296i
\(11\) 151.972 + 263.223i 0.0344262 + 0.0596279i 0.882725 0.469890i \(-0.155706\pi\)
−0.848299 + 0.529518i \(0.822373\pi\)
\(12\) 0 0
\(13\) −9891.04 −1.24865 −0.624324 0.781165i \(-0.714626\pi\)
−0.624324 + 0.781165i \(0.714626\pi\)
\(14\) −18454.1 + 4070.37i −1.79740 + 0.396448i
\(15\) 0 0
\(16\) −18955.5 + 32831.8i −1.15695 + 2.00390i
\(17\) 6242.26 + 10811.9i 0.308156 + 0.533742i 0.977959 0.208797i \(-0.0669548\pi\)
−0.669803 + 0.742539i \(0.733622\pi\)
\(18\) 0 0
\(19\) −561.837 + 973.131i −0.0187920 + 0.0325487i −0.875268 0.483637i \(-0.839315\pi\)
0.856476 + 0.516186i \(0.172649\pi\)
\(20\) −59112.1 −1.65223
\(21\) 0 0
\(22\) −6329.35 −0.126730
\(23\) −22359.5 + 38727.8i −0.383190 + 0.663705i −0.991516 0.129982i \(-0.958508\pi\)
0.608326 + 0.793687i \(0.291841\pi\)
\(24\) 0 0
\(25\) 20360.1 + 35264.8i 0.260610 + 0.451389i
\(26\) 102986. 178377.i 1.14913 1.99036i
\(27\) 0 0
\(28\) 83690.6 264441.i 0.720482 2.27654i
\(29\) −51216.6 −0.389958 −0.194979 0.980807i \(-0.562464\pi\)
−0.194979 + 0.980807i \(0.562464\pi\)
\(30\) 0 0
\(31\) −12816.5 22198.9i −0.0772688 0.133834i 0.824802 0.565422i \(-0.191287\pi\)
−0.902071 + 0.431588i \(0.857953\pi\)
\(32\) −157979. 273628.i −0.852266 1.47617i
\(33\) 0 0
\(34\) −259978. −1.13439
\(35\) 171392. 37803.5i 0.675699 0.149037i
\(36\) 0 0
\(37\) 21054.5 36467.4i 0.0683343 0.118358i −0.829834 0.558010i \(-0.811565\pi\)
0.898168 + 0.439652i \(0.144898\pi\)
\(38\) −11699.7 20264.6i −0.0345887 0.0599093i
\(39\) 0 0
\(40\) 357722. 619592.i 0.883762 1.53072i
\(41\) −787100. −1.78356 −0.891778 0.452474i \(-0.850542\pi\)
−0.891778 + 0.452474i \(0.850542\pi\)
\(42\) 0 0
\(43\) −629737. −1.20787 −0.603934 0.797034i \(-0.706401\pi\)
−0.603934 + 0.797034i \(0.706401\pi\)
\(44\) 46449.0 80452.1i 0.0822039 0.142381i
\(45\) 0 0
\(46\) −465616. 806470.i −0.705302 1.22162i
\(47\) 313344. 542727.i 0.440229 0.762498i −0.557478 0.830192i \(-0.688231\pi\)
0.997706 + 0.0676937i \(0.0215641\pi\)
\(48\) 0 0
\(49\) −73540.5 + 820253.i −0.0892977 + 0.996005i
\(50\) −847961. −0.959359
\(51\) 0 0
\(52\) 1.51156e6 + 2.61810e6i 1.49078 + 2.58211i
\(53\) −268306. 464719.i −0.247551 0.428770i 0.715295 0.698823i \(-0.246292\pi\)
−0.962846 + 0.270052i \(0.912959\pi\)
\(54\) 0 0
\(55\) 58783.7 0.0476417
\(56\) 2.26531e6 + 2.47750e6i 1.72373 + 1.88519i
\(57\) 0 0
\(58\) 533269. 923649.i 0.358879 0.621597i
\(59\) 1.06004e6 + 1.83605e6i 0.671958 + 1.16386i 0.977348 + 0.211638i \(0.0678797\pi\)
−0.305390 + 0.952227i \(0.598787\pi\)
\(60\) 0 0
\(61\) −1.35734e6 + 2.35098e6i −0.765656 + 1.32616i 0.174242 + 0.984703i \(0.444252\pi\)
−0.939899 + 0.341453i \(0.889081\pi\)
\(62\) 533785. 0.284443
\(63\) 0 0
\(64\) 1.72694e6 0.823470
\(65\) −956479. + 1.65667e6i −0.431995 + 0.748237i
\(66\) 0 0
\(67\) −1.88702e6 3.26842e6i −0.766506 1.32763i −0.939447 0.342695i \(-0.888660\pi\)
0.172941 0.984932i \(-0.444673\pi\)
\(68\) 1.90790e6 3.30457e6i 0.735824 1.27448i
\(69\) 0 0
\(70\) −1.10279e6 + 3.48453e6i −0.384281 + 1.21423i
\(71\) −4.31646e6 −1.43128 −0.715638 0.698472i \(-0.753864\pi\)
−0.715638 + 0.698472i \(0.753864\pi\)
\(72\) 0 0
\(73\) 355018. + 614910.i 0.106812 + 0.185004i 0.914477 0.404638i \(-0.132602\pi\)
−0.807665 + 0.589642i \(0.799269\pi\)
\(74\) 438440. + 759401.i 0.125776 + 0.217851i
\(75\) 0 0
\(76\) 343442. 0.0897442
\(77\) −83225.5 + 262971.i −0.0207749 + 0.0656434i
\(78\) 0 0
\(79\) −1.39606e6 + 2.41804e6i −0.318572 + 0.551783i −0.980190 0.198058i \(-0.936537\pi\)
0.661618 + 0.749841i \(0.269870\pi\)
\(80\) 3.66605e6 + 6.34978e6i 0.800540 + 1.38658i
\(81\) 0 0
\(82\) 8.19532e6 1.41947e7i 1.64141 2.84301i
\(83\) −538991. −0.103468 −0.0517342 0.998661i \(-0.516475\pi\)
−0.0517342 + 0.998661i \(0.516475\pi\)
\(84\) 0 0
\(85\) 2.41454e6 0.426451
\(86\) 6.55684e6 1.13568e7i 1.11160 1.92536i
\(87\) 0 0
\(88\) 562180. + 973724.i 0.0879399 + 0.152316i
\(89\) −1.09927e6 + 1.90400e6i −0.165288 + 0.286287i −0.936757 0.349979i \(-0.886189\pi\)
0.771470 + 0.636266i \(0.219522\pi\)
\(90\) 0 0
\(91\) −6.05701e6 6.62435e6i −0.842584 0.921507i
\(92\) 1.36680e7 1.82999
\(93\) 0 0
\(94\) 6.52509e6 + 1.13018e7i 0.810287 + 1.40346i
\(95\) 108661. + 188207.i 0.0130029 + 0.0225218i
\(96\) 0 0
\(97\) −1.16799e7 −1.29938 −0.649691 0.760198i \(-0.725102\pi\)
−0.649691 + 0.760198i \(0.725102\pi\)
\(98\) −1.40269e7 9.86675e6i −1.50546 1.05897i
\(99\) 0 0
\(100\) 6.22291e6 1.07784e7i 0.622291 1.07784i
\(101\) 5.79389e6 + 1.00353e7i 0.559558 + 0.969184i 0.997533 + 0.0701964i \(0.0223626\pi\)
−0.437975 + 0.898987i \(0.644304\pi\)
\(102\) 0 0
\(103\) −4.20034e6 + 7.27521e6i −0.378752 + 0.656017i −0.990881 0.134741i \(-0.956980\pi\)
0.612129 + 0.790758i \(0.290313\pi\)
\(104\) −3.65893e7 −3.18961
\(105\) 0 0
\(106\) 1.11744e7 0.911286
\(107\) 1.45109e6 2.51336e6i 0.114512 0.198341i −0.803072 0.595881i \(-0.796803\pi\)
0.917585 + 0.397541i \(0.130136\pi\)
\(108\) 0 0
\(109\) 9.92983e6 + 1.71990e7i 0.734428 + 1.27207i 0.954974 + 0.296690i \(0.0958828\pi\)
−0.220546 + 0.975377i \(0.570784\pi\)
\(110\) −612058. + 1.06012e6i −0.0438448 + 0.0759414i
\(111\) 0 0
\(112\) −3.35964e7 + 7.41025e6i −2.25959 + 0.498390i
\(113\) −7.27288e6 −0.474167 −0.237084 0.971489i \(-0.576192\pi\)
−0.237084 + 0.971489i \(0.576192\pi\)
\(114\) 0 0
\(115\) 4.32440e6 + 7.49007e6i 0.265145 + 0.459244i
\(116\) 7.82698e6 + 1.35567e7i 0.465576 + 0.806402i
\(117\) 0 0
\(118\) −4.41489e7 −2.47362
\(119\) −3.41849e6 + 1.08016e7i −0.185960 + 0.587587i
\(120\) 0 0
\(121\) 9.69739e6 1.67964e7i 0.497630 0.861920i
\(122\) −2.82653e7 4.89570e7i −1.40927 2.44093i
\(123\) 0 0
\(124\) −3.91727e6 + 6.78491e6i −0.184505 + 0.319572i
\(125\) 2.29850e7 1.05259
\(126\) 0 0
\(127\) 2.81015e7 1.21735 0.608676 0.793419i \(-0.291701\pi\)
0.608676 + 0.793419i \(0.291701\pi\)
\(128\) 2.24036e6 3.88042e6i 0.0944241 0.163547i
\(129\) 0 0
\(130\) −1.99178e7 3.44986e7i −0.795132 1.37721i
\(131\) −9.59472e6 + 1.66185e7i −0.372892 + 0.645867i −0.990009 0.141004i \(-0.954967\pi\)
0.617117 + 0.786871i \(0.288300\pi\)
\(132\) 0 0
\(133\) −995792. + 219639.i −0.0367018 + 0.00809521i
\(134\) 7.85910e7 2.82167
\(135\) 0 0
\(136\) 2.30916e7 + 3.99958e7i 0.787168 + 1.36341i
\(137\) 8.60460e6 + 1.49036e7i 0.285897 + 0.495187i 0.972826 0.231537i \(-0.0743753\pi\)
−0.686930 + 0.726724i \(0.741042\pi\)
\(138\) 0 0
\(139\) 4.17445e7 1.31840 0.659200 0.751968i \(-0.270895\pi\)
0.659200 + 0.751968i \(0.270895\pi\)
\(140\) −3.61987e7 3.95893e7i −1.11492 1.21935i
\(141\) 0 0
\(142\) 4.49431e7 7.78438e7i 1.31721 2.28147i
\(143\) −1.50316e6 2.60355e6i −0.0429862 0.0744543i
\(144\) 0 0
\(145\) −4.95272e6 + 8.57837e6i −0.134914 + 0.233677i
\(146\) −1.47859e7 −0.393198
\(147\) 0 0
\(148\) −1.28703e7 −0.326341
\(149\) 1.99889e6 3.46218e6i 0.0495036 0.0857428i −0.840212 0.542258i \(-0.817569\pi\)
0.889715 + 0.456516i \(0.150903\pi\)
\(150\) 0 0
\(151\) −2.86457e7 4.96158e7i −0.677081 1.17274i −0.975856 0.218415i \(-0.929911\pi\)
0.298775 0.954323i \(-0.403422\pi\)
\(152\) −2.07837e6 + 3.59984e6i −0.0480032 + 0.0831439i
\(153\) 0 0
\(154\) −3.87593e6 4.23897e6i −0.0855171 0.0935272i
\(155\) −4.95751e6 −0.106931
\(156\) 0 0
\(157\) 1.42614e7 + 2.47014e7i 0.294112 + 0.509416i 0.974778 0.223177i \(-0.0716429\pi\)
−0.680666 + 0.732594i \(0.738310\pi\)
\(158\) −2.90716e7 5.03534e7i −0.586366 1.01562i
\(159\) 0 0
\(160\) −6.11073e7 −1.17943
\(161\) −3.96296e7 + 8.74098e6i −0.748392 + 0.165071i
\(162\) 0 0
\(163\) −1.61353e7 + 2.79472e7i −0.291824 + 0.505454i −0.974241 0.225509i \(-0.927595\pi\)
0.682417 + 0.730963i \(0.260929\pi\)
\(164\) 1.20286e8 + 2.08341e8i 2.12941 + 3.68825i
\(165\) 0 0
\(166\) 5.61199e6 9.72026e6i 0.0952223 0.164930i
\(167\) −1.88088e7 −0.312502 −0.156251 0.987717i \(-0.549941\pi\)
−0.156251 + 0.987717i \(0.549941\pi\)
\(168\) 0 0
\(169\) 3.50841e7 0.559123
\(170\) −2.51403e7 + 4.35443e7i −0.392464 + 0.679767i
\(171\) 0 0
\(172\) 9.62371e7 + 1.66687e8i 1.44209 + 2.49778i
\(173\) 4.67229e7 8.09264e7i 0.686070 1.18831i −0.287029 0.957922i \(-0.592668\pi\)
0.973099 0.230386i \(-0.0739989\pi\)
\(174\) 0 0
\(175\) −1.11500e7 + 3.52310e7i −0.157268 + 0.496927i
\(176\) −1.15228e7 −0.159318
\(177\) 0 0
\(178\) −2.28913e7 3.96489e7i −0.304229 0.526941i
\(179\) 4.41581e7 + 7.64841e7i 0.575473 + 0.996748i 0.995990 + 0.0894634i \(0.0285152\pi\)
−0.420517 + 0.907284i \(0.638151\pi\)
\(180\) 0 0
\(181\) −1.09260e7 −0.136958 −0.0684789 0.997653i \(-0.521815\pi\)
−0.0684789 + 0.997653i \(0.521815\pi\)
\(182\) 1.82531e8 4.02602e7i 2.24432 0.495024i
\(183\) 0 0
\(184\) −8.27130e7 + 1.43263e8i −0.978840 + 1.69540i
\(185\) −4.07200e6 7.05292e6i −0.0472832 0.0818969i
\(186\) 0 0
\(187\) −1.89730e6 + 3.28621e6i −0.0212173 + 0.0367494i
\(188\) −1.91542e8 −2.10238
\(189\) 0 0
\(190\) −4.52553e6 −0.0478666
\(191\) −5.24786e7 + 9.08956e7i −0.544961 + 0.943900i 0.453648 + 0.891181i \(0.350122\pi\)
−0.998609 + 0.0527193i \(0.983211\pi\)
\(192\) 0 0
\(193\) −7.92806e6 1.37318e7i −0.0793809 0.137492i 0.823602 0.567168i \(-0.191961\pi\)
−0.902983 + 0.429676i \(0.858628\pi\)
\(194\) 1.21611e8 2.10637e8i 1.19582 2.07123i
\(195\) 0 0
\(196\) 2.28354e8 1.05886e8i 2.16627 1.00448i
\(197\) −4.99805e6 −0.0465767 −0.0232883 0.999729i \(-0.507414\pi\)
−0.0232883 + 0.999729i \(0.507414\pi\)
\(198\) 0 0
\(199\) −2.75134e7 4.76545e7i −0.247490 0.428665i 0.715339 0.698778i \(-0.246272\pi\)
−0.962829 + 0.270112i \(0.912939\pi\)
\(200\) 7.53168e7 + 1.30453e8i 0.665713 + 1.15305i
\(201\) 0 0
\(202\) −2.41305e8 −2.05985
\(203\) −3.13637e7 3.43014e7i −0.263142 0.287790i
\(204\) 0 0
\(205\) −7.61138e7 + 1.31833e8i −0.617057 + 1.06877i
\(206\) −8.74683e7 1.51499e8i −0.697132 1.20747i
\(207\) 0 0
\(208\) 1.87489e8 3.24741e8i 1.44462 2.50216i
\(209\) −341534. −0.00258775
\(210\) 0 0
\(211\) −5.55200e7 −0.406875 −0.203437 0.979088i \(-0.565211\pi\)
−0.203437 + 0.979088i \(0.565211\pi\)
\(212\) −8.20055e7 + 1.42038e8i −0.591109 + 1.02383i
\(213\) 0 0
\(214\) 3.02176e7 + 5.23385e7i 0.210772 + 0.365067i
\(215\) −6.08965e7 + 1.05476e8i −0.417886 + 0.723800i
\(216\) 0 0
\(217\) 7.01881e6 2.21776e7i 0.0466288 0.147335i
\(218\) −4.13559e8 −2.70358
\(219\) 0 0
\(220\) −8.98339e6 1.55597e7i −0.0568802 0.0985193i
\(221\) −6.17424e7 1.06941e8i −0.384778 0.666456i
\(222\) 0 0
\(223\) −3.31811e7 −0.200366 −0.100183 0.994969i \(-0.531943\pi\)
−0.100183 + 0.994969i \(0.531943\pi\)
\(224\) 8.65153e7 2.73366e8i 0.514310 1.62509i
\(225\) 0 0
\(226\) 7.57255e7 1.31160e8i 0.436378 0.755828i
\(227\) −4.88085e6 8.45388e6i −0.0276952 0.0479695i 0.851846 0.523793i \(-0.175483\pi\)
−0.879541 + 0.475823i \(0.842150\pi\)
\(228\) 0 0
\(229\) 6.85558e6 1.18742e7i 0.0377242 0.0653403i −0.846547 0.532314i \(-0.821322\pi\)
0.884271 + 0.466974i \(0.154656\pi\)
\(230\) −1.80103e8 −0.976054
\(231\) 0 0
\(232\) −1.89462e8 −0.996127
\(233\) 1.14766e8 1.98781e8i 0.594385 1.02950i −0.399249 0.916843i \(-0.630729\pi\)
0.993633 0.112662i \(-0.0359377\pi\)
\(234\) 0 0
\(235\) −6.06016e7 1.04965e8i −0.304612 0.527603i
\(236\) 3.23994e8 5.61174e8i 1.60452 2.77911i
\(237\) 0 0
\(238\) −1.59204e8 1.74116e8i −0.765481 0.837181i
\(239\) 1.18140e8 0.559764 0.279882 0.960034i \(-0.409705\pi\)
0.279882 + 0.960034i \(0.409705\pi\)
\(240\) 0 0
\(241\) −1.10867e8 1.92027e8i −0.510202 0.883695i −0.999930 0.0118201i \(-0.996237\pi\)
0.489729 0.871875i \(-0.337096\pi\)
\(242\) 2.01939e8 + 3.49769e8i 0.915940 + 1.58645i
\(243\) 0 0
\(244\) 8.29720e8 3.65651
\(245\) 1.30274e8 + 9.16372e7i 0.565949 + 0.398098i
\(246\) 0 0
\(247\) 5.55716e6 9.62528e6i 0.0234646 0.0406419i
\(248\) −4.74113e7 8.21188e7i −0.197379 0.341871i
\(249\) 0 0
\(250\) −2.39321e8 + 4.14516e8i −0.968704 + 1.67784i
\(251\) 1.95230e8 0.779273 0.389636 0.920969i \(-0.372601\pi\)
0.389636 + 0.920969i \(0.372601\pi\)
\(252\) 0 0
\(253\) −1.35921e7 −0.0527671
\(254\) −2.92594e8 + 5.06787e8i −1.12033 + 1.94047i
\(255\) 0 0
\(256\) 1.57178e8 + 2.72240e8i 0.585532 + 1.01417i
\(257\) −2.59127e8 + 4.48821e8i −0.952240 + 1.64933i −0.211679 + 0.977339i \(0.567893\pi\)
−0.740561 + 0.671989i \(0.765440\pi\)
\(258\) 0 0
\(259\) 3.73166e7 8.23082e6i 0.133461 0.0294370i
\(260\) 5.84681e8 2.06306
\(261\) 0 0
\(262\) −1.99801e8 3.46066e8i −0.686347 1.18879i
\(263\) −1.95491e8 3.38600e8i −0.662646 1.14774i −0.979918 0.199402i \(-0.936100\pi\)
0.317271 0.948335i \(-0.397233\pi\)
\(264\) 0 0
\(265\) −1.03782e8 −0.342580
\(266\) 6.40722e6 2.02452e7i 0.0208729 0.0659532i
\(267\) 0 0
\(268\) −5.76754e8 + 9.98967e8i −1.83028 + 3.17015i
\(269\) −1.79359e8 3.10659e8i −0.561810 0.973084i −0.997339 0.0729092i \(-0.976772\pi\)
0.435528 0.900175i \(-0.356562\pi\)
\(270\) 0 0
\(271\) −9.85150e7 + 1.70633e8i −0.300684 + 0.520799i −0.976291 0.216462i \(-0.930548\pi\)
0.675607 + 0.737262i \(0.263881\pi\)
\(272\) −4.73300e8 −1.42608
\(273\) 0 0
\(274\) −3.58366e8 −1.05245
\(275\) −6.18833e6 + 1.07185e7i −0.0179436 + 0.0310792i
\(276\) 0 0
\(277\) 2.00995e8 + 3.48134e8i 0.568207 + 0.984164i 0.996743 + 0.0806391i \(0.0256961\pi\)
−0.428536 + 0.903525i \(0.640971\pi\)
\(278\) −4.34645e8 + 7.52828e8i −1.21333 + 2.10155i
\(279\) 0 0
\(280\) 6.34020e8 1.39844e8i 1.72604 0.380707i
\(281\) −2.80445e7 −0.0754008 −0.0377004 0.999289i \(-0.512003\pi\)
−0.0377004 + 0.999289i \(0.512003\pi\)
\(282\) 0 0
\(283\) −1.03202e6 1.78751e6i −0.00270667 0.00468809i 0.864669 0.502342i \(-0.167528\pi\)
−0.867376 + 0.497654i \(0.834195\pi\)
\(284\) 6.59646e8 + 1.14254e9i 1.70882 + 2.95977i
\(285\) 0 0
\(286\) 6.26038e7 0.158241
\(287\) −4.81999e8 5.27147e8i −1.20354 1.31627i
\(288\) 0 0
\(289\) 1.27238e8 2.20382e8i 0.310080 0.537074i
\(290\) −1.03136e8 1.78637e8i −0.248323 0.430108i
\(291\) 0 0
\(292\) 1.08509e8 1.87942e8i 0.255049 0.441758i
\(293\) 3.77433e8 0.876604 0.438302 0.898828i \(-0.355580\pi\)
0.438302 + 0.898828i \(0.355580\pi\)
\(294\) 0 0
\(295\) 4.10032e8 0.929909
\(296\) 7.78855e7 1.34902e8i 0.174556 0.302340i
\(297\) 0 0
\(298\) 4.16250e7 + 7.20967e7i 0.0911166 + 0.157819i
\(299\) 2.21159e8 3.83058e8i 0.478470 0.828734i
\(300\) 0 0
\(301\) −3.85634e8 4.21755e8i −0.815066 0.891411i
\(302\) 1.19304e9 2.49248
\(303\) 0 0
\(304\) −2.12998e7 3.68923e7i −0.0434828 0.0753145i
\(305\) 2.62514e8 + 4.54687e8i 0.529788 + 0.917620i
\(306\) 0 0
\(307\) 5.18232e8 1.02221 0.511105 0.859519i \(-0.329236\pi\)
0.511105 + 0.859519i \(0.329236\pi\)
\(308\) 8.23255e7 1.81583e7i 0.160549 0.0354118i
\(309\) 0 0
\(310\) 5.16178e7 8.94046e7i 0.0984087 0.170449i
\(311\) 1.41916e8 + 2.45806e8i 0.267529 + 0.463374i 0.968223 0.250088i \(-0.0804596\pi\)
−0.700694 + 0.713462i \(0.747126\pi\)
\(312\) 0 0
\(313\) 1.65050e7 2.85875e7i 0.0304236 0.0526952i −0.850413 0.526116i \(-0.823648\pi\)
0.880836 + 0.473421i \(0.156981\pi\)
\(314\) −5.93959e8 −1.08269
\(315\) 0 0
\(316\) 8.53387e8 1.52139
\(317\) 5.46589e8 9.46720e8i 0.963726 1.66922i 0.250727 0.968058i \(-0.419331\pi\)
0.713000 0.701165i \(-0.247336\pi\)
\(318\) 0 0
\(319\) −7.78348e6 1.34814e7i −0.0134248 0.0232524i
\(320\) 1.66998e8 2.89249e8i 0.284896 0.493454i
\(321\) 0 0
\(322\) 2.54989e8 8.05699e8i 0.425623 1.34486i
\(323\) −1.40285e7 −0.0231635
\(324\) 0 0
\(325\) −2.01383e8 3.48805e8i −0.325410 0.563626i
\(326\) −3.36003e8 5.81974e8i −0.537133 0.930341i
\(327\) 0 0
\(328\) −2.91167e9 −4.55600
\(329\) 5.55365e8 1.22495e8i 0.859791 0.189641i
\(330\) 0 0
\(331\) 1.60956e8 2.78785e8i 0.243955 0.422543i −0.717882 0.696165i \(-0.754888\pi\)
0.961837 + 0.273622i \(0.0882216\pi\)
\(332\) 8.23692e7 + 1.42668e8i 0.123533 + 0.213965i
\(333\) 0 0
\(334\) 1.95838e8 3.39201e8i 0.287597 0.498132i
\(335\) −7.29912e8 −1.06075
\(336\) 0 0
\(337\) 1.31007e9 1.86461 0.932307 0.361668i \(-0.117793\pi\)
0.932307 + 0.361668i \(0.117793\pi\)
\(338\) −3.65297e8 + 6.32713e8i −0.514562 + 0.891248i
\(339\) 0 0
\(340\) −3.68993e8 6.39115e8i −0.509146 0.881866i
\(341\) 3.89550e6 6.74721e6i 0.00532014 0.00921476i
\(342\) 0 0
\(343\) −5.94384e8 + 4.53049e8i −0.795313 + 0.606199i
\(344\) −2.32954e9 −3.08543
\(345\) 0 0
\(346\) 9.72961e8 + 1.68522e9i 1.26278 + 2.18721i
\(347\) 8.33411e7 + 1.44351e8i 0.107079 + 0.185467i 0.914586 0.404392i \(-0.132517\pi\)
−0.807506 + 0.589859i \(0.799183\pi\)
\(348\) 0 0
\(349\) 7.47430e8 0.941199 0.470599 0.882347i \(-0.344038\pi\)
0.470599 + 0.882347i \(0.344038\pi\)
\(350\) −5.19269e8 5.67907e8i −0.647372 0.708010i
\(351\) 0 0
\(352\) 4.80168e7 8.31675e7i 0.0586805 0.101638i
\(353\) 3.08956e8 + 5.35127e8i 0.373839 + 0.647509i 0.990153 0.139992i \(-0.0447078\pi\)
−0.616313 + 0.787501i \(0.711375\pi\)
\(354\) 0 0
\(355\) −4.17408e8 + 7.22972e8i −0.495178 + 0.857674i
\(356\) 6.71968e8 0.789357
\(357\) 0 0
\(358\) −1.83910e9 −2.11844
\(359\) −5.08337e8 + 8.80465e8i −0.579857 + 1.00434i 0.415638 + 0.909530i \(0.363558\pi\)
−0.995495 + 0.0948120i \(0.969775\pi\)
\(360\) 0 0
\(361\) 4.46305e8 + 7.73022e8i 0.499294 + 0.864802i
\(362\) 1.13762e8 1.97042e8i 0.126043 0.218312i
\(363\) 0 0
\(364\) −8.27786e8 + 2.61559e9i −0.899629 + 2.84260i
\(365\) 1.37323e8 0.147815
\(366\) 0 0
\(367\) −7.38499e8 1.27912e9i −0.779864 1.35076i −0.932020 0.362407i \(-0.881955\pi\)
0.152156 0.988356i \(-0.451378\pi\)
\(368\) −8.47670e8 1.46821e9i −0.886664 1.53575i
\(369\) 0 0
\(370\) 1.69591e8 0.174060
\(371\) 1.46934e8 4.64274e8i 0.149387 0.472026i
\(372\) 0 0
\(373\) 8.15971e8 1.41330e9i 0.814130 1.41011i −0.0958211 0.995399i \(-0.530548\pi\)
0.909951 0.414716i \(-0.136119\pi\)
\(374\) −3.95094e7 6.84323e7i −0.0390526 0.0676411i
\(375\) 0 0
\(376\) 1.15913e9 2.00767e9i 1.12454 1.94776i
\(377\) 5.06585e8 0.486920
\(378\) 0 0
\(379\) −3.41392e8 −0.322118 −0.161059 0.986945i \(-0.551491\pi\)
−0.161059 + 0.986945i \(0.551491\pi\)
\(380\) 3.32114e7 5.75239e7i 0.0310488 0.0537781i
\(381\) 0 0
\(382\) −1.09282e9 1.89282e9i −1.00306 1.73735i
\(383\) −1.85545e8 + 3.21374e8i −0.168754 + 0.292290i −0.937982 0.346684i \(-0.887308\pi\)
0.769228 + 0.638974i \(0.220641\pi\)
\(384\) 0 0
\(385\) 3.59976e7 + 3.93694e7i 0.0321485 + 0.0351597i
\(386\) 3.30189e8 0.292218
\(387\) 0 0
\(388\) 1.78493e9 + 3.09159e9i 1.55135 + 2.68702i
\(389\) −4.74511e8 8.21877e8i −0.408717 0.707919i 0.586029 0.810290i \(-0.300690\pi\)
−0.994746 + 0.102371i \(0.967357\pi\)
\(390\) 0 0
\(391\) −5.58295e8 −0.472329
\(392\) −2.72044e8 + 3.03431e9i −0.228106 + 2.54424i
\(393\) 0 0
\(394\) 5.20399e7 9.01357e7i 0.0428647 0.0742438i
\(395\) 2.70001e8 + 4.67656e8i 0.220433 + 0.381801i
\(396\) 0 0
\(397\) −3.81892e8 + 6.61456e8i −0.306319 + 0.530560i −0.977554 0.210685i \(-0.932431\pi\)
0.671235 + 0.741244i \(0.265764\pi\)
\(398\) 1.14588e9 0.911063
\(399\) 0 0
\(400\) −1.54374e9 −1.20605
\(401\) 4.60425e8 7.97479e8i 0.356577 0.617610i −0.630809 0.775938i \(-0.717277\pi\)
0.987387 + 0.158328i \(0.0506104\pi\)
\(402\) 0 0
\(403\) 1.26769e8 + 2.19570e8i 0.0964816 + 0.167111i
\(404\) 1.77086e9 3.06721e9i 1.33613 2.31425i
\(405\) 0 0
\(406\) 9.45158e8 2.08471e8i 0.700912 0.154598i
\(407\) 1.27988e7 0.00940996
\(408\) 0 0
\(409\) 4.04665e8 + 7.00900e8i 0.292458 + 0.506552i 0.974390 0.224863i \(-0.0721935\pi\)
−0.681932 + 0.731415i \(0.738860\pi\)
\(410\) −1.58500e9 2.74530e9i −1.13576 1.96719i
\(411\) 0 0
\(412\) 2.56760e9 1.80879
\(413\) −5.80520e8 + 1.83429e9i −0.405501 + 1.28128i
\(414\) 0 0
\(415\) −5.21212e7 + 9.02766e7i −0.0357970 + 0.0620022i
\(416\) 1.56258e9 + 2.70646e9i 1.06418 + 1.84321i
\(417\) 0 0
\(418\) 3.55607e6 6.15929e6i 0.00238151 0.00412490i
\(419\) −2.33725e9 −1.55223 −0.776115 0.630592i \(-0.782812\pi\)
−0.776115 + 0.630592i \(0.782812\pi\)
\(420\) 0 0
\(421\) 6.85194e8 0.447534 0.223767 0.974643i \(-0.428164\pi\)
0.223767 + 0.974643i \(0.428164\pi\)
\(422\) 5.78076e8 1.00126e9i 0.374448 0.648563i
\(423\) 0 0
\(424\) −9.92525e8 1.71910e9i −0.632355 1.09527i
\(425\) −2.54186e8 + 4.40263e8i −0.160617 + 0.278196i
\(426\) 0 0
\(427\) −2.40573e9 + 5.30624e8i −1.49537 + 0.329829i
\(428\) −8.87029e8 −0.546871
\(429\) 0 0
\(430\) −1.26811e9 2.19644e9i −0.769164 1.33223i
\(431\) 7.97694e8 + 1.38165e9i 0.479917 + 0.831240i 0.999735 0.0230370i \(-0.00733355\pi\)
−0.519818 + 0.854277i \(0.674000\pi\)
\(432\) 0 0
\(433\) −3.20663e9 −1.89820 −0.949098 0.314981i \(-0.898002\pi\)
−0.949098 + 0.314981i \(0.898002\pi\)
\(434\) 3.26875e8 + 3.57493e8i 0.191941 + 0.209920i
\(435\) 0 0
\(436\) 3.03498e9 5.25673e9i 1.75369 3.03748i
\(437\) −2.51248e7 4.35174e7i −0.0144018 0.0249447i
\(438\) 0 0
\(439\) −9.31855e8 + 1.61402e9i −0.525681 + 0.910507i 0.473871 + 0.880594i \(0.342856\pi\)
−0.999553 + 0.0299126i \(0.990477\pi\)
\(440\) 2.17455e8 0.121698
\(441\) 0 0
\(442\) 2.57146e9 1.41645
\(443\) 3.99132e8 6.91317e8i 0.218124 0.377802i −0.736110 0.676861i \(-0.763340\pi\)
0.954234 + 0.299060i \(0.0966729\pi\)
\(444\) 0 0
\(445\) 2.12603e8 + 3.68239e8i 0.114369 + 0.198093i
\(446\) 3.45483e8 5.98394e8i 0.184397 0.319386i
\(447\) 0 0
\(448\) 1.05753e9 + 1.15659e9i 0.555675 + 0.607723i
\(449\) 4.99626e8 0.260485 0.130242 0.991482i \(-0.458424\pi\)
0.130242 + 0.991482i \(0.458424\pi\)
\(450\) 0 0
\(451\) −1.19617e8 2.07183e8i −0.0614010 0.106350i
\(452\) 1.11145e9 + 1.92509e9i 0.566115 + 0.980541i
\(453\) 0 0
\(454\) 2.03278e8 0.101952
\(455\) −1.69525e9 + 3.73916e8i −0.843710 + 0.186095i
\(456\) 0 0
\(457\) −1.33706e9 + 2.31585e9i −0.655305 + 1.13502i 0.326513 + 0.945193i \(0.394126\pi\)
−0.981817 + 0.189828i \(0.939207\pi\)
\(458\) 1.42761e8 + 2.47270e8i 0.0694354 + 0.120266i
\(459\) 0 0
\(460\) 1.32172e9 2.28928e9i 0.633120 1.09660i
\(461\) 2.67032e9 1.26943 0.634716 0.772746i \(-0.281117\pi\)
0.634716 + 0.772746i \(0.281117\pi\)
\(462\) 0 0
\(463\) 1.72345e9 0.806983 0.403492 0.914983i \(-0.367796\pi\)
0.403492 + 0.914983i \(0.367796\pi\)
\(464\) 9.70835e8 1.68153e9i 0.451162 0.781435i
\(465\) 0 0
\(466\) 2.38990e9 + 4.13942e9i 1.09403 + 1.89491i
\(467\) −1.41354e9 + 2.44832e9i −0.642242 + 1.11240i 0.342689 + 0.939449i \(0.388662\pi\)
−0.984931 + 0.172947i \(0.944671\pi\)
\(468\) 0 0
\(469\) 1.03340e9 3.26529e9i 0.462557 1.46156i
\(470\) 2.52395e9 1.12134
\(471\) 0 0
\(472\) 3.92135e9 + 6.79198e9i 1.71648 + 2.97303i
\(473\) −9.57023e7 1.65761e8i −0.0415823 0.0720227i
\(474\) 0 0
\(475\) −4.57563e7 −0.0195895
\(476\) 3.38153e9 7.45853e8i 1.43711 0.316978i
\(477\) 0 0
\(478\) −1.23008e9 + 2.13056e9i −0.515153 + 0.892271i
\(479\) −1.54711e9 2.67967e9i −0.643200 1.11405i −0.984714 0.174178i \(-0.944273\pi\)
0.341515 0.939876i \(-0.389060\pi\)
\(480\) 0 0
\(481\) −2.08251e8 + 3.60701e8i −0.0853255 + 0.147788i
\(482\) 4.61740e9 1.87816
\(483\) 0 0
\(484\) −5.92787e9 −2.37651
\(485\) −1.12946e9 + 1.95628e9i −0.449547 + 0.778638i
\(486\) 0 0
\(487\) 2.11545e8 + 3.66407e8i 0.0829949 + 0.143751i 0.904535 0.426399i \(-0.140218\pi\)
−0.821540 + 0.570151i \(0.806885\pi\)
\(488\) −5.02112e9 + 8.69683e9i −1.95583 + 3.38759i
\(489\) 0 0
\(490\) −3.00902e9 + 1.39526e9i −1.15542 + 0.535759i
\(491\) 9.85934e8 0.375892 0.187946 0.982179i \(-0.439817\pi\)
0.187946 + 0.982179i \(0.439817\pi\)
\(492\) 0 0
\(493\) −3.19707e8 5.53749e8i −0.120168 0.208137i
\(494\) 1.15723e8 + 2.00437e8i 0.0431891 + 0.0748057i
\(495\) 0 0
\(496\) 9.71773e8 0.357585
\(497\) −2.64328e9 2.89087e9i −0.965821 1.05629i
\(498\) 0 0
\(499\) 2.62370e8 4.54437e8i 0.0945282 0.163728i −0.814883 0.579625i \(-0.803199\pi\)
0.909412 + 0.415897i \(0.136532\pi\)
\(500\) −3.51260e9 6.08400e9i −1.25671 2.17668i
\(501\) 0 0
\(502\) −2.03275e9 + 3.52082e9i −0.717167 + 1.24217i
\(503\) −4.23277e9 −1.48298 −0.741492 0.670962i \(-0.765881\pi\)
−0.741492 + 0.670962i \(0.765881\pi\)
\(504\) 0 0
\(505\) 2.24111e9 0.774362
\(506\) 1.41521e8 2.45122e8i 0.0485618 0.0841114i
\(507\) 0 0
\(508\) −4.29450e9 7.43829e9i −1.45341 2.51739i
\(509\) −1.16011e9 + 2.00938e9i −0.389931 + 0.675381i −0.992440 0.122731i \(-0.960835\pi\)
0.602508 + 0.798113i \(0.294168\pi\)
\(510\) 0 0
\(511\) −1.94421e8 + 6.14322e8i −0.0644571 + 0.203668i
\(512\) −5.97263e9 −1.96662
\(513\) 0 0
\(514\) −5.39608e9 9.34628e9i −1.75270 3.03576i
\(515\) 8.12359e8 + 1.40705e9i 0.262073 + 0.453924i
\(516\) 0 0
\(517\) 1.90478e8 0.0606216
\(518\) −2.40106e8 + 7.58675e8i −0.0759013 + 0.239829i
\(519\) 0 0
\(520\) −3.53824e9 + 6.12841e9i −1.10351 + 1.91133i
\(521\) 1.37985e9 + 2.38996e9i 0.427463 + 0.740388i 0.996647 0.0818227i \(-0.0260741\pi\)
−0.569184 + 0.822210i \(0.692741\pi\)
\(522\) 0 0
\(523\) −2.22280e9 + 3.85001e9i −0.679430 + 1.17681i 0.295722 + 0.955274i \(0.404440\pi\)
−0.975153 + 0.221534i \(0.928894\pi\)
\(524\) 5.86510e9 1.78080
\(525\) 0 0
\(526\) 8.14184e9 2.43934
\(527\) 1.60008e8 2.77142e8i 0.0476217 0.0824832i
\(528\) 0 0
\(529\) 7.02518e8 + 1.21680e9i 0.206330 + 0.357374i
\(530\) 1.08058e9 1.87163e9i 0.315278 0.546077i
\(531\) 0 0
\(532\) 2.10315e8 + 2.30015e8i 0.0605591 + 0.0662315i
\(533\) 7.78524e9 2.22703
\(534\) 0 0
\(535\) −2.80646e8 4.86092e8i −0.0792355 0.137240i
\(536\) −6.98054e9 1.20907e10i −1.95800 3.39135i
\(537\) 0 0
\(538\) 7.46997e9 2.06814
\(539\) −2.27086e8 + 1.05298e8i −0.0624639 + 0.0289640i
\(540\) 0 0
\(541\) 2.67831e9 4.63897e9i 0.727228 1.25960i −0.230822 0.972996i \(-0.574141\pi\)
0.958050 0.286601i \(-0.0925253\pi\)
\(542\) −2.05148e9 3.55327e9i −0.553440 0.958586i
\(543\) 0 0
\(544\) 1.97229e9 3.41611e9i 0.525261 0.909779i
\(545\) 3.84092e9 1.01636
\(546\) 0 0
\(547\) 1.36408e9 0.356357 0.178178 0.983998i \(-0.442980\pi\)
0.178178 + 0.983998i \(0.442980\pi\)
\(548\) 2.62993e9 4.55517e9i 0.682672 1.18242i
\(549\) 0 0
\(550\) −1.28866e8 2.23203e8i −0.0330271 0.0572046i
\(551\) 2.87754e7 4.98405e7i 0.00732809 0.0126926i
\(552\) 0 0
\(553\) −2.47435e9 + 5.45759e8i −0.622189 + 0.137234i
\(554\) −8.37108e9 −2.09169
\(555\) 0 0
\(556\) −6.37944e9 1.10495e10i −1.57406 2.72635i
\(557\) 1.54479e9 + 2.67566e9i 0.378771 + 0.656051i 0.990884 0.134720i \(-0.0430135\pi\)
−0.612113 + 0.790770i \(0.709680\pi\)
\(558\) 0 0
\(559\) 6.22875e9 1.50820
\(560\) −2.00766e9 + 6.34371e9i −0.483096 + 1.52646i
\(561\) 0 0
\(562\) 2.92001e8 5.05760e8i 0.0693916 0.120190i
\(563\) −9.48459e8 1.64278e9i −0.223995 0.387971i 0.732022 0.681281i \(-0.238577\pi\)
−0.956018 + 0.293309i \(0.905243\pi\)
\(564\) 0 0
\(565\) −7.03299e8 + 1.21815e9i −0.164048 + 0.284139i
\(566\) 4.29817e7 0.00996383
\(567\) 0 0
\(568\) −1.59676e10 −3.65612
\(569\) 4.17854e9 7.23744e9i 0.950893 1.64699i 0.207393 0.978258i \(-0.433502\pi\)
0.743499 0.668737i \(-0.233165\pi\)
\(570\) 0 0
\(571\) −2.33771e9 4.04904e9i −0.525491 0.910177i −0.999559 0.0296886i \(-0.990548\pi\)
0.474069 0.880488i \(-0.342785\pi\)
\(572\) −4.59429e8 + 7.95755e8i −0.102644 + 0.177784i
\(573\) 0 0
\(574\) 1.45253e10 3.20379e9i 3.20577 0.707086i
\(575\) −1.82097e9 −0.399452
\(576\) 0 0
\(577\) 3.88363e8 + 6.72664e8i 0.0841632 + 0.145775i 0.905034 0.425338i \(-0.139845\pi\)
−0.820871 + 0.571113i \(0.806512\pi\)
\(578\) 2.64961e9 + 4.58926e9i 0.570735 + 0.988542i
\(579\) 0 0
\(580\) 3.02752e9 0.644302
\(581\) −3.30064e8 3.60980e8i −0.0698202 0.0763601i
\(582\) 0 0
\(583\) 8.15498e7 1.41248e8i 0.0170445 0.0295219i
\(584\) 1.31330e9 + 2.27470e9i 0.272846 + 0.472583i
\(585\) 0 0
\(586\) −3.92985e9 + 6.80670e9i −0.806741 + 1.39732i
\(587\) −1.89326e9 −0.386347 −0.193174 0.981165i \(-0.561878\pi\)
−0.193174 + 0.981165i \(0.561878\pi\)
\(588\) 0 0
\(589\) 2.88032e7 0.00580814
\(590\) −4.26927e9 + 7.39459e9i −0.855798 + 1.48229i
\(591\) 0 0
\(592\) 7.98195e8 + 1.38251e9i 0.158119 + 0.273870i
\(593\) 2.22153e9 3.84780e9i 0.437483 0.757742i −0.560012 0.828485i \(-0.689203\pi\)
0.997495 + 0.0707423i \(0.0225368\pi\)
\(594\) 0 0
\(595\) 1.47860e9 + 1.61710e9i 0.287768 + 0.314722i
\(596\) −1.22189e9 −0.236412
\(597\) 0 0
\(598\) 4.60542e9 + 7.97683e9i 0.880675 + 1.52537i
\(599\) 1.11024e9 + 1.92299e9i 0.211068 + 0.365581i 0.952049 0.305945i \(-0.0989724\pi\)
−0.740981 + 0.671526i \(0.765639\pi\)
\(600\) 0 0
\(601\) 5.04814e9 0.948574 0.474287 0.880370i \(-0.342706\pi\)
0.474287 + 0.880370i \(0.342706\pi\)
\(602\) 1.16212e10 2.56326e9i 2.17103 0.478856i
\(603\) 0 0
\(604\) −8.75534e9 + 1.51647e10i −1.61675 + 2.80030i
\(605\) −1.87551e9 3.24847e9i −0.344330 0.596397i
\(606\) 0 0
\(607\) 1.41439e9 2.44980e9i 0.256691 0.444601i −0.708663 0.705547i \(-0.750701\pi\)
0.965353 + 0.260946i \(0.0840346\pi\)
\(608\) 3.55034e8 0.0640631
\(609\) 0 0
\(610\) −1.09332e10 −1.95026
\(611\) −3.09929e9 + 5.36813e9i −0.549691 + 0.952092i
\(612\) 0 0
\(613\) 1.60514e9 + 2.78018e9i 0.281450 + 0.487486i 0.971742 0.236045i \(-0.0758513\pi\)
−0.690292 + 0.723531i \(0.742518\pi\)
\(614\) −5.39585e9 + 9.34589e9i −0.940742 + 1.62941i
\(615\) 0 0
\(616\) −3.07871e8 + 9.72793e8i −0.0530684 + 0.167683i
\(617\) −2.94679e9 −0.505070 −0.252535 0.967588i \(-0.581264\pi\)
−0.252535 + 0.967588i \(0.581264\pi\)
\(618\) 0 0
\(619\) −3.20494e9 5.55111e9i −0.543128 0.940725i −0.998722 0.0505376i \(-0.983907\pi\)
0.455594 0.890188i \(-0.349427\pi\)
\(620\) 7.57612e8 + 1.31222e9i 0.127666 + 0.221124i
\(621\) 0 0
\(622\) −5.91055e9 −0.984831
\(623\) −1.94833e9 + 4.29738e8i −0.322816 + 0.0712025i
\(624\) 0 0
\(625\) 6.32055e8 1.09475e9i 0.103556 0.179364i
\(626\) 3.43702e8 + 5.95309e8i 0.0559978 + 0.0969911i
\(627\) 0 0
\(628\) 4.35887e9 7.54979e9i 0.702288 1.21640i
\(629\) 5.25710e8 0.0842304
\(630\) 0 0
\(631\) −1.37351e9 −0.217636 −0.108818 0.994062i \(-0.534707\pi\)
−0.108818 + 0.994062i \(0.534707\pi\)
\(632\) −5.16433e9 + 8.94489e9i −0.813776 + 1.40950i
\(633\) 0 0
\(634\) 1.13822e10 + 1.97146e10i 1.77384 + 3.07238i
\(635\) 2.71746e9 4.70677e9i 0.421167 0.729483i
\(636\) 0 0
\(637\) 7.27392e8 8.11315e9i 0.111501 1.24366i
\(638\) 3.24168e8 0.0494194
\(639\) 0 0
\(640\) −4.33293e8 7.50485e8i −0.0653358 0.113165i
\(641\) −2.39553e9 4.14917e9i −0.359251 0.622241i 0.628585 0.777741i \(-0.283634\pi\)
−0.987836 + 0.155500i \(0.950301\pi\)
\(642\) 0 0
\(643\) −9.77303e9 −1.44974 −0.724871 0.688884i \(-0.758101\pi\)
−0.724871 + 0.688884i \(0.758101\pi\)
\(644\) 8.36993e9 + 9.15391e9i 1.23487 + 1.35054i
\(645\) 0 0
\(646\) 1.46066e8 2.52993e8i 0.0213174 0.0369228i
\(647\) 5.49025e9 + 9.50939e9i 0.796943 + 1.38035i 0.921598 + 0.388145i \(0.126884\pi\)
−0.124656 + 0.992200i \(0.539783\pi\)
\(648\) 0 0
\(649\) −3.22194e8 + 5.58056e8i −0.0462659 + 0.0801349i
\(650\) 8.38722e9 1.19790
\(651\) 0 0
\(652\) 9.86326e9 1.39365
\(653\) 2.11369e9 3.66101e9i 0.297060 0.514523i −0.678402 0.734691i \(-0.737327\pi\)
0.975462 + 0.220168i \(0.0706605\pi\)
\(654\) 0 0
\(655\) 1.85565e9 + 3.21408e9i 0.258019 + 0.446902i
\(656\) 1.49199e10 2.58420e10i 2.06348 3.57406i
\(657\) 0 0
\(658\) −3.57338e9 + 1.12910e10i −0.488978 + 1.54504i
\(659\) −1.09220e9 −0.148663 −0.0743314 0.997234i \(-0.523682\pi\)
−0.0743314 + 0.997234i \(0.523682\pi\)
\(660\) 0 0
\(661\) 5.74047e9 + 9.94278e9i 0.773111 + 1.33907i 0.935850 + 0.352399i \(0.114634\pi\)
−0.162738 + 0.986669i \(0.552033\pi\)
\(662\) 3.35177e9 + 5.80543e9i 0.449026 + 0.777735i
\(663\) 0 0
\(664\) −1.99385e9 −0.264305
\(665\) −5.95069e7 + 1.88027e8i −0.00784678 + 0.0247938i
\(666\) 0 0
\(667\) 1.14518e9 1.98351e9i 0.149428 0.258817i
\(668\) 2.87438e9 + 4.97857e9i 0.373101 + 0.646230i
\(669\) 0 0
\(670\) 7.59987e9 1.31634e10i 0.976213 1.69085i
\(671\) −8.25110e8 −0.105435
\(672\) 0 0
\(673\) 7.00125e9 0.885366 0.442683 0.896678i \(-0.354027\pi\)
0.442683 + 0.896678i \(0.354027\pi\)
\(674\) −1.36405e10 + 2.36260e10i −1.71601 + 2.97222i
\(675\) 0 0
\(676\) −5.36159e9 9.28655e9i −0.667545 1.15622i
\(677\) 6.16353e9 1.06756e10i 0.763430 1.32230i −0.177642 0.984095i \(-0.556847\pi\)
0.941072 0.338205i \(-0.109820\pi\)
\(678\) 0 0
\(679\) −7.15244e9 7.82239e9i −0.876819 0.958948i
\(680\) 8.93196e9 1.08935
\(681\) 0 0
\(682\) 8.11203e7 + 1.40504e8i 0.00979229 + 0.0169607i
\(683\) −6.31879e9 1.09445e10i −0.758860 1.31438i −0.943432 0.331565i \(-0.892423\pi\)
0.184572 0.982819i \(-0.440910\pi\)
\(684\) 0 0
\(685\) 3.32831e9 0.395647
\(686\) −1.98161e9 1.54364e10i −0.234360 1.82562i
\(687\) 0 0
\(688\) 1.19370e10 2.06754e10i 1.39744 2.42044i
\(689\) 2.65382e9 + 4.59655e9i 0.309104 + 0.535383i
\(690\) 0 0
\(691\) 2.44577e8 4.23619e8i 0.0281995 0.0488430i −0.851581 0.524223i \(-0.824356\pi\)
0.879781 + 0.475380i \(0.157689\pi\)
\(692\) −2.85610e10 −3.27644
\(693\) 0 0
\(694\) −3.47100e9 −0.394182
\(695\) 4.03676e9 6.99187e9i 0.456127 0.790035i
\(696\) 0 0
\(697\) −4.91328e9 8.51006e9i −0.549613 0.951958i
\(698\) −7.78227e9 + 1.34793e10i −0.866188 + 1.50028i
\(699\) 0 0
\(700\) 1.10294e10 2.43272e9i 1.21537 0.268070i
\(701\) 1.30414e9 0.142992 0.0714959 0.997441i \(-0.477223\pi\)
0.0714959 + 0.997441i \(0.477223\pi\)
\(702\) 0 0
\(703\) 2.36584e7 + 4.09775e7i 0.00256828 + 0.00444838i
\(704\) 2.62447e8 + 4.54571e8i 0.0283489 + 0.0491018i
\(705\) 0 0
\(706\) −1.28674e10 −1.37618
\(707\) −3.17295e9 + 1.00257e10i −0.337672 + 1.06696i
\(708\) 0 0
\(709\) −4.42227e9 + 7.65959e9i −0.465997 + 0.807131i −0.999246 0.0388278i \(-0.987638\pi\)
0.533249 + 0.845958i \(0.320971\pi\)
\(710\) −8.69214e9 1.50552e10i −0.911428 1.57864i
\(711\) 0 0
\(712\) −4.06647e9 + 7.04333e9i −0.422218 + 0.731304i
\(713\) 1.14628e9 0.118435
\(714\) 0 0
\(715\) −5.81432e8 −0.0594878
\(716\) 1.34966e10 2.33768e10i 1.37413 2.38006i
\(717\) 0 0
\(718\) −1.05856e10 1.83349e10i −1.06729 1.84860i
\(719\) −7.53570e9 + 1.30522e10i −0.756088 + 1.30958i 0.188743 + 0.982026i \(0.439559\pi\)
−0.944832 + 0.327557i \(0.893775\pi\)
\(720\) 0 0
\(721\) −7.44462e9 + 1.64204e9i −0.739723 + 0.163158i
\(722\) −1.85878e10 −1.83801
\(723\) 0 0
\(724\) 1.66973e9 + 2.89205e9i 0.163516 + 0.283218i
\(725\) −1.04278e9 1.80614e9i −0.101627 0.176023i
\(726\) 0 0
\(727\) −4.87633e9 −0.470677 −0.235338 0.971914i \(-0.575620\pi\)
−0.235338 + 0.971914i \(0.575620\pi\)
\(728\) −2.24063e10 2.45050e10i −2.15234 2.35394i
\(729\) 0 0
\(730\) −1.42982e9 + 2.47651e9i −0.136035 + 0.235619i
\(731\) −3.93098e9 6.80866e9i −0.372212 0.644689i
\(732\) 0 0
\(733\) −2.55573e9 + 4.42665e9i −0.239691 + 0.415156i −0.960625 0.277847i \(-0.910379\pi\)
0.720935 + 0.693003i \(0.243713\pi\)
\(734\) 3.07571e10 2.87084
\(735\) 0 0
\(736\) 1.41293e10 1.30632
\(737\) 5.73549e8 9.93416e8i 0.0527757 0.0914103i
\(738\) 0 0
\(739\) 5.73949e9 + 9.94109e9i 0.523140 + 0.906105i 0.999637 + 0.0269293i \(0.00857290\pi\)
−0.476497 + 0.879176i \(0.658094\pi\)
\(740\) −1.24458e9 + 2.15567e9i −0.112904 + 0.195556i
\(741\) 0 0
\(742\) 6.84292e9 + 7.48388e9i 0.614933 + 0.672532i
\(743\) 3.64003e9 0.325570 0.162785 0.986662i \(-0.447952\pi\)
0.162785 + 0.986662i \(0.447952\pi\)
\(744\) 0 0
\(745\) −3.86591e8 6.69596e8i −0.0342535 0.0593289i
\(746\) 1.69918e10 + 2.94307e10i 1.49849 + 2.59546i
\(747\) 0 0
\(748\) 1.15979e9 0.101326
\(749\) 2.57189e9 5.67274e8i 0.223649 0.0493295i
\(750\) 0 0
\(751\) 1.86199e9 3.22506e9i 0.160412 0.277842i −0.774604 0.632446i \(-0.782051\pi\)
0.935017 + 0.354604i \(0.115384\pi\)
\(752\) 1.18791e10 + 2.05753e10i 1.01865 + 1.76435i
\(753\) 0 0
\(754\) −5.27459e9 + 9.13585e9i −0.448114 + 0.776156i
\(755\) −1.10803e10 −0.936998
\(756\) 0 0
\(757\) −1.47428e10 −1.23522 −0.617611 0.786484i \(-0.711899\pi\)
−0.617611 + 0.786484i \(0.711899\pi\)
\(758\) 3.55458e9 6.15672e9i 0.296447 0.513460i
\(759\) 0 0
\(760\) 4.01963e8 + 6.96220e8i 0.0332153 + 0.0575306i
\(761\) −3.67298e9 + 6.36179e9i −0.302115 + 0.523278i −0.976615 0.214997i \(-0.931026\pi\)
0.674500 + 0.738275i \(0.264359\pi\)
\(762\) 0 0
\(763\) −5.43795e9 + 1.71825e10i −0.443199 + 1.40040i
\(764\) 3.20793e10 2.60255
\(765\) 0 0
\(766\) −3.86381e9 6.69231e9i −0.310610 0.537992i
\(767\) −1.04849e10 1.81604e10i −0.839039 1.45326i
\(768\) 0 0
\(769\) 9.27906e9 0.735803 0.367902 0.929865i \(-0.380076\pi\)
0.367902 + 0.929865i \(0.380076\pi\)
\(770\) −1.08480e9 + 2.39271e8i −0.0856314 + 0.0188874i
\(771\) 0 0
\(772\) −2.42315e9 + 4.19702e9i −0.189548 + 0.328307i
\(773\) 4.84009e9 + 8.38329e9i 0.376900 + 0.652809i 0.990609 0.136722i \(-0.0436569\pi\)
−0.613710 + 0.789532i \(0.710324\pi\)
\(774\) 0 0
\(775\) 5.21892e8 9.03943e8i 0.0402740 0.0697566i
\(776\) −4.32066e10 −3.31920
\(777\) 0 0
\(778\) 1.97625e10 1.50457
\(779\) 4.42222e8 7.65952e8i 0.0335166 0.0580524i
\(780\) 0 0
\(781\) −6.55980e8 1.13619e9i −0.0492734 0.0853440i
\(782\) 5.81299e9 1.00684e10i 0.434686 0.752899i
\(783\) 0 0
\(784\) −2.55364e10 1.79628e10i −1.89258 1.33127i
\(785\) 5.51638e9 0.407015
\(786\) 0 0
\(787\) −8.05129e8 1.39453e9i −0.0588781 0.101980i 0.835084 0.550123i \(-0.185419\pi\)
−0.893962 + 0.448143i \(0.852086\pi\)
\(788\) 7.63807e8 + 1.32295e9i 0.0556086 + 0.0963169i
\(789\) 0 0
\(790\) −1.12451e10 −0.811460
\(791\) −4.45372e9 4.87088e9i −0.319967 0.349937i
\(792\) 0 0
\(793\) 1.34255e10 2.32536e10i 0.956036 1.65590i
\(794\) −7.95254e9 1.37742e10i −0.563812 0.976551i
\(795\) 0 0
\(796\) −8.40924e9 + 1.45652e10i −0.590964 + 1.02358i
\(797\) −1.04405e10 −0.730497 −0.365249 0.930910i \(-0.619016\pi\)
−0.365249 + 0.930910i \(0.619016\pi\)
\(798\) 0 0
\(799\) 7.82388e9 0.542636
\(800\) 6.43295e9 1.11422e10i 0.444217 0.769406i
\(801\) 0 0
\(802\) 9.58792e9 + 1.66068e10i 0.656318 + 1.13678i
\(803\) −1.07906e8 + 1.86898e8i −0.00735427 + 0.0127380i
\(804\) 0 0
\(805\) −2.36820e9 + 7.48291e9i −0.160005 + 0.505574i
\(806\) −5.27968e9 −0.355169
\(807\) 0 0
\(808\) 2.14330e10 + 3.71230e10i 1.42936 + 2.47573i
\(809\) 9.81852e9 + 1.70062e10i 0.651968 + 1.12924i 0.982645 + 0.185497i \(0.0593896\pi\)
−0.330677 + 0.943744i \(0.607277\pi\)
\(810\) 0 0
\(811\) −2.66078e10 −1.75161 −0.875803 0.482669i \(-0.839668\pi\)
−0.875803 + 0.482669i \(0.839668\pi\)
\(812\) −4.28634e9 + 1.35438e10i −0.280958 + 0.887755i
\(813\) 0 0
\(814\) −1.33261e8 + 2.30815e8i −0.00866001 + 0.0149996i
\(815\) 3.12062e9 + 5.40507e9i 0.201925 + 0.349744i
\(816\) 0 0
\(817\) 3.53810e8 6.12816e8i 0.0226983 0.0393145i
\(818\) −1.68535e10 −1.07660
\(819\) 0 0
\(820\) 4.65272e10 2.94685
\(821\) −3.57247e9 + 6.18771e9i −0.225304 + 0.390237i −0.956410 0.292026i \(-0.905671\pi\)
0.731107 + 0.682263i \(0.239004\pi\)
\(822\) 0 0
\(823\) −4.17193e9 7.22600e9i −0.260878 0.451855i 0.705597 0.708613i \(-0.250679\pi\)
−0.966476 + 0.256759i \(0.917345\pi\)
\(824\) −1.55381e10 + 2.69127e10i −0.967501 + 1.67576i
\(825\) 0 0
\(826\) −2.70356e10 2.95679e10i −1.66919 1.82554i
\(827\) 2.92874e10 1.80058 0.900288 0.435295i \(-0.143356\pi\)
0.900288 + 0.435295i \(0.143356\pi\)
\(828\) 0 0
\(829\) 4.01367e9 + 6.95188e9i 0.244681 + 0.423800i 0.962042 0.272902i \(-0.0879834\pi\)
−0.717361 + 0.696702i \(0.754650\pi\)
\(830\) −1.08538e9 1.87993e9i −0.0658881 0.114122i
\(831\) 0 0
\(832\) −1.70812e10 −1.02822
\(833\) −9.32756e9 + 4.32512e9i −0.559127 + 0.259263i
\(834\) 0 0
\(835\) −1.81884e9 + 3.15032e9i −0.108116 + 0.187263i
\(836\) 5.21936e7 + 9.04020e7i 0.00308955 + 0.00535126i
\(837\) 0 0
\(838\) 2.43355e10 4.21504e10i 1.42852 2.47427i
\(839\) −5.19771e9 −0.303840 −0.151920 0.988393i \(-0.548546\pi\)
−0.151920 + 0.988393i \(0.548546\pi\)
\(840\) 0 0
\(841\) −1.46267e10 −0.847933
\(842\) −7.13427e9 + 1.23569e10i −0.411867 + 0.713375i
\(843\) 0 0
\(844\) 8.48462e9 + 1.46958e10i 0.485774 + 0.841384i
\(845\) 3.39269e9 5.87631e9i 0.193440 0.335047i
\(846\) 0 0
\(847\) 1.71875e10 3.79100e9i 0.971899 0.214369i
\(848\) 2.03434e10 1.14562
\(849\) 0 0
\(850\) −5.29319e9 9.16808e9i −0.295632 0.512050i
\(851\) 9.41535e8 + 1.63079e9i 0.0523701 + 0.0907076i
\(852\) 0 0
\(853\) 5.41443e9 0.298697 0.149349 0.988785i \(-0.452282\pi\)
0.149349 + 0.988785i \(0.452282\pi\)
\(854\) 1.54792e10 4.89102e10i 0.850442 2.68718i
\(855\) 0 0
\(856\) 5.36793e9 9.29752e9i 0.292515 0.506651i
\(857\) 9.54181e9 + 1.65269e10i 0.517843 + 0.896930i 0.999785 + 0.0207269i \(0.00659804\pi\)
−0.481943 + 0.876203i \(0.660069\pi\)
\(858\) 0 0
\(859\) 1.59722e10 2.76646e10i 0.859781 1.48918i −0.0123568 0.999924i \(-0.503933\pi\)
0.872138 0.489261i \(-0.162733\pi\)
\(860\) 3.72251e10 1.99568
\(861\) 0 0
\(862\) −3.32225e10 −1.76667
\(863\) 5.60085e9 9.70096e9i 0.296631 0.513780i −0.678732 0.734386i \(-0.737470\pi\)
0.975363 + 0.220606i \(0.0708036\pi\)
\(864\) 0 0
\(865\) −9.03635e9 1.56514e10i −0.474719 0.822238i
\(866\) 3.33875e10 5.78289e10i 1.74692 3.02575i
\(867\) 0 0
\(868\) −6.94291e9 + 1.53138e9i −0.360348 + 0.0794809i
\(869\) −8.48645e8 −0.0438689
\(870\) 0 0
\(871\) 1.86646e10 + 3.23281e10i 0.957096 + 1.65774i
\(872\) 3.67328e10 + 6.36230e10i 1.87606 + 3.24943i
\(873\) 0 0
\(874\) 1.04640e9 0.0530162
\(875\) 1.40754e10 + 1.53938e10i 0.710286 + 0.776817i
\(876\) 0 0
\(877\) −1.36545e9 + 2.36504e9i −0.0683563 + 0.118397i −0.898178 0.439632i \(-0.855109\pi\)
0.829822 + 0.558029i \(0.188442\pi\)
\(878\) −1.94050e10 3.36105e10i −0.967572 1.67588i
\(879\) 0 0
\(880\) −1.11427e9 + 1.92998e9i −0.0551191 + 0.0954691i
\(881\) −2.77466e10 −1.36708 −0.683539 0.729914i \(-0.739560\pi\)
−0.683539 + 0.729914i \(0.739560\pi\)
\(882\) 0 0
\(883\) 1.21160e10 0.592240 0.296120 0.955151i \(-0.404307\pi\)
0.296120 + 0.955151i \(0.404307\pi\)
\(884\) −1.88711e10 + 3.26857e10i −0.918785 + 1.59138i
\(885\) 0 0
\(886\) 8.31156e9 + 1.43960e10i 0.401480 + 0.695384i
\(887\) 3.28535e9 5.69039e9i 0.158070 0.273785i −0.776103 0.630606i \(-0.782806\pi\)
0.934173 + 0.356822i \(0.116140\pi\)
\(888\) 0 0
\(889\) 1.72086e10 + 1.88205e10i 0.821466 + 0.898410i
\(890\) −8.85451e9 −0.421017
\(891\) 0 0
\(892\) 5.07077e9 + 8.78284e9i 0.239220 + 0.414341i
\(893\) 3.52096e8 + 6.09849e8i 0.0165456 + 0.0286577i
\(894\) 0 0
\(895\) 1.70806e10 0.796385
\(896\) 3.97078e9 8.75823e8i 0.184416 0.0406760i
\(897\) 0 0
\(898\) −5.20212e9 + 9.01034e9i −0.239725 + 0.415216i
\(899\) 6.56419e8 + 1.13695e9i 0.0301316 + 0.0521894i
\(900\) 0 0
\(901\) 3.34966e9 5.80179e9i 0.152568 0.264256i
\(902\) 4.98183e9 0.226030
\(903\) 0 0
\(904\) −2.69041e10 −1.21124
\(905\) −1.05656e9 + 1.83002e9i −0.0473833 + 0.0820703i
\(906\) 0 0
\(907\) −1.21871e9 2.11087e9i −0.0542344 0.0939367i 0.837634 0.546232i \(-0.183938\pi\)
−0.891868 + 0.452296i \(0.850605\pi\)
\(908\) −1.49179e9 + 2.58386e9i −0.0661315 + 0.114543i
\(909\) 0 0
\(910\) 1.09077e10 3.44656e10i 0.479832 1.51615i
\(911\) −2.15307e10 −0.943502 −0.471751 0.881732i \(-0.656378\pi\)
−0.471751 + 0.881732i \(0.656378\pi\)
\(912\) 0 0
\(913\) −8.19115e7 1.41875e8i −0.00356203 0.00616961i
\(914\) −2.78430e10 4.82254e10i −1.20616 2.08913i
\(915\) 0 0
\(916\) −4.19071e9 −0.180158
\(917\) −1.70055e10 + 3.75086e9i −0.728279 + 0.160634i
\(918\) 0 0
\(919\) −1.64198e10 + 2.84400e10i −0.697853 + 1.20872i 0.271356 + 0.962479i \(0.412528\pi\)
−0.969209 + 0.246238i \(0.920806\pi\)
\(920\) 1.59970e10 + 2.77075e10i 0.677298 + 1.17311i
\(921\) 0 0
\(922\) −2.78034e10 + 4.81570e10i −1.16826 + 2.02349i
\(923\) 4.26943e10 1.78716
\(924\) 0 0
\(925\) 1.71469e9 0.0712342
\(926\) −1.79446e10 + 3.10810e10i −0.742669 + 1.28634i
\(927\) 0 0
\(928\) 8.09116e9 + 1.40143e10i 0.332348 + 0.575643i
\(929\) 6.42189e9 1.11230e10i 0.262789 0.455164i −0.704193 0.710009i \(-0.748691\pi\)
0.966982 + 0.254844i \(0.0820242\pi\)
\(930\) 0 0
\(931\) −7.56896e8 5.32413e8i −0.0307406 0.0216235i
\(932\) −7.01547e10 −2.83858
\(933\) 0 0
\(934\) −2.94356e10 5.09840e10i −1.18211 2.04748i
\(935\) 3.66943e8 + 6.35564e8i 0.0146811 + 0.0254284i
\(936\) 0 0
\(937\) −2.05391e10 −0.815628 −0.407814 0.913065i \(-0.633709\pi\)
−0.407814 + 0.913065i \(0.633709\pi\)
\(938\) 4.81271e10 + 5.26350e10i 1.90405 + 2.08240i
\(939\) 0 0
\(940\) −1.85224e10 + 3.20818e10i −0.727361 + 1.25983i
\(941\) 8.06628e9 + 1.39712e10i 0.315580 + 0.546601i 0.979561 0.201149i \(-0.0644676\pi\)
−0.663981 + 0.747750i \(0.731134\pi\)
\(942\) 0 0
\(943\) 1.75992e10 3.04827e10i 0.683441 1.18376i
\(944\) −8.03746e10 −3.10969
\(945\) 0 0
\(946\) 3.98583e9 0.153073
\(947\) 1.63336e9 2.82905e9i 0.0624965 0.108247i −0.833084 0.553146i \(-0.813427\pi\)
0.895581 + 0.444899i \(0.146760\pi\)
\(948\) 0 0
\(949\) −3.51150e9 6.08210e9i −0.133371 0.231005i
\(950\) 4.76416e8 8.25177e8i 0.0180283 0.0312259i
\(951\) 0 0
\(952\) −1.26458e10 + 3.99575e10i −0.475026 + 1.50096i
\(953\) −2.56668e10 −0.960609 −0.480304 0.877102i \(-0.659474\pi\)
−0.480304 + 0.877102i \(0.659474\pi\)
\(954\) 0 0
\(955\) 1.01495e10 + 1.75795e10i 0.377080 + 0.653122i
\(956\) −1.80543e10 3.12710e10i −0.668311 1.15755i
\(957\) 0 0
\(958\) 6.44341e10 2.36775
\(959\) −4.71220e9 + 1.48894e10i −0.172528 + 0.545144i
\(960\) 0 0
\(961\) 1.34278e10 2.32576e10i 0.488059 0.845343i
\(962\) −4.33663e9 7.51126e9i −0.157051 0.272020i
\(963\) 0 0
\(964\) −3.38856e10 + 5.86915e10i −1.21827 + 2.11011i
\(965\) −3.06662e9 −0.109854
\(966\) 0 0
\(967\) −4.14546e10 −1.47428 −0.737141 0.675739i \(-0.763825\pi\)
−0.737141 + 0.675739i \(0.763825\pi\)
\(968\) 3.58729e10 6.21337e10i 1.27117 2.20173i
\(969\) 0 0
\(970\) −2.35200e10 4.07378e10i −0.827439 1.43317i
\(971\) 7.03038e9 1.21770e10i 0.246440 0.426847i −0.716095 0.698003i \(-0.754072\pi\)
0.962536 + 0.271155i \(0.0874057\pi\)
\(972\) 0 0
\(973\) 2.55632e10 + 2.79576e10i 0.889653 + 0.972984i
\(974\) −8.81046e9 −0.305522
\(975\) 0 0
\(976\) −5.14580e10 8.91279e10i −1.77165 3.06859i
\(977\) −1.22458e10 2.12104e10i −0.420104 0.727642i 0.575845 0.817559i \(-0.304673\pi\)
−0.995949 + 0.0899169i \(0.971340\pi\)
\(978\) 0 0
\(979\) −6.68234e8 −0.0227609
\(980\) 4.34714e9 4.84869e10i 0.147541 1.64563i
\(981\) 0 0
\(982\) −1.02656e10 + 1.77805e10i −0.345934 + 0.599176i
\(983\) 2.87162e10 + 4.97379e10i 0.964249 + 1.67013i 0.711619 + 0.702566i \(0.247962\pi\)
0.252630 + 0.967563i \(0.418704\pi\)
\(984\) 0 0
\(985\) −4.83319e8 + 8.37133e8i −0.0161141 + 0.0279105i
\(986\) 1.33152e10 0.442363
\(987\) 0 0
\(988\) −3.39700e9 −0.112059
\(989\) 1.40806e10 2.43883e10i 0.462843 0.801668i
\(990\) 0 0
\(991\) 1.22798e10 + 2.12693e10i 0.400806 + 0.694217i 0.993823 0.110973i \(-0.0353967\pi\)
−0.593017 + 0.805190i \(0.702063\pi\)
\(992\) −4.04949e9 + 7.01392e9i −0.131707 + 0.228123i
\(993\) 0 0
\(994\) 7.96565e10 1.75696e10i 2.57258 0.567426i
\(995\) −1.06423e10 −0.342497
\(996\) 0 0
\(997\) 8.29325e9 + 1.43643e10i 0.265028 + 0.459042i 0.967571 0.252599i \(-0.0812855\pi\)
−0.702543 + 0.711641i \(0.747952\pi\)
\(998\) 5.46360e9 + 9.46324e9i 0.173989 + 0.301358i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.8.e.b.37.1 8
3.2 odd 2 7.8.c.a.2.4 8
7.2 even 3 441.8.a.s.1.4 4
7.4 even 3 inner 63.8.e.b.46.1 8
7.5 odd 6 441.8.a.t.1.4 4
12.11 even 2 112.8.i.c.65.1 8
21.2 odd 6 49.8.a.f.1.1 4
21.5 even 6 49.8.a.e.1.1 4
21.11 odd 6 7.8.c.a.4.4 yes 8
21.17 even 6 49.8.c.g.18.4 8
21.20 even 2 49.8.c.g.30.4 8
84.11 even 6 112.8.i.c.81.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.8.c.a.2.4 8 3.2 odd 2
7.8.c.a.4.4 yes 8 21.11 odd 6
49.8.a.e.1.1 4 21.5 even 6
49.8.a.f.1.1 4 21.2 odd 6
49.8.c.g.18.4 8 21.17 even 6
49.8.c.g.30.4 8 21.20 even 2
63.8.e.b.37.1 8 1.1 even 1 trivial
63.8.e.b.46.1 8 7.4 even 3 inner
112.8.i.c.65.1 8 12.11 even 2
112.8.i.c.81.1 8 84.11 even 6
441.8.a.s.1.4 4 7.2 even 3
441.8.a.t.1.4 4 7.5 odd 6