Properties

Label 63.4.i.a.5.5
Level $63$
Weight $4$
Character 63.5
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,4,Mod(5,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.5"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 5.5
Character \(\chi\) \(=\) 63.5
Dual form 63.4.i.a.38.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.72062i q^{2} +(3.26996 + 4.03824i) q^{3} -5.84303 q^{4} +(6.83336 + 11.8357i) q^{5} +(15.0248 - 12.1663i) q^{6} +(18.4941 - 0.984293i) q^{7} -8.02526i q^{8} +(-5.61469 + 26.4098i) q^{9} +(44.0363 - 25.4243i) q^{10} +(-21.3043 - 12.3000i) q^{11} +(-19.1065 - 23.5955i) q^{12} +(2.03747 + 1.17634i) q^{13} +(-3.66218 - 68.8095i) q^{14} +(-25.4506 + 66.2971i) q^{15} -76.6032 q^{16} +(-63.8439 - 110.581i) q^{17} +(98.2607 + 20.8902i) q^{18} +(87.2223 + 50.3578i) q^{19} +(-39.9275 - 69.1565i) q^{20} +(64.4498 + 71.4649i) q^{21} +(-45.7638 + 79.2652i) q^{22} +(42.0276 - 24.2647i) q^{23} +(32.4079 - 26.2423i) q^{24} +(-30.8895 + 53.5022i) q^{25} +(4.37670 - 7.58067i) q^{26} +(-125.009 + 63.6854i) q^{27} +(-108.062 + 5.75126i) q^{28} +(-171.644 + 99.0987i) q^{29} +(246.666 + 94.6921i) q^{30} +42.9953i q^{31} +220.810i q^{32} +(-19.9938 - 126.252i) q^{33} +(-411.430 + 237.539i) q^{34} +(138.026 + 212.165i) q^{35} +(32.8068 - 154.313i) q^{36} +(-42.0011 + 72.7481i) q^{37} +(187.363 - 324.521i) q^{38} +(1.91214 + 12.0744i) q^{39} +(94.9848 - 54.8395i) q^{40} +(92.8172 - 160.764i) q^{41} +(265.894 - 239.793i) q^{42} +(-185.452 - 321.213i) q^{43} +(124.482 + 71.8695i) q^{44} +(-350.946 + 114.013i) q^{45} +(-90.2797 - 156.369i) q^{46} -504.729 q^{47} +(-250.490 - 309.342i) q^{48} +(341.062 - 36.4072i) q^{49} +(199.062 + 114.928i) q^{50} +(237.785 - 619.412i) q^{51} +(-11.9050 - 6.87337i) q^{52} +(372.688 - 215.171i) q^{53} +(236.950 + 465.110i) q^{54} -336.202i q^{55} +(-7.89921 - 148.420i) q^{56} +(81.8569 + 516.893i) q^{57} +(368.709 + 638.622i) q^{58} -312.164 q^{59} +(148.709 - 387.376i) q^{60} +548.565i q^{61} +159.969 q^{62} +(-77.8437 + 493.951i) q^{63} +208.723 q^{64} +32.1533i q^{65} +(-469.737 + 74.3893i) q^{66} -651.533 q^{67} +(373.042 + 646.128i) q^{68} +(235.415 + 90.3730i) q^{69} +(789.385 - 513.545i) q^{70} +18.9019i q^{71} +(211.945 + 45.0594i) q^{72} +(525.319 - 303.293i) q^{73} +(270.668 + 156.270i) q^{74} +(-317.062 + 50.2111i) q^{75} +(-509.643 - 294.243i) q^{76} +(-406.110 - 206.508i) q^{77} +(44.9242 - 7.11436i) q^{78} +435.435 q^{79} +(-523.457 - 906.654i) q^{80} +(-665.950 - 296.565i) q^{81} +(-598.142 - 345.338i) q^{82} +(424.248 + 734.819i) q^{83} +(-376.582 - 417.572i) q^{84} +(872.537 - 1511.28i) q^{85} +(-1195.11 + 689.998i) q^{86} +(-961.453 - 369.090i) q^{87} +(-98.7110 + 170.972i) q^{88} +(-147.005 + 254.620i) q^{89} +(424.201 + 1305.74i) q^{90} +(38.8391 + 19.7498i) q^{91} +(-245.569 + 141.779i) q^{92} +(-173.625 + 140.593i) q^{93} +1877.91i q^{94} +1376.45i q^{95} +(-891.681 + 722.039i) q^{96} +(900.965 - 520.172i) q^{97} +(-135.457 - 1268.96i) q^{98} +(444.458 - 493.580i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 3 q^{3} - 162 q^{4} - 3 q^{5} + 24 q^{6} + 5 q^{7} - 45 q^{9} - 6 q^{10} + 9 q^{11} + 186 q^{12} - 36 q^{13} + 54 q^{14} - 141 q^{15} + 526 q^{16} - 72 q^{17} - 54 q^{18} - 6 q^{19} + 24 q^{20} - 81 q^{21}+ \cdots + 4335 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.72062i 1.31544i −0.753263 0.657719i \(-0.771521\pi\)
0.753263 0.657719i \(-0.228479\pi\)
\(3\) 3.26996 + 4.03824i 0.629305 + 0.777159i
\(4\) −5.84303 −0.730379
\(5\) 6.83336 + 11.8357i 0.611194 + 1.05862i 0.991039 + 0.133569i \(0.0426438\pi\)
−0.379845 + 0.925050i \(0.624023\pi\)
\(6\) 15.0248 12.1663i 1.02230 0.827812i
\(7\) 18.4941 0.984293i 0.998587 0.0531468i
\(8\) 8.02526i 0.354670i
\(9\) −5.61469 + 26.4098i −0.207952 + 0.978139i
\(10\) 44.0363 25.4243i 1.39255 0.803988i
\(11\) −21.3043 12.3000i −0.583953 0.337145i 0.178750 0.983895i \(-0.442795\pi\)
−0.762703 + 0.646749i \(0.776128\pi\)
\(12\) −19.1065 23.5955i −0.459631 0.567621i
\(13\) 2.03747 + 1.17634i 0.0434688 + 0.0250967i 0.521577 0.853204i \(-0.325344\pi\)
−0.478108 + 0.878301i \(0.658677\pi\)
\(14\) −3.66218 68.8095i −0.0699114 1.31358i
\(15\) −25.4506 + 66.2971i −0.438088 + 1.14119i
\(16\) −76.6032 −1.19693
\(17\) −63.8439 110.581i −0.910848 1.57764i −0.812868 0.582447i \(-0.802095\pi\)
−0.0979801 0.995188i \(-0.531238\pi\)
\(18\) 98.2607 + 20.8902i 1.28668 + 0.273548i
\(19\) 87.2223 + 50.3578i 1.05317 + 0.608046i 0.923534 0.383516i \(-0.125287\pi\)
0.129633 + 0.991562i \(0.458620\pi\)
\(20\) −39.9275 69.1565i −0.446403 0.773193i
\(21\) 64.4498 + 71.4649i 0.669719 + 0.742615i
\(22\) −45.7638 + 79.2652i −0.443494 + 0.768154i
\(23\) 42.0276 24.2647i 0.381016 0.219980i −0.297244 0.954801i \(-0.596068\pi\)
0.678260 + 0.734822i \(0.262734\pi\)
\(24\) 32.4079 26.2423i 0.275635 0.223195i
\(25\) −30.8895 + 53.5022i −0.247116 + 0.428018i
\(26\) 4.37670 7.58067i 0.0330132 0.0571805i
\(27\) −125.009 + 63.6854i −0.891034 + 0.453936i
\(28\) −108.062 + 5.75126i −0.729347 + 0.0388173i
\(29\) −171.644 + 99.0987i −1.09909 + 0.634557i −0.935981 0.352051i \(-0.885484\pi\)
−0.163105 + 0.986609i \(0.552151\pi\)
\(30\) 246.666 + 94.6921i 1.50116 + 0.576278i
\(31\) 42.9953i 0.249103i 0.992213 + 0.124551i \(0.0397492\pi\)
−0.992213 + 0.124551i \(0.960251\pi\)
\(32\) 220.810i 1.21981i
\(33\) −19.9938 126.252i −0.105469 0.665991i
\(34\) −411.430 + 237.539i −2.07528 + 1.19817i
\(35\) 138.026 + 212.165i 0.666592 + 1.02464i
\(36\) 32.8068 154.313i 0.151884 0.714412i
\(37\) −42.0011 + 72.7481i −0.186620 + 0.323235i −0.944121 0.329598i \(-0.893087\pi\)
0.757501 + 0.652834i \(0.226420\pi\)
\(38\) 187.363 324.521i 0.799848 1.38538i
\(39\) 1.91214 + 12.0744i 0.00785097 + 0.0495756i
\(40\) 94.9848 54.8395i 0.375460 0.216772i
\(41\) 92.8172 160.764i 0.353551 0.612369i −0.633318 0.773892i \(-0.718307\pi\)
0.986869 + 0.161523i \(0.0516406\pi\)
\(42\) 265.894 239.793i 0.976864 0.880974i
\(43\) −185.452 321.213i −0.657702 1.13917i −0.981209 0.192948i \(-0.938195\pi\)
0.323507 0.946226i \(-0.395138\pi\)
\(44\) 124.482 + 71.8695i 0.426507 + 0.246244i
\(45\) −350.946 + 114.013i −1.16258 + 0.377691i
\(46\) −90.2797 156.369i −0.289370 0.501203i
\(47\) −504.729 −1.56643 −0.783215 0.621750i \(-0.786422\pi\)
−0.783215 + 0.621750i \(0.786422\pi\)
\(48\) −250.490 309.342i −0.753231 0.930201i
\(49\) 341.062 36.4072i 0.994351 0.106143i
\(50\) 199.062 + 114.928i 0.563031 + 0.325066i
\(51\) 237.785 619.412i 0.652873 1.70069i
\(52\) −11.9050 6.87337i −0.0317487 0.0183301i
\(53\) 372.688 215.171i 0.965898 0.557661i 0.0679145 0.997691i \(-0.478365\pi\)
0.897983 + 0.440030i \(0.145032\pi\)
\(54\) 236.950 + 465.110i 0.597125 + 1.17210i
\(55\) 336.202i 0.824245i
\(56\) −7.89921 148.420i −0.0188496 0.354169i
\(57\) 81.8569 + 516.893i 0.190214 + 1.20112i
\(58\) 368.709 + 638.622i 0.834721 + 1.44578i
\(59\) −312.164 −0.688819 −0.344410 0.938819i \(-0.611921\pi\)
−0.344410 + 0.938819i \(0.611921\pi\)
\(60\) 148.709 387.376i 0.319970 0.833500i
\(61\) 548.565i 1.15142i 0.817655 + 0.575709i \(0.195274\pi\)
−0.817655 + 0.575709i \(0.804726\pi\)
\(62\) 159.969 0.327679
\(63\) −77.8437 + 493.951i −0.155673 + 0.987809i
\(64\) 208.723 0.407663
\(65\) 32.1533i 0.0613558i
\(66\) −469.737 + 74.3893i −0.876071 + 0.138738i
\(67\) −651.533 −1.18802 −0.594010 0.804457i \(-0.702456\pi\)
−0.594010 + 0.804457i \(0.702456\pi\)
\(68\) 373.042 + 646.128i 0.665265 + 1.15227i
\(69\) 235.415 + 90.3730i 0.410734 + 0.157676i
\(70\) 789.385 513.545i 1.34785 0.876862i
\(71\) 18.9019i 0.0315950i 0.999875 + 0.0157975i \(0.00502871\pi\)
−0.999875 + 0.0157975i \(0.994971\pi\)
\(72\) 211.945 + 45.0594i 0.346916 + 0.0737542i
\(73\) 525.319 303.293i 0.842245 0.486271i −0.0157815 0.999875i \(-0.505024\pi\)
0.858027 + 0.513605i \(0.171690\pi\)
\(74\) 270.668 + 156.270i 0.425196 + 0.245487i
\(75\) −317.062 + 50.2111i −0.488149 + 0.0773050i
\(76\) −509.643 294.243i −0.769211 0.444104i
\(77\) −406.110 206.508i −0.601046 0.305634i
\(78\) 44.9242 7.11436i 0.0652137 0.0103275i
\(79\) 435.435 0.620130 0.310065 0.950715i \(-0.399649\pi\)
0.310065 + 0.950715i \(0.399649\pi\)
\(80\) −523.457 906.654i −0.731554 1.26709i
\(81\) −665.950 296.565i −0.913512 0.406811i
\(82\) −598.142 345.338i −0.805534 0.465075i
\(83\) 424.248 + 734.819i 0.561051 + 0.971769i 0.997405 + 0.0719942i \(0.0229363\pi\)
−0.436354 + 0.899775i \(0.643730\pi\)
\(84\) −376.582 417.572i −0.489149 0.542390i
\(85\) 872.537 1511.28i 1.11341 1.92848i
\(86\) −1195.11 + 689.998i −1.49851 + 0.865167i
\(87\) −961.453 369.090i −1.18481 0.454834i
\(88\) −98.7110 + 170.972i −0.119575 + 0.207110i
\(89\) −147.005 + 254.620i −0.175084 + 0.303254i −0.940190 0.340650i \(-0.889353\pi\)
0.765106 + 0.643904i \(0.222686\pi\)
\(90\) 424.201 + 1305.74i 0.496830 + 1.52930i
\(91\) 38.8391 + 19.7498i 0.0447411 + 0.0227510i
\(92\) −245.569 + 141.779i −0.278286 + 0.160669i
\(93\) −173.625 + 140.593i −0.193592 + 0.156761i
\(94\) 1877.91i 2.06054i
\(95\) 1376.45i 1.48654i
\(96\) −891.681 + 722.039i −0.947988 + 0.767633i
\(97\) 900.965 520.172i 0.943084 0.544490i 0.0521583 0.998639i \(-0.483390\pi\)
0.890926 + 0.454149i \(0.150057\pi\)
\(98\) −135.457 1268.96i −0.139625 1.30801i
\(99\) 444.458 493.580i 0.451209 0.501077i
\(100\) 180.489 312.615i 0.180489 0.312615i
\(101\) 124.628 215.862i 0.122782 0.212664i −0.798082 0.602549i \(-0.794152\pi\)
0.920864 + 0.389885i \(0.127485\pi\)
\(102\) −2304.60 884.707i −2.23715 0.858814i
\(103\) 650.861 375.775i 0.622634 0.359478i −0.155260 0.987874i \(-0.549622\pi\)
0.777894 + 0.628396i \(0.216288\pi\)
\(104\) 9.44041 16.3513i 0.00890104 0.0154171i
\(105\) −405.430 + 1251.15i −0.376818 + 1.16286i
\(106\) −800.571 1386.63i −0.733569 1.27058i
\(107\) 1406.36 + 811.965i 1.27064 + 0.733604i 0.975108 0.221729i \(-0.0711700\pi\)
0.295531 + 0.955333i \(0.404503\pi\)
\(108\) 730.430 372.116i 0.650793 0.331545i
\(109\) 724.736 + 1255.28i 0.636854 + 1.10306i 0.986119 + 0.166040i \(0.0530981\pi\)
−0.349265 + 0.937024i \(0.613569\pi\)
\(110\) −1250.88 −1.08424
\(111\) −431.116 + 68.2730i −0.368646 + 0.0583801i
\(112\) −1416.71 + 75.4000i −1.19523 + 0.0636128i
\(113\) 227.719 + 131.473i 0.189575 + 0.109451i 0.591784 0.806097i \(-0.298424\pi\)
−0.402209 + 0.915548i \(0.631757\pi\)
\(114\) 1923.16 304.559i 1.58001 0.250215i
\(115\) 574.380 + 331.618i 0.465750 + 0.268901i
\(116\) 1002.92 579.037i 0.802749 0.463467i
\(117\) −42.5066 + 47.2044i −0.0335875 + 0.0372996i
\(118\) 1161.45i 0.906100i
\(119\) −1289.58 1982.25i −0.993408 1.52700i
\(120\) 532.051 + 204.248i 0.404745 + 0.155377i
\(121\) −362.918 628.593i −0.272666 0.472271i
\(122\) 2041.00 1.51462
\(123\) 952.712 150.875i 0.698399 0.110601i
\(124\) 251.223i 0.181939i
\(125\) 864.022 0.618244
\(126\) 1837.80 + 289.627i 1.29940 + 0.204778i
\(127\) −368.812 −0.257691 −0.128846 0.991665i \(-0.541127\pi\)
−0.128846 + 0.991665i \(0.541127\pi\)
\(128\) 989.896i 0.683557i
\(129\) 690.710 1799.25i 0.471424 1.22803i
\(130\) 119.630 0.0807098
\(131\) 551.575 + 955.356i 0.367873 + 0.637174i 0.989233 0.146351i \(-0.0467528\pi\)
−0.621360 + 0.783525i \(0.713420\pi\)
\(132\) 116.824 + 737.697i 0.0770322 + 0.486426i
\(133\) 1662.66 + 845.470i 1.08399 + 0.551215i
\(134\) 2424.11i 1.56277i
\(135\) −1607.99 1044.38i −1.02514 0.665823i
\(136\) −887.441 + 512.364i −0.559540 + 0.323050i
\(137\) 1078.05 + 622.413i 0.672293 + 0.388148i 0.796945 0.604052i \(-0.206448\pi\)
−0.124652 + 0.992201i \(0.539781\pi\)
\(138\) 336.244 875.891i 0.207413 0.540296i
\(139\) −1997.85 1153.46i −1.21910 0.703848i −0.254376 0.967106i \(-0.581870\pi\)
−0.964726 + 0.263257i \(0.915203\pi\)
\(140\) −806.493 1239.69i −0.486865 0.748376i
\(141\) −1650.44 2038.21i −0.985762 1.21737i
\(142\) 70.3270 0.0415613
\(143\) −28.9380 50.1220i −0.0169225 0.0293106i
\(144\) 430.104 2023.07i 0.248903 1.17076i
\(145\) −2345.81 1354.35i −1.34351 0.775675i
\(146\) −1128.44 1954.51i −0.639659 1.10792i
\(147\) 1262.28 + 1258.24i 0.708240 + 0.705972i
\(148\) 245.414 425.069i 0.136303 0.236084i
\(149\) 286.796 165.582i 0.157686 0.0910402i −0.419080 0.907949i \(-0.637647\pi\)
0.576767 + 0.816909i \(0.304314\pi\)
\(150\) 186.817 + 1179.67i 0.101690 + 0.642130i
\(151\) −914.722 + 1584.35i −0.492974 + 0.853856i −0.999967 0.00809418i \(-0.997424\pi\)
0.506993 + 0.861950i \(0.330757\pi\)
\(152\) 404.135 699.982i 0.215656 0.373527i
\(153\) 3278.88 1065.22i 1.73256 0.562865i
\(154\) −768.339 + 1510.98i −0.402042 + 0.790639i
\(155\) −508.880 + 293.802i −0.263705 + 0.152250i
\(156\) −11.1727 70.5510i −0.00573418 0.0362090i
\(157\) 43.4645i 0.0220946i −0.999939 0.0110473i \(-0.996483\pi\)
0.999939 0.0110473i \(-0.00351653\pi\)
\(158\) 1620.09i 0.815743i
\(159\) 2087.59 + 801.398i 1.04124 + 0.399717i
\(160\) −2613.44 + 1508.87i −1.29132 + 0.745542i
\(161\) 753.379 490.120i 0.368786 0.239919i
\(162\) −1103.41 + 2477.75i −0.535135 + 1.20167i
\(163\) −1337.78 + 2317.11i −0.642841 + 1.11343i 0.341954 + 0.939717i \(0.388911\pi\)
−0.984796 + 0.173717i \(0.944422\pi\)
\(164\) −542.334 + 939.350i −0.258227 + 0.447261i
\(165\) 1357.66 1099.37i 0.640569 0.518701i
\(166\) 2733.98 1578.47i 1.27830 0.738029i
\(167\) 1300.57 2252.66i 0.602644 1.04381i −0.389775 0.920910i \(-0.627447\pi\)
0.992419 0.122900i \(-0.0392193\pi\)
\(168\) 573.524 517.226i 0.263383 0.237529i
\(169\) −1095.73 1897.86i −0.498740 0.863844i
\(170\) −5622.89 3246.38i −2.53680 1.46462i
\(171\) −1819.67 + 2020.78i −0.813762 + 0.903700i
\(172\) 1083.60 + 1876.86i 0.480372 + 0.832028i
\(173\) 1751.09 0.769552 0.384776 0.923010i \(-0.374279\pi\)
0.384776 + 0.923010i \(0.374279\pi\)
\(174\) −1373.24 + 3577.20i −0.598307 + 1.55855i
\(175\) −518.612 + 1019.88i −0.224019 + 0.440546i
\(176\) 1631.98 + 942.222i 0.698948 + 0.403538i
\(177\) −1020.77 1260.59i −0.433477 0.535322i
\(178\) 947.344 + 546.949i 0.398913 + 0.230312i
\(179\) −3563.92 + 2057.63i −1.48816 + 0.859187i −0.999909 0.0135177i \(-0.995697\pi\)
−0.488248 + 0.872705i \(0.662364\pi\)
\(180\) 2050.59 666.184i 0.849121 0.275858i
\(181\) 2733.54i 1.12256i −0.827628 0.561278i \(-0.810310\pi\)
0.827628 0.561278i \(-0.189690\pi\)
\(182\) 73.4815 144.506i 0.0299276 0.0588542i
\(183\) −2215.23 + 1793.79i −0.894835 + 0.724593i
\(184\) −194.730 337.283i −0.0780202 0.135135i
\(185\) −1148.03 −0.456244
\(186\) 523.094 + 645.994i 0.206210 + 0.254659i
\(187\) 3141.13i 1.22835i
\(188\) 2949.15 1.14409
\(189\) −2249.24 + 1300.85i −0.865650 + 0.500650i
\(190\) 5121.26 1.95545
\(191\) 210.385i 0.0797012i −0.999206 0.0398506i \(-0.987312\pi\)
0.999206 0.0398506i \(-0.0126882\pi\)
\(192\) 682.518 + 842.874i 0.256544 + 0.316819i
\(193\) 827.826 0.308747 0.154374 0.988013i \(-0.450664\pi\)
0.154374 + 0.988013i \(0.450664\pi\)
\(194\) −1935.37 3352.15i −0.716243 1.24057i
\(195\) −129.843 + 105.140i −0.0476832 + 0.0386115i
\(196\) −1992.84 + 212.728i −0.726253 + 0.0775249i
\(197\) 4969.34i 1.79721i 0.438756 + 0.898606i \(0.355419\pi\)
−0.438756 + 0.898606i \(0.644581\pi\)
\(198\) −1836.42 1653.66i −0.659137 0.593538i
\(199\) 1994.86 1151.74i 0.710614 0.410273i −0.100674 0.994919i \(-0.532100\pi\)
0.811288 + 0.584646i \(0.198767\pi\)
\(200\) 429.369 + 247.897i 0.151805 + 0.0876447i
\(201\) −2130.49 2631.04i −0.747627 0.923281i
\(202\) −803.142 463.694i −0.279747 0.161512i
\(203\) −3076.86 + 2001.69i −1.06381 + 0.692074i
\(204\) −1389.38 + 3619.25i −0.476844 + 1.24215i
\(205\) 2537.01 0.864354
\(206\) −1398.12 2421.61i −0.472871 0.819036i
\(207\) 404.852 + 1246.18i 0.135938 + 0.418432i
\(208\) −156.077 90.1112i −0.0520289 0.0300389i
\(209\) −1238.81 2145.68i −0.410000 0.710141i
\(210\) 4655.07 + 1508.45i 1.52967 + 0.495681i
\(211\) −1406.66 + 2436.40i −0.458949 + 0.794923i −0.998906 0.0467701i \(-0.985107\pi\)
0.539957 + 0.841693i \(0.318441\pi\)
\(212\) −2177.63 + 1257.25i −0.705471 + 0.407304i
\(213\) −76.3305 + 61.8086i −0.0245544 + 0.0198829i
\(214\) 3021.02 5232.55i 0.965011 1.67145i
\(215\) 2534.52 4389.92i 0.803967 1.39251i
\(216\) 511.092 + 1003.23i 0.160997 + 0.316023i
\(217\) 42.3200 + 795.159i 0.0132390 + 0.248751i
\(218\) 4670.42 2696.47i 1.45101 0.837743i
\(219\) 2942.54 + 1129.60i 0.907938 + 0.348546i
\(220\) 1964.44i 0.602011i
\(221\) 300.408i 0.0914372i
\(222\) 254.018 + 1604.02i 0.0767954 + 0.484931i
\(223\) −3655.84 + 2110.70i −1.09782 + 0.633825i −0.935647 0.352938i \(-0.885183\pi\)
−0.162170 + 0.986763i \(0.551849\pi\)
\(224\) 217.341 + 4083.67i 0.0648292 + 1.21809i
\(225\) −1239.55 1116.18i −0.367273 0.330721i
\(226\) 489.163 847.256i 0.143976 0.249374i
\(227\) −622.021 + 1077.37i −0.181872 + 0.315012i −0.942518 0.334155i \(-0.891549\pi\)
0.760646 + 0.649167i \(0.224882\pi\)
\(228\) −478.293 3020.22i −0.138929 0.877276i
\(229\) 4050.44 2338.52i 1.16882 0.674820i 0.215420 0.976522i \(-0.430888\pi\)
0.953402 + 0.301702i \(0.0975546\pi\)
\(230\) 1233.83 2137.05i 0.353722 0.612665i
\(231\) −494.036 2315.24i −0.140715 0.659445i
\(232\) 795.293 + 1377.49i 0.225058 + 0.389812i
\(233\) −651.597 376.200i −0.183208 0.105775i 0.405591 0.914055i \(-0.367066\pi\)
−0.588799 + 0.808279i \(0.700399\pi\)
\(234\) 175.630 + 158.151i 0.0490653 + 0.0441822i
\(235\) −3448.99 5973.83i −0.957393 1.65825i
\(236\) 1823.99 0.503099
\(237\) 1423.86 + 1758.39i 0.390251 + 0.481939i
\(238\) −7375.21 + 4798.04i −2.00867 + 1.30677i
\(239\) −1800.76 1039.67i −0.487370 0.281383i 0.236113 0.971726i \(-0.424126\pi\)
−0.723483 + 0.690343i \(0.757460\pi\)
\(240\) 1949.60 5078.57i 0.524359 1.36592i
\(241\) −3383.00 1953.17i −0.904224 0.522054i −0.0256558 0.999671i \(-0.508167\pi\)
−0.878568 + 0.477617i \(0.841501\pi\)
\(242\) −2338.76 + 1350.28i −0.621244 + 0.358675i
\(243\) −980.032 3659.02i −0.258720 0.965952i
\(244\) 3205.28i 0.840972i
\(245\) 2761.51 + 3787.94i 0.720107 + 0.987765i
\(246\) −561.348 3544.68i −0.145489 0.918702i
\(247\) 118.476 + 205.206i 0.0305199 + 0.0528620i
\(248\) 345.048 0.0883492
\(249\) −1580.10 + 4116.04i −0.402147 + 1.04756i
\(250\) 3214.70i 0.813262i
\(251\) 1877.00 0.472012 0.236006 0.971752i \(-0.424162\pi\)
0.236006 + 0.971752i \(0.424162\pi\)
\(252\) 454.843 2886.17i 0.113700 0.721475i
\(253\) −1193.83 −0.296661
\(254\) 1372.21i 0.338977i
\(255\) 8956.06 1418.31i 2.19941 0.348307i
\(256\) 5352.82 1.30684
\(257\) 2650.88 + 4591.46i 0.643414 + 1.11443i 0.984665 + 0.174454i \(0.0558159\pi\)
−0.341251 + 0.939972i \(0.610851\pi\)
\(258\) −6694.34 2569.87i −1.61539 0.620129i
\(259\) −705.167 + 1386.75i −0.169177 + 0.332697i
\(260\) 187.873i 0.0448130i
\(261\) −1653.44 5089.48i −0.392129 1.20702i
\(262\) 3554.52 2052.20i 0.838164 0.483914i
\(263\) −1436.08 829.124i −0.336703 0.194395i 0.322110 0.946702i \(-0.395608\pi\)
−0.658813 + 0.752307i \(0.728941\pi\)
\(264\) −1013.21 + 160.455i −0.236207 + 0.0374066i
\(265\) 5093.41 + 2940.68i 1.18070 + 0.681678i
\(266\) 3145.67 6186.15i 0.725089 1.42593i
\(267\) −1508.91 + 238.957i −0.345858 + 0.0547713i
\(268\) 3806.93 0.867706
\(269\) 1903.76 + 3297.40i 0.431502 + 0.747383i 0.997003 0.0773642i \(-0.0246504\pi\)
−0.565501 + 0.824748i \(0.691317\pi\)
\(270\) −3885.75 + 5982.73i −0.875849 + 1.34851i
\(271\) 2510.98 + 1449.71i 0.562845 + 0.324959i 0.754287 0.656545i \(-0.227983\pi\)
−0.191442 + 0.981504i \(0.561316\pi\)
\(272\) 4890.65 + 8470.85i 1.09022 + 1.88831i
\(273\) 47.2480 + 221.422i 0.0104747 + 0.0490883i
\(274\) 2315.76 4011.02i 0.510585 0.884360i
\(275\) 1316.16 759.885i 0.288609 0.166628i
\(276\) −1375.54 528.052i −0.299992 0.115163i
\(277\) 2187.01 3788.01i 0.474385 0.821659i −0.525185 0.850988i \(-0.676004\pi\)
0.999570 + 0.0293295i \(0.00933721\pi\)
\(278\) −4291.58 + 7433.23i −0.925870 + 1.60365i
\(279\) −1135.50 241.405i −0.243657 0.0518013i
\(280\) 1702.68 1107.70i 0.363409 0.236420i
\(281\) 1910.31 1102.92i 0.405550 0.234144i −0.283326 0.959024i \(-0.591438\pi\)
0.688876 + 0.724879i \(0.258104\pi\)
\(282\) −7583.42 + 6140.68i −1.60137 + 1.29671i
\(283\) 5547.66i 1.16528i 0.812730 + 0.582640i \(0.197980\pi\)
−0.812730 + 0.582640i \(0.802020\pi\)
\(284\) 110.445i 0.0230763i
\(285\) −5558.44 + 4500.95i −1.15528 + 0.935485i
\(286\) −186.485 + 107.667i −0.0385563 + 0.0222605i
\(287\) 1558.33 3064.54i 0.320506 0.630294i
\(288\) −5831.53 1239.78i −1.19315 0.253662i
\(289\) −5695.59 + 9865.05i −1.15929 + 2.00795i
\(290\) −5039.04 + 8727.87i −1.02035 + 1.76730i
\(291\) 5046.70 + 1937.37i 1.01664 + 0.390276i
\(292\) −3069.45 + 1772.15i −0.615158 + 0.355162i
\(293\) 332.172 575.338i 0.0662310 0.114715i −0.831008 0.556260i \(-0.812236\pi\)
0.897239 + 0.441544i \(0.145569\pi\)
\(294\) 4681.44 4696.47i 0.928663 0.931646i
\(295\) −2133.13 3694.69i −0.421002 0.729197i
\(296\) 583.822 + 337.070i 0.114642 + 0.0661885i
\(297\) 3446.55 + 180.838i 0.673365 + 0.0353309i
\(298\) −616.068 1067.06i −0.119758 0.207427i
\(299\) 114.174 0.0220831
\(300\) 1852.61 293.385i 0.356534 0.0564620i
\(301\) −3745.94 5757.99i −0.717316 1.10261i
\(302\) 5894.75 + 3403.34i 1.12319 + 0.648477i
\(303\) 1279.23 202.584i 0.242541 0.0384097i
\(304\) −6681.51 3857.57i −1.26056 0.727786i
\(305\) −6492.66 + 3748.54i −1.21891 + 0.703740i
\(306\) −3963.30 12199.5i −0.740414 2.27908i
\(307\) 3371.17i 0.626720i −0.949634 0.313360i \(-0.898545\pi\)
0.949634 0.313360i \(-0.101455\pi\)
\(308\) 2372.91 + 1206.63i 0.438991 + 0.223228i
\(309\) 3645.76 + 1399.56i 0.671197 + 0.257664i
\(310\) 1093.13 + 1893.35i 0.200276 + 0.346888i
\(311\) −4957.37 −0.903881 −0.451940 0.892048i \(-0.649268\pi\)
−0.451940 + 0.892048i \(0.649268\pi\)
\(312\) 96.9000 15.3454i 0.0175830 0.00278450i
\(313\) 7901.00i 1.42681i 0.700753 + 0.713404i \(0.252847\pi\)
−0.700753 + 0.713404i \(0.747153\pi\)
\(314\) −161.715 −0.0290641
\(315\) −6378.20 + 2454.01i −1.14086 + 0.438945i
\(316\) −2544.26 −0.452930
\(317\) 6001.53i 1.06334i −0.846951 0.531671i \(-0.821564\pi\)
0.846951 0.531671i \(-0.178436\pi\)
\(318\) 2981.70 7767.12i 0.525803 1.36968i
\(319\) 4875.67 0.855753
\(320\) 1426.28 + 2470.39i 0.249161 + 0.431560i
\(321\) 1319.85 + 8334.33i 0.229492 + 1.44915i
\(322\) −1823.55 2803.04i −0.315598 0.485116i
\(323\) 12860.2i 2.21535i
\(324\) 3891.17 + 1732.84i 0.667210 + 0.297126i
\(325\) −125.873 + 72.6730i −0.0214837 + 0.0124036i
\(326\) 8621.08 + 4977.38i 1.46465 + 0.845618i
\(327\) −2699.26 + 7031.37i −0.456481 + 1.18910i
\(328\) −1290.17 744.882i −0.217189 0.125394i
\(329\) −9334.50 + 496.801i −1.56422 + 0.0832508i
\(330\) −4090.33 5051.35i −0.682320 0.842630i
\(331\) 6753.39 1.12145 0.560725 0.828002i \(-0.310522\pi\)
0.560725 + 0.828002i \(0.310522\pi\)
\(332\) −2478.89 4293.57i −0.409780 0.709760i
\(333\) −1685.44 1517.70i −0.277361 0.249758i
\(334\) −8381.30 4838.95i −1.37307 0.792741i
\(335\) −4452.16 7711.36i −0.726111 1.25766i
\(336\) −4937.06 5474.44i −0.801603 0.888855i
\(337\) −622.587 + 1078.35i −0.100636 + 0.174307i −0.911947 0.410308i \(-0.865421\pi\)
0.811311 + 0.584615i \(0.198755\pi\)
\(338\) −7061.24 + 4076.81i −1.13633 + 0.656062i
\(339\) 213.711 + 1349.50i 0.0342395 + 0.216208i
\(340\) −5098.26 + 8830.44i −0.813212 + 1.40852i
\(341\) 528.844 915.984i 0.0839838 0.145464i
\(342\) 7518.55 + 6770.29i 1.18876 + 1.07045i
\(343\) 6271.80 1009.02i 0.987304 0.158840i
\(344\) −2577.81 + 1488.30i −0.404030 + 0.233267i
\(345\) 539.047 + 3403.86i 0.0841198 + 0.531182i
\(346\) 6515.13i 1.01230i
\(347\) 9502.44i 1.47008i −0.678024 0.735040i \(-0.737163\pi\)
0.678024 0.735040i \(-0.262837\pi\)
\(348\) 5617.80 + 2156.60i 0.865362 + 0.332201i
\(349\) 3593.91 2074.94i 0.551225 0.318250i −0.198391 0.980123i \(-0.563572\pi\)
0.749616 + 0.661873i \(0.230238\pi\)
\(350\) 3794.59 + 1929.56i 0.579512 + 0.294684i
\(351\) −329.618 17.2948i −0.0501244 0.00262999i
\(352\) 2715.97 4704.19i 0.411254 0.712313i
\(353\) 433.888 751.517i 0.0654208 0.113312i −0.831460 0.555585i \(-0.812494\pi\)
0.896881 + 0.442273i \(0.145828\pi\)
\(354\) −4690.19 + 3797.88i −0.704183 + 0.570213i
\(355\) −223.718 + 129.164i −0.0334471 + 0.0193107i
\(356\) 858.954 1487.75i 0.127878 0.221491i
\(357\) 3787.92 11689.5i 0.561564 1.73298i
\(358\) 7655.67 + 13260.0i 1.13021 + 1.95758i
\(359\) 1830.91 + 1057.08i 0.269170 + 0.155405i 0.628510 0.777801i \(-0.283665\pi\)
−0.359341 + 0.933206i \(0.616998\pi\)
\(360\) 914.987 + 2816.43i 0.133956 + 0.412330i
\(361\) 1642.32 + 2844.59i 0.239441 + 0.414724i
\(362\) −10170.5 −1.47665
\(363\) 1351.68 3521.03i 0.195440 0.509107i
\(364\) −226.938 115.399i −0.0326780 0.0166169i
\(365\) 7179.38 + 4145.02i 1.02955 + 0.594411i
\(366\) 6674.00 + 8242.05i 0.953157 + 1.17710i
\(367\) −271.211 156.584i −0.0385753 0.0222714i 0.480588 0.876946i \(-0.340423\pi\)
−0.519164 + 0.854675i \(0.673756\pi\)
\(368\) −3219.45 + 1858.75i −0.456048 + 0.263299i
\(369\) 3724.60 + 3353.92i 0.525460 + 0.473166i
\(370\) 4271.40i 0.600161i
\(371\) 6680.72 4346.23i 0.934895 0.608208i
\(372\) 1014.50 821.490i 0.141396 0.114495i
\(373\) −2703.78 4683.09i −0.375326 0.650083i 0.615050 0.788488i \(-0.289136\pi\)
−0.990376 + 0.138405i \(0.955802\pi\)
\(374\) 11687.0 1.61582
\(375\) 2825.32 + 3489.13i 0.389064 + 0.480474i
\(376\) 4050.58i 0.555566i
\(377\) −466.294 −0.0637012
\(378\) 4839.97 + 8368.56i 0.658574 + 1.13871i
\(379\) 793.227 0.107508 0.0537538 0.998554i \(-0.482881\pi\)
0.0537538 + 0.998554i \(0.482881\pi\)
\(380\) 8042.66i 1.08574i
\(381\) −1206.00 1489.35i −0.162166 0.200267i
\(382\) −782.763 −0.104842
\(383\) −5099.84 8833.18i −0.680391 1.17847i −0.974862 0.222811i \(-0.928477\pi\)
0.294471 0.955660i \(-0.404857\pi\)
\(384\) −3997.43 + 3236.92i −0.531232 + 0.430165i
\(385\) −330.921 6217.75i −0.0438060 0.823080i
\(386\) 3080.03i 0.406138i
\(387\) 9524.40 3094.24i 1.25104 0.406431i
\(388\) −5264.37 + 3039.38i −0.688809 + 0.397684i
\(389\) −8551.58 4937.26i −1.11461 0.643519i −0.174589 0.984641i \(-0.555860\pi\)
−0.940019 + 0.341122i \(0.889193\pi\)
\(390\) 391.187 + 483.096i 0.0507910 + 0.0627243i
\(391\) −5366.42 3098.30i −0.694096 0.400736i
\(392\) −292.177 2737.11i −0.0376459 0.352666i
\(393\) −2054.32 + 5351.37i −0.263682 + 0.686872i
\(394\) 18489.0 2.36412
\(395\) 2975.48 + 5153.69i 0.379020 + 0.656481i
\(396\) −2596.98 + 2884.00i −0.329554 + 0.365976i
\(397\) 9104.46 + 5256.46i 1.15098 + 0.664520i 0.949126 0.314896i \(-0.101970\pi\)
0.201856 + 0.979415i \(0.435303\pi\)
\(398\) −4285.17 7422.14i −0.539689 0.934769i
\(399\) 2022.64 + 9478.88i 0.253781 + 1.18932i
\(400\) 2366.24 4098.44i 0.295780 0.512306i
\(401\) −383.072 + 221.167i −0.0477050 + 0.0275425i −0.523663 0.851926i \(-0.675435\pi\)
0.475958 + 0.879468i \(0.342101\pi\)
\(402\) −9789.12 + 7926.74i −1.21452 + 0.983457i
\(403\) −50.5769 + 87.6018i −0.00625166 + 0.0108282i
\(404\) −728.206 + 1261.29i −0.0896773 + 0.155326i
\(405\) −1040.61 9908.54i −0.127675 1.21570i
\(406\) 7447.52 + 11447.8i 0.910380 + 1.39937i
\(407\) 1789.61 1033.23i 0.217955 0.125836i
\(408\) −4970.94 1908.28i −0.603182 0.231554i
\(409\) 8194.64i 0.990706i −0.868692 0.495353i \(-0.835039\pi\)
0.868692 0.495353i \(-0.164961\pi\)
\(410\) 9439.26i 1.13700i
\(411\) 1011.74 + 6388.69i 0.121424 + 0.766742i
\(412\) −3803.00 + 2195.66i −0.454759 + 0.262555i
\(413\) −5773.20 + 307.261i −0.687846 + 0.0366086i
\(414\) 4636.56 1506.30i 0.550422 0.178818i
\(415\) −5798.07 + 10042.6i −0.685822 + 1.18788i
\(416\) −259.746 + 449.894i −0.0306133 + 0.0530237i
\(417\) −1874.95 11839.5i −0.220184 1.39037i
\(418\) −7983.25 + 4609.13i −0.934147 + 0.539330i
\(419\) −7956.71 + 13781.4i −0.927711 + 1.60684i −0.140569 + 0.990071i \(0.544893\pi\)
−0.787142 + 0.616772i \(0.788440\pi\)
\(420\) 2368.94 7310.54i 0.275220 0.849328i
\(421\) −6044.72 10469.8i −0.699766 1.21203i −0.968547 0.248829i \(-0.919954\pi\)
0.268781 0.963201i \(-0.413379\pi\)
\(422\) 9064.92 + 5233.64i 1.04567 + 0.603719i
\(423\) 2833.90 13329.8i 0.325742 1.53219i
\(424\) −1726.81 2990.92i −0.197786 0.342575i
\(425\) 7888.43 0.900342
\(426\) 229.967 + 283.997i 0.0261547 + 0.0322997i
\(427\) 539.948 + 10145.2i 0.0611942 + 1.14979i
\(428\) −8217.44 4744.34i −0.928049 0.535809i
\(429\) 107.778 280.755i 0.0121296 0.0315967i
\(430\) −16333.2 9430.00i −1.83176 1.05757i
\(431\) 7013.76 4049.40i 0.783854 0.452558i −0.0539405 0.998544i \(-0.517178\pi\)
0.837794 + 0.545986i \(0.183845\pi\)
\(432\) 9576.07 4878.51i 1.06650 0.543327i
\(433\) 760.926i 0.0844522i 0.999108 + 0.0422261i \(0.0134450\pi\)
−0.999108 + 0.0422261i \(0.986555\pi\)
\(434\) 2958.49 157.457i 0.327216 0.0174151i
\(435\) −2201.51 13901.6i −0.242653 1.53226i
\(436\) −4234.66 7334.64i −0.465145 0.805655i
\(437\) 4887.67 0.535032
\(438\) 4202.83 10948.1i 0.458491 1.19434i
\(439\) 2640.98i 0.287123i −0.989641 0.143561i \(-0.954145\pi\)
0.989641 0.143561i \(-0.0458555\pi\)
\(440\) −2698.11 −0.292335
\(441\) −953.455 + 9211.79i −0.102954 + 0.994686i
\(442\) −1117.70 −0.120280
\(443\) 6531.03i 0.700449i 0.936666 + 0.350224i \(0.113895\pi\)
−0.936666 + 0.350224i \(0.886105\pi\)
\(444\) 2519.02 398.922i 0.269251 0.0426396i
\(445\) −4018.15 −0.428041
\(446\) 7853.12 + 13602.0i 0.833758 + 1.44411i
\(447\) 1606.47 + 616.704i 0.169985 + 0.0652553i
\(448\) 3860.15 205.445i 0.407087 0.0216660i
\(449\) 6932.75i 0.728678i 0.931266 + 0.364339i \(0.118705\pi\)
−0.931266 + 0.364339i \(0.881295\pi\)
\(450\) −4152.90 + 4611.88i −0.435043 + 0.483125i
\(451\) −3954.81 + 2283.31i −0.412915 + 0.238396i
\(452\) −1330.57 768.204i −0.138462 0.0799409i
\(453\) −9389.07 + 1486.89i −0.973812 + 0.154216i
\(454\) 4008.49 + 2314.31i 0.414379 + 0.239242i
\(455\) 31.6483 + 594.646i 0.00326087 + 0.0612691i
\(456\) 4148.20 656.923i 0.426003 0.0674633i
\(457\) −14591.5 −1.49357 −0.746784 0.665066i \(-0.768403\pi\)
−0.746784 + 0.665066i \(0.768403\pi\)
\(458\) −8700.75 15070.1i −0.887684 1.53751i
\(459\) 15023.4 + 9757.64i 1.52774 + 0.992261i
\(460\) −3356.12 1937.66i −0.340174 0.196399i
\(461\) −5053.02 8752.08i −0.510504 0.884219i −0.999926 0.0121719i \(-0.996125\pi\)
0.489422 0.872047i \(-0.337208\pi\)
\(462\) −8614.14 + 1838.12i −0.867459 + 0.185102i
\(463\) −8356.28 + 14473.5i −0.838768 + 1.45279i 0.0521577 + 0.998639i \(0.483390\pi\)
−0.890925 + 0.454150i \(0.849943\pi\)
\(464\) 13148.5 7591.28i 1.31552 0.759518i
\(465\) −2850.46 1094.26i −0.284273 0.109129i
\(466\) −1399.70 + 2424.35i −0.139141 + 0.240999i
\(467\) 1460.16 2529.07i 0.144685 0.250602i −0.784570 0.620040i \(-0.787116\pi\)
0.929256 + 0.369438i \(0.120450\pi\)
\(468\) 248.367 275.817i 0.0245316 0.0272428i
\(469\) −12049.5 + 641.299i −1.18634 + 0.0631395i
\(470\) −22226.4 + 12832.4i −2.18133 + 1.25939i
\(471\) 175.520 142.127i 0.0171710 0.0139042i
\(472\) 2505.20i 0.244303i
\(473\) 9124.27i 0.886965i
\(474\) 6542.30 5297.63i 0.633962 0.513351i
\(475\) −5388.51 + 3111.06i −0.520509 + 0.300516i
\(476\) 7535.05 + 11582.4i 0.725564 + 1.11529i
\(477\) 3590.09 + 11050.7i 0.344610 + 1.06075i
\(478\) −3868.21 + 6699.94i −0.370142 + 0.641105i
\(479\) −3147.51 + 5451.65i −0.300237 + 0.520026i −0.976189 0.216920i \(-0.930399\pi\)
0.675953 + 0.736945i \(0.263732\pi\)
\(480\) −14639.0 5619.74i −1.39204 0.534385i
\(481\) −171.152 + 98.8149i −0.0162243 + 0.00936709i
\(482\) −7267.02 + 12586.9i −0.686730 + 1.18945i
\(483\) 4442.74 + 1439.65i 0.418534 + 0.135624i
\(484\) 2120.54 + 3672.89i 0.199149 + 0.344937i
\(485\) 12313.2 + 7109.05i 1.15281 + 0.665578i
\(486\) −13613.8 + 3646.33i −1.27065 + 0.340331i
\(487\) 2731.42 + 4730.96i 0.254153 + 0.440206i 0.964665 0.263479i \(-0.0848700\pi\)
−0.710512 + 0.703685i \(0.751537\pi\)
\(488\) 4402.37 0.408373
\(489\) −13731.5 + 2174.57i −1.26986 + 0.201099i
\(490\) 14093.5 10274.5i 1.29934 0.947256i
\(491\) 3732.70 + 2155.07i 0.343084 + 0.198080i 0.661635 0.749826i \(-0.269863\pi\)
−0.318551 + 0.947906i \(0.603196\pi\)
\(492\) −5566.73 + 881.566i −0.510096 + 0.0807806i
\(493\) 21916.8 + 12653.7i 2.00220 + 1.15597i
\(494\) 763.493 440.803i 0.0695368 0.0401471i
\(495\) 8879.02 + 1887.67i 0.806226 + 0.171403i
\(496\) 3293.58i 0.298157i
\(497\) 18.6050 + 349.574i 0.00167918 + 0.0315504i
\(498\) 15314.2 + 5878.95i 1.37801 + 0.529000i
\(499\) −9015.59 15615.5i −0.808804 1.40089i −0.913693 0.406405i \(-0.866782\pi\)
0.104889 0.994484i \(-0.466551\pi\)
\(500\) −5048.51 −0.451553
\(501\) 13349.6 2114.09i 1.19045 0.188524i
\(502\) 6983.59i 0.620902i
\(503\) 8764.80 0.776945 0.388472 0.921460i \(-0.373003\pi\)
0.388472 + 0.921460i \(0.373003\pi\)
\(504\) 3964.08 + 624.716i 0.350346 + 0.0552124i
\(505\) 3406.51 0.300174
\(506\) 4441.77i 0.390239i
\(507\) 4081.02 10630.8i 0.357484 0.931221i
\(508\) 2154.98 0.188212
\(509\) −758.058 1313.00i −0.0660125 0.114337i 0.831130 0.556078i \(-0.187694\pi\)
−0.897143 + 0.441741i \(0.854361\pi\)
\(510\) −5277.01 33322.1i −0.458176 2.89319i
\(511\) 9416.76 6126.19i 0.815211 0.530346i
\(512\) 11996.6i 1.03551i
\(513\) −14110.6 740.372i −1.21442 0.0637198i
\(514\) 17083.1 9862.93i 1.46596 0.846372i
\(515\) 8895.13 + 5135.61i 0.761100 + 0.439421i
\(516\) −4035.84 + 10513.1i −0.344318 + 0.896924i
\(517\) 10752.9 + 6208.18i 0.914722 + 0.528115i
\(518\) 5159.57 + 2623.66i 0.437642 + 0.222542i
\(519\) 5725.98 + 7071.30i 0.484283 + 0.598064i
\(520\) 258.039 0.0217611
\(521\) −2984.80 5169.82i −0.250991 0.434729i 0.712808 0.701359i \(-0.247423\pi\)
−0.963799 + 0.266630i \(0.914090\pi\)
\(522\) −18936.1 + 6151.84i −1.58776 + 0.515821i
\(523\) −10006.2 5777.11i −0.836601 0.483012i 0.0195064 0.999810i \(-0.493791\pi\)
−0.856107 + 0.516798i \(0.827124\pi\)
\(524\) −3222.87 5582.18i −0.268687 0.465379i
\(525\) −5814.35 + 1240.69i −0.483351 + 0.103139i
\(526\) −3084.86 + 5343.13i −0.255715 + 0.442912i
\(527\) 4754.46 2744.99i 0.392993 0.226895i
\(528\) 1531.59 + 9671.34i 0.126238 + 0.797142i
\(529\) −4905.95 + 8497.36i −0.403218 + 0.698394i
\(530\) 10941.2 18950.7i 0.896706 1.55314i
\(531\) 1752.71 8244.19i 0.143241 0.673761i
\(532\) −9715.00 4940.11i −0.791727 0.402596i
\(533\) 378.225 218.368i 0.0307369 0.0177459i
\(534\) 889.069 + 5614.10i 0.0720483 + 0.454955i
\(535\) 22193.8i 1.79350i
\(536\) 5228.72i 0.421355i
\(537\) −19963.1 7663.58i −1.60423 0.615843i
\(538\) 12268.4 7083.16i 0.983137 0.567615i
\(539\) −7713.90 3419.45i −0.616440 0.273258i
\(540\) 9395.55 + 6102.36i 0.748741 + 0.486303i
\(541\) 11902.5 20615.7i 0.945891 1.63833i 0.191935 0.981408i \(-0.438524\pi\)
0.753957 0.656924i \(-0.228143\pi\)
\(542\) 5393.84 9342.40i 0.427463 0.740388i
\(543\) 11038.7 8938.58i 0.872404 0.706429i
\(544\) 24417.3 14097.4i 1.92442 1.11106i
\(545\) −9904.76 + 17155.5i −0.778483 + 1.34837i
\(546\) 823.830 175.792i 0.0645726 0.0137788i
\(547\) −6766.49 11719.9i −0.528911 0.916100i −0.999432 0.0337115i \(-0.989267\pi\)
0.470521 0.882389i \(-0.344066\pi\)
\(548\) −6299.09 3636.78i −0.491029 0.283495i
\(549\) −14487.5 3080.02i −1.12625 0.239439i
\(550\) −2827.24 4896.93i −0.219189 0.379647i
\(551\) −19961.6 −1.54336
\(552\) 725.267 1889.27i 0.0559228 0.145675i
\(553\) 8052.97 428.596i 0.619254 0.0329579i
\(554\) −14093.8 8137.03i −1.08084 0.624024i
\(555\) −3754.03 4636.03i −0.287117 0.354574i
\(556\) 11673.5 + 6739.69i 0.890406 + 0.514076i
\(557\) −11739.1 + 6777.54i −0.892997 + 0.515572i −0.874922 0.484264i \(-0.839087\pi\)
−0.0180757 + 0.999837i \(0.505754\pi\)
\(558\) −898.179 + 4224.75i −0.0681415 + 0.320516i
\(559\) 872.617i 0.0660246i
\(560\) −10573.3 16252.5i −0.797862 1.22642i
\(561\) −12684.6 + 10271.4i −0.954626 + 0.773009i
\(562\) −4103.54 7107.54i −0.308003 0.533476i
\(563\) 9865.16 0.738484 0.369242 0.929333i \(-0.379617\pi\)
0.369242 + 0.929333i \(0.379617\pi\)
\(564\) 9643.60 + 11909.3i 0.719980 + 0.889138i
\(565\) 3593.62i 0.267584i
\(566\) 20640.7 1.53285
\(567\) −12608.1 4829.22i −0.933842 0.357686i
\(568\) 151.693 0.0112058
\(569\) 6262.01i 0.461366i 0.973029 + 0.230683i \(0.0740960\pi\)
−0.973029 + 0.230683i \(0.925904\pi\)
\(570\) 16746.3 + 20680.9i 1.23057 + 1.51969i
\(571\) −10100.3 −0.740255 −0.370128 0.928981i \(-0.620686\pi\)
−0.370128 + 0.928981i \(0.620686\pi\)
\(572\) 169.085 + 292.865i 0.0123598 + 0.0214078i
\(573\) 849.584 687.951i 0.0619405 0.0501563i
\(574\) −11402.0 5797.96i −0.829113 0.421606i
\(575\) 2998.10i 0.217442i
\(576\) −1171.92 + 5512.34i −0.0847742 + 0.398751i
\(577\) 15135.0 8738.22i 1.09199 0.630462i 0.157886 0.987457i \(-0.449532\pi\)
0.934106 + 0.356995i \(0.116199\pi\)
\(578\) 36704.1 + 21191.1i 2.64133 + 1.52497i
\(579\) 2706.96 + 3342.96i 0.194296 + 0.239946i
\(580\) 13706.6 + 7913.53i 0.981271 + 0.566537i
\(581\) 8569.35 + 13172.2i 0.611905 + 0.940578i
\(582\) 7208.20 18776.9i 0.513384 1.33733i
\(583\) −10586.5 −0.752052
\(584\) −2434.00 4215.82i −0.172465 0.298719i
\(585\) −849.161 180.531i −0.0600145 0.0127590i
\(586\) −2140.62 1235.89i −0.150901 0.0871228i
\(587\) 3676.64 + 6368.12i 0.258520 + 0.447769i 0.965846 0.259118i \(-0.0834320\pi\)
−0.707326 + 0.706888i \(0.750099\pi\)
\(588\) −7375.55 7351.94i −0.517284 0.515627i
\(589\) −2165.15 + 3750.15i −0.151466 + 0.262347i
\(590\) −13746.6 + 7936.58i −0.959215 + 0.553803i
\(591\) −20067.4 + 16249.6i −1.39672 + 1.13099i
\(592\) 3217.42 5572.74i 0.223370 0.386889i
\(593\) 4475.21 7751.29i 0.309907 0.536775i −0.668435 0.743771i \(-0.733035\pi\)
0.978342 + 0.206996i \(0.0663687\pi\)
\(594\) 672.829 12823.3i 0.0464756 0.885770i
\(595\) 14649.2 28808.5i 1.00934 1.98493i
\(596\) −1675.76 + 967.500i −0.115171 + 0.0664939i
\(597\) 11174.1 + 4289.60i 0.766040 + 0.294073i
\(598\) 424.797i 0.0290489i
\(599\) 12548.8i 0.855978i −0.903784 0.427989i \(-0.859222\pi\)
0.903784 0.427989i \(-0.140778\pi\)
\(600\) 402.957 + 2544.51i 0.0274178 + 0.173132i
\(601\) 8672.73 5007.20i 0.588632 0.339847i −0.175924 0.984404i \(-0.556291\pi\)
0.764556 + 0.644557i \(0.222958\pi\)
\(602\) −21423.3 + 13937.2i −1.45041 + 0.943585i
\(603\) 3658.16 17206.8i 0.247051 1.16205i
\(604\) 5344.75 9257.38i 0.360058 0.623638i
\(605\) 4959.90 8590.80i 0.333304 0.577299i
\(606\) −753.737 4759.54i −0.0505256 0.319048i
\(607\) −769.474 + 444.256i −0.0514530 + 0.0297064i −0.525506 0.850790i \(-0.676124\pi\)
0.474053 + 0.880496i \(0.342791\pi\)
\(608\) −11119.5 + 19259.5i −0.741702 + 1.28467i
\(609\) −18144.5 5879.63i −1.20731 0.391223i
\(610\) 13946.9 + 24156.7i 0.925727 + 1.60341i
\(611\) −1028.37 593.731i −0.0680908 0.0393122i
\(612\) −19158.6 + 6224.14i −1.26543 + 0.411105i
\(613\) −6545.70 11337.5i −0.431286 0.747009i 0.565698 0.824612i \(-0.308607\pi\)
−0.996984 + 0.0776029i \(0.975273\pi\)
\(614\) −12542.9 −0.824411
\(615\) 8295.93 + 10245.0i 0.543942 + 0.671740i
\(616\) −1657.28 + 3259.14i −0.108399 + 0.213173i
\(617\) −7968.85 4600.82i −0.519957 0.300198i 0.216960 0.976181i \(-0.430386\pi\)
−0.736917 + 0.675983i \(0.763719\pi\)
\(618\) 5207.24 13564.5i 0.338942 0.882919i
\(619\) 1455.41 + 840.280i 0.0945037 + 0.0545617i 0.546507 0.837455i \(-0.315957\pi\)
−0.452003 + 0.892016i \(0.649291\pi\)
\(620\) 2973.40 1716.70i 0.192605 0.111200i
\(621\) −3708.51 + 5709.84i −0.239642 + 0.368966i
\(622\) 18444.5i 1.18900i
\(623\) −2468.10 + 4853.66i −0.158720 + 0.312131i
\(624\) −146.476 924.936i −0.00939702 0.0593383i
\(625\) 9765.37 + 16914.1i 0.624983 + 1.08250i
\(626\) 29396.6 1.87688
\(627\) 4613.89 12018.9i 0.293877 0.765530i
\(628\) 253.965i 0.0161374i
\(629\) 10726.1 0.679930
\(630\) 9130.43 + 23730.9i 0.577405 + 1.50073i
\(631\) −341.784 −0.0215629 −0.0107815 0.999942i \(-0.503432\pi\)
−0.0107815 + 0.999942i \(0.503432\pi\)
\(632\) 3494.48i 0.219941i
\(633\) −14438.5 + 2286.53i −0.906600 + 0.143572i
\(634\) −22329.4 −1.39876
\(635\) −2520.23 4365.16i −0.157499 0.272797i
\(636\) −12197.8 4682.60i −0.760496 0.291945i
\(637\) 737.733 + 327.025i 0.0458870 + 0.0203410i
\(638\) 18140.5i 1.12569i
\(639\) −499.195 106.129i −0.0309043 0.00657024i
\(640\) −11716.1 + 6764.31i −0.723626 + 0.417786i
\(641\) −3851.53 2223.68i −0.237326 0.137020i 0.376621 0.926367i \(-0.377086\pi\)
−0.613947 + 0.789347i \(0.710419\pi\)
\(642\) 31008.9 4910.68i 1.90627 0.301883i
\(643\) 3417.70 + 1973.21i 0.209612 + 0.121020i 0.601131 0.799150i \(-0.294717\pi\)
−0.391519 + 0.920170i \(0.628050\pi\)
\(644\) −4402.02 + 2863.79i −0.269354 + 0.175232i
\(645\) 26015.3 4119.88i 1.58814 0.251504i
\(646\) −47847.8 −2.91416
\(647\) −815.600 1412.66i −0.0495588 0.0858384i 0.840182 0.542305i \(-0.182448\pi\)
−0.889741 + 0.456466i \(0.849115\pi\)
\(648\) −2380.01 + 5344.43i −0.144284 + 0.323995i
\(649\) 6650.44 + 3839.63i 0.402238 + 0.232232i
\(650\) 270.389 + 468.327i 0.0163162 + 0.0282605i
\(651\) −3072.65 + 2771.04i −0.184987 + 0.166829i
\(652\) 7816.70 13538.9i 0.469518 0.813229i
\(653\) −9217.89 + 5321.95i −0.552410 + 0.318934i −0.750094 0.661332i \(-0.769992\pi\)
0.197683 + 0.980266i \(0.436658\pi\)
\(654\) 26161.1 + 10042.9i 1.56419 + 0.600472i
\(655\) −7538.22 + 13056.6i −0.449683 + 0.778874i
\(656\) −7110.10 + 12315.0i −0.423175 + 0.732960i
\(657\) 5060.39 + 15576.4i 0.300494 + 0.924954i
\(658\) 1848.41 + 34730.1i 0.109511 + 2.05763i
\(659\) 23.4141 13.5182i 0.00138404 0.000799079i −0.499308 0.866425i \(-0.666412\pi\)
0.500692 + 0.865626i \(0.333079\pi\)
\(660\) −7932.87 + 6423.64i −0.467858 + 0.378848i
\(661\) 7757.38i 0.456471i −0.973606 0.228235i \(-0.926704\pi\)
0.973606 0.228235i \(-0.0732955\pi\)
\(662\) 25126.8i 1.47520i
\(663\) 1213.12 982.322i 0.0710612 0.0575418i
\(664\) 5897.11 3404.70i 0.344657 0.198988i
\(665\) 1354.83 + 25456.2i 0.0790047 + 1.48444i
\(666\) −5646.78 + 6270.87i −0.328541 + 0.364852i
\(667\) −4809.19 + 8329.77i −0.279180 + 0.483553i
\(668\) −7599.30 + 13162.4i −0.440158 + 0.762377i
\(669\) −20478.0 7861.23i −1.18344 0.454309i
\(670\) −28691.1 + 16564.8i −1.65438 + 0.955155i
\(671\) 6747.36 11686.8i 0.388195 0.672374i
\(672\) −15780.1 + 14231.1i −0.905851 + 0.816931i
\(673\) −16598.3 28749.0i −0.950693 1.64665i −0.743931 0.668257i \(-0.767041\pi\)
−0.206762 0.978391i \(-0.566293\pi\)
\(674\) 4012.14 + 2316.41i 0.229291 + 0.132381i
\(675\) 454.145 8655.46i 0.0258964 0.493554i
\(676\) 6402.40 + 11089.3i 0.364270 + 0.630933i
\(677\) 10932.0 0.620605 0.310303 0.950638i \(-0.399570\pi\)
0.310303 + 0.950638i \(0.399570\pi\)
\(678\) 5020.96 795.137i 0.284408 0.0450399i
\(679\) 16150.5 10506.9i 0.912813 0.593842i
\(680\) −12128.4 7002.33i −0.683975 0.394893i
\(681\) −6384.67 + 1011.10i −0.359267 + 0.0568948i
\(682\) −3408.03 1967.63i −0.191349 0.110476i
\(683\) 12991.1 7500.40i 0.727804 0.420198i −0.0898144 0.995959i \(-0.528627\pi\)
0.817618 + 0.575761i \(0.195294\pi\)
\(684\) 10632.4 11807.5i 0.594355 0.660043i
\(685\) 17012.7i 0.948936i
\(686\) −3754.19 23335.0i −0.208944 1.29874i
\(687\) 22688.3 + 8709.74i 1.25999 + 0.483693i
\(688\) 14206.2 + 24605.9i 0.787220 + 1.36351i
\(689\) 1012.46 0.0559818
\(690\) 12664.5 2005.59i 0.698737 0.110654i
\(691\) 1059.56i 0.0583325i 0.999575 + 0.0291662i \(0.00928522\pi\)
−0.999575 + 0.0291662i \(0.990715\pi\)
\(692\) −10231.6 −0.562065
\(693\) 7734.02 9565.79i 0.423941 0.524350i
\(694\) −35355.0 −1.93380
\(695\) 31527.9i 1.72075i
\(696\) −2962.04 + 7715.91i −0.161316 + 0.420217i
\(697\) −23703.2 −1.28813
\(698\) −7720.08 13371.6i −0.418638 0.725102i
\(699\) −611.514 3861.46i −0.0330896 0.208947i
\(700\) 3030.27 5959.19i 0.163619 0.321766i
\(701\) 21617.3i 1.16473i 0.812928 + 0.582365i \(0.197872\pi\)
−0.812928 + 0.582365i \(0.802128\pi\)
\(702\) −64.3473 + 1226.38i −0.00345959 + 0.0659356i
\(703\) −7326.87 + 4230.17i −0.393084 + 0.226947i
\(704\) −4446.70 2567.31i −0.238056 0.137442i
\(705\) 12845.7 33462.0i 0.686235 1.78759i
\(706\) −2796.11 1614.34i −0.149055 0.0860571i
\(707\) 2092.41 4114.85i 0.111306 0.218889i
\(708\) 5964.37 + 7365.69i 0.316603 + 0.390988i
\(709\) −25066.6 −1.32778 −0.663889 0.747831i \(-0.731095\pi\)
−0.663889 + 0.747831i \(0.731095\pi\)
\(710\) 480.569 + 832.370i 0.0254020 + 0.0439976i
\(711\) −2444.83 + 11499.7i −0.128957 + 0.606573i
\(712\) 2043.39 + 1179.75i 0.107555 + 0.0620970i
\(713\) 1043.27 + 1806.99i 0.0547975 + 0.0949121i
\(714\) −43492.3 14093.4i −2.27963 0.738703i
\(715\) 395.487 685.003i 0.0206858 0.0358289i
\(716\) 20824.1 12022.8i 1.08692 0.627533i
\(717\) −1689.99 10671.6i −0.0880246 0.555839i
\(718\) 3932.99 6812.14i 0.204426 0.354076i
\(719\) −1208.60 + 2093.36i −0.0626888 + 0.108580i −0.895666 0.444726i \(-0.853301\pi\)
0.832978 + 0.553307i \(0.186634\pi\)
\(720\) 26883.6 8733.79i 1.39152 0.452068i
\(721\) 11667.2 7590.25i 0.602648 0.392061i
\(722\) 10583.6 6110.47i 0.545544 0.314970i
\(723\) −3174.89 20048.1i −0.163313 1.03126i
\(724\) 15972.2i 0.819891i
\(725\) 12244.4i 0.627238i
\(726\) −13100.4 5029.08i −0.669699 0.257089i
\(727\) −3918.13 + 2262.13i −0.199884 + 0.115403i −0.596601 0.802538i \(-0.703483\pi\)
0.396718 + 0.917941i \(0.370149\pi\)
\(728\) 158.497 311.694i 0.00806909 0.0158683i
\(729\) 11571.3 15922.5i 0.587884 0.808945i
\(730\) 15422.0 26711.8i 0.781912 1.35431i
\(731\) −23680.0 + 41014.9i −1.19813 + 2.07523i
\(732\) 12943.7 10481.1i 0.653569 0.529227i
\(733\) 25576.2 14766.4i 1.28878 0.744080i 0.310346 0.950624i \(-0.399555\pi\)
0.978437 + 0.206544i \(0.0662216\pi\)
\(734\) −582.590 + 1009.08i −0.0292967 + 0.0507434i
\(735\) −6266.55 + 23538.0i −0.314483 + 1.18124i
\(736\) 5357.87 + 9280.11i 0.268334 + 0.464768i
\(737\) 13880.4 + 8013.87i 0.693748 + 0.400536i
\(738\) 12478.7 13857.8i 0.622420 0.691211i
\(739\) 11492.3 + 19905.2i 0.572057 + 0.990832i 0.996355 + 0.0853088i \(0.0271877\pi\)
−0.424298 + 0.905523i \(0.639479\pi\)
\(740\) 6708.00 0.333231
\(741\) −441.258 + 1149.45i −0.0218759 + 0.0569851i
\(742\) −16170.7 24856.5i −0.800060 1.22980i
\(743\) 12127.5 + 7001.83i 0.598810 + 0.345723i 0.768573 0.639762i \(-0.220967\pi\)
−0.169763 + 0.985485i \(0.554300\pi\)
\(744\) 1128.30 + 1393.39i 0.0555986 + 0.0686614i
\(745\) 3919.56 + 2262.96i 0.192754 + 0.111286i
\(746\) −17424.0 + 10059.8i −0.855145 + 0.493718i
\(747\) −21788.4 + 7078.50i −1.06720 + 0.346705i
\(748\) 18353.7i 0.897164i
\(749\) 26808.6 + 13632.3i 1.30783 + 0.665037i
\(750\) 12981.7 10512.0i 0.632034 0.511790i
\(751\) −13995.6 24241.1i −0.680036 1.17786i −0.974969 0.222339i \(-0.928631\pi\)
0.294933 0.955518i \(-0.404703\pi\)
\(752\) 38663.9 1.87490
\(753\) 6137.70 + 7579.75i 0.297039 + 0.366828i
\(754\) 1734.90i 0.0837950i
\(755\) −25002.5 −1.20521
\(756\) 13142.4 7600.90i 0.632253 0.365664i
\(757\) 32553.0 1.56296 0.781479 0.623932i \(-0.214466\pi\)
0.781479 + 0.623932i \(0.214466\pi\)
\(758\) 2951.30i 0.141420i
\(759\) −3903.76 4820.95i −0.186690 0.230552i
\(760\) 11046.4 0.527230
\(761\) 7445.71 + 12896.3i 0.354674 + 0.614313i 0.987062 0.160339i \(-0.0512587\pi\)
−0.632388 + 0.774651i \(0.717925\pi\)
\(762\) −5541.31 + 4487.08i −0.263439 + 0.213320i
\(763\) 14638.9 + 22501.9i 0.694579 + 1.06766i
\(764\) 1229.29i 0.0582121i
\(765\) 35013.4 + 31528.8i 1.65479 + 1.49010i
\(766\) −32864.9 + 18974.6i −1.55021 + 0.895012i
\(767\) −636.027 367.210i −0.0299421 0.0172871i
\(768\) 17503.5 + 21615.9i 0.822400 + 1.01562i
\(769\) −6873.39 3968.36i −0.322316 0.186089i 0.330108 0.943943i \(-0.392915\pi\)
−0.652424 + 0.757854i \(0.726248\pi\)
\(770\) −23133.9 + 1231.23i −1.08271 + 0.0576241i
\(771\) −9873.12 + 25718.8i −0.461182 + 1.20135i
\(772\) −4837.02 −0.225503
\(773\) −8421.63 14586.7i −0.391856 0.678715i 0.600838 0.799371i \(-0.294834\pi\)
−0.992694 + 0.120656i \(0.961500\pi\)
\(774\) −11512.5 35436.7i −0.534635 1.64567i
\(775\) −2300.34 1328.10i −0.106620 0.0615573i
\(776\) −4174.52 7230.48i −0.193114 0.334483i
\(777\) −7905.89 + 1686.99i −0.365022 + 0.0778899i
\(778\) −18369.7 + 31817.2i −0.846510 + 1.46620i
\(779\) 16191.5 9348.14i 0.744697 0.429951i
\(780\) 758.675 614.337i 0.0348268 0.0282010i
\(781\) 232.494 402.692i 0.0106521 0.0184500i
\(782\) −11527.6 + 19966.4i −0.527144 + 0.913041i
\(783\) 15145.8 23319.4i 0.691275 1.06433i
\(784\) −26126.5 + 2788.91i −1.19016 + 0.127046i
\(785\) 514.434 297.009i 0.0233897 0.0135041i
\(786\) 19910.4 + 7643.36i 0.903539 + 0.346857i
\(787\) 33935.6i 1.53707i −0.639807 0.768536i \(-0.720986\pi\)
0.639807 0.768536i \(-0.279014\pi\)
\(788\) 29036.0i 1.31265i
\(789\) −1347.74 8510.45i −0.0608124 0.384005i
\(790\) 19174.9 11070.6i 0.863561 0.498577i
\(791\) 4340.86 + 2207.34i 0.195124 + 0.0992212i
\(792\) −3961.11 3566.89i −0.177717 0.160030i
\(793\) −645.297 + 1117.69i −0.0288968 + 0.0500507i
\(794\) 19557.3 33874.3i 0.874135 1.51405i
\(795\) 4780.10 + 30184.3i 0.213249 + 1.34658i
\(796\) −11656.1 + 6729.63i −0.519018 + 0.299655i
\(797\) 12449.1 21562.5i 0.553288 0.958324i −0.444746 0.895657i \(-0.646706\pi\)
0.998034 0.0626670i \(-0.0199606\pi\)
\(798\) 35267.4 7525.49i 1.56447 0.333834i
\(799\) 32223.9 + 55813.4i 1.42678 + 2.47126i
\(800\) −11813.8 6820.71i −0.522102 0.301435i
\(801\) −5899.06 5311.97i −0.260216 0.234319i
\(802\) 822.878 + 1425.27i 0.0362305 + 0.0627530i
\(803\) −14922.1 −0.655776
\(804\) 12448.5 + 15373.3i 0.546051 + 0.674345i
\(805\) 10949.0 + 5567.62i 0.479382 + 0.243767i
\(806\) 325.933 + 188.178i 0.0142438 + 0.00822367i
\(807\) −7090.48 + 18470.2i −0.309289 + 0.805677i
\(808\) −1732.35 1000.17i −0.0754256 0.0435470i
\(809\) −5709.11 + 3296.16i −0.248111 + 0.143247i −0.618899 0.785471i \(-0.712421\pi\)
0.370788 + 0.928718i \(0.379088\pi\)
\(810\) −36865.9 + 3871.72i −1.59918 + 0.167949i
\(811\) 184.817i 0.00800222i 0.999992 + 0.00400111i \(0.00127360\pi\)
−0.999992 + 0.00400111i \(0.998726\pi\)
\(812\) 17978.2 11695.9i 0.776983 0.505476i
\(813\) 2356.52 + 14880.4i 0.101656 + 0.641918i
\(814\) −3844.26 6658.45i −0.165530 0.286706i
\(815\) −36566.2 −1.57160
\(816\) −18215.1 + 47449.0i −0.781440 + 2.03560i
\(817\) 37355.9i 1.59965i
\(818\) −30489.2 −1.30321
\(819\) −739.657 + 914.842i −0.0315576 + 0.0390319i
\(820\) −14823.8 −0.631306
\(821\) 6921.45i 0.294227i 0.989120 + 0.147113i \(0.0469982\pi\)
−0.989120 + 0.147113i \(0.953002\pi\)
\(822\) 23769.9 3764.29i 1.00860 0.159726i
\(823\) 8628.73 0.365466 0.182733 0.983163i \(-0.441506\pi\)
0.182733 + 0.983163i \(0.441506\pi\)
\(824\) −3015.69 5223.33i −0.127496 0.220829i
\(825\) 7372.38 + 2830.17i 0.311119 + 0.119435i
\(826\) 1143.20 + 21479.9i 0.0481563 + 0.904819i
\(827\) 36959.2i 1.55405i −0.629472 0.777023i \(-0.716729\pi\)
0.629472 0.777023i \(-0.283271\pi\)
\(828\) −2365.56 7281.46i −0.0992862 0.305614i
\(829\) −12723.8 + 7346.11i −0.533073 + 0.307770i −0.742267 0.670104i \(-0.766249\pi\)
0.209194 + 0.977874i \(0.432916\pi\)
\(830\) 37364.6 + 21572.4i 1.56258 + 0.902157i
\(831\) 22448.3 3554.99i 0.937092 0.148401i
\(832\) 425.269 + 245.529i 0.0177206 + 0.0102310i
\(833\) −25800.7 35390.6i −1.07316 1.47204i
\(834\) −44050.4 + 6975.98i −1.82895 + 0.289638i
\(835\) 35549.2 1.47333
\(836\) 7238.39 + 12537.3i 0.299456 + 0.518672i
\(837\) −2738.17 5374.78i −0.113077 0.221959i
\(838\) 51275.5 + 29603.9i 2.11370 + 1.22035i
\(839\) 3876.68 + 6714.61i 0.159521 + 0.276298i 0.934696 0.355448i \(-0.115672\pi\)
−0.775175 + 0.631746i \(0.782338\pi\)
\(840\) 10040.8 + 3253.68i 0.412431 + 0.133646i
\(841\) 7446.60 12897.9i 0.305326 0.528841i
\(842\) −38954.0 + 22490.1i −1.59435 + 0.920499i
\(843\) 10700.5 + 4107.78i 0.437182 + 0.167829i
\(844\) 8219.14 14236.0i 0.335207 0.580595i
\(845\) 14975.1 25937.6i 0.609654 1.05595i
\(846\) −49595.0 10543.9i −2.01550 0.428493i
\(847\) −7330.56 11268.0i −0.297380 0.457112i
\(848\) −28549.1 + 16482.8i −1.15611 + 0.667479i
\(849\) −22402.8 + 18140.6i −0.905607 + 0.733316i
\(850\) 29349.9i 1.18434i
\(851\) 4076.57i 0.164210i
\(852\) 446.001 361.150i 0.0179340 0.0145220i
\(853\) 8892.58 5134.13i 0.356947 0.206084i −0.310794 0.950477i \(-0.600595\pi\)
0.667741 + 0.744394i \(0.267261\pi\)
\(854\) 37746.5 2008.94i 1.51248 0.0804972i
\(855\) −36351.8 7728.36i −1.45404 0.309128i
\(856\) 6516.23 11286.4i 0.260187 0.450657i
\(857\) −13906.9 + 24087.5i −0.554320 + 0.960110i 0.443637 + 0.896207i \(0.353688\pi\)
−0.997956 + 0.0639028i \(0.979645\pi\)
\(858\) −1044.58 401.003i −0.0415636 0.0159557i
\(859\) 497.469 287.214i 0.0197595 0.0114082i −0.490088 0.871673i \(-0.663035\pi\)
0.509847 + 0.860265i \(0.329702\pi\)
\(860\) −14809.3 + 25650.4i −0.587201 + 1.01706i
\(861\) 17471.0 3728.04i 0.691534 0.147562i
\(862\) −15066.3 26095.6i −0.595313 1.03111i
\(863\) −26652.7 15388.0i −1.05130 0.606967i −0.128285 0.991737i \(-0.540947\pi\)
−0.923012 + 0.384771i \(0.874280\pi\)
\(864\) −14062.4 27603.1i −0.553717 1.08689i
\(865\) 11965.8 + 20725.4i 0.470346 + 0.814663i
\(866\) 2831.12 0.111092
\(867\) −58461.8 + 9258.21i −2.29004 + 0.362659i
\(868\) −247.277 4646.14i −0.00966950 0.181682i
\(869\) −9276.63 5355.87i −0.362127 0.209074i
\(870\) −51722.7 + 8190.98i −2.01559 + 0.319196i
\(871\) −1327.48 766.422i −0.0516418 0.0298154i
\(872\) 10073.9 5816.20i 0.391223 0.225873i
\(873\) 8678.98 + 26714.9i 0.336471 + 1.03569i
\(874\) 18185.2i 0.703801i
\(875\) 15979.3 850.451i 0.617370 0.0328577i
\(876\) −17193.4 6600.32i −0.663139 0.254571i
\(877\) 18861.3 + 32668.7i 0.726227 + 1.25786i 0.958467 + 0.285204i \(0.0920612\pi\)
−0.232240 + 0.972659i \(0.574605\pi\)
\(878\) −9826.08 −0.377693
\(879\) 3409.54 539.947i 0.130832 0.0207189i
\(880\) 25754.2i 0.986560i
\(881\) −30628.9 −1.17130 −0.585650 0.810564i \(-0.699161\pi\)
−0.585650 + 0.810564i \(0.699161\pi\)
\(882\) 34273.6 + 3547.45i 1.30845 + 0.135429i
\(883\) −26121.2 −0.995524 −0.497762 0.867314i \(-0.665845\pi\)
−0.497762 + 0.867314i \(0.665845\pi\)
\(884\) 1755.29i 0.0667838i
\(885\) 7944.78 20695.6i 0.301764 0.786073i
\(886\) 24299.5 0.921397
\(887\) 14137.3 + 24486.6i 0.535158 + 0.926921i 0.999156 + 0.0410848i \(0.0130814\pi\)
−0.463997 + 0.885837i \(0.653585\pi\)
\(888\) 547.909 + 3459.82i 0.0207056 + 0.130748i
\(889\) −6820.84 + 363.019i −0.257327 + 0.0136955i
\(890\) 14950.0i 0.563062i
\(891\) 10539.8 + 14509.3i 0.396294 + 0.545545i
\(892\) 21361.2 12332.9i 0.801823 0.462933i
\(893\) −44023.6 25417.0i −1.64971 0.952463i
\(894\) 2294.52 5977.07i 0.0858393 0.223605i
\(895\) −48707.1 28121.1i −1.81910 1.05026i
\(896\) 974.348 + 18307.2i 0.0363289 + 0.682591i
\(897\) 373.344 + 461.060i 0.0138970 + 0.0171620i
\(898\) 25794.1 0.958532
\(899\) −4260.78 7379.88i −0.158070 0.273785i
\(900\) 7242.71 + 6521.90i 0.268248 + 0.241552i
\(901\) −47587.7 27474.8i −1.75957 1.01589i
\(902\) 8495.33 + 14714.3i 0.313596 + 0.543164i
\(903\) 11003.1 33955.4i 0.405492 1.25135i
\(904\) 1055.11 1827.50i 0.0388190 0.0672365i
\(905\) 32353.4 18679.3i 1.18836 0.686099i
\(906\) 5532.14 + 34933.2i 0.202862 + 1.28099i
\(907\) 13072.0 22641.3i 0.478553 0.828878i −0.521144 0.853469i \(-0.674495\pi\)
0.999698 + 0.0245901i \(0.00782805\pi\)
\(908\) 3634.49 6295.12i 0.132836 0.230078i
\(909\) 5001.12 + 4503.40i 0.182483 + 0.164322i
\(910\) 2212.45 117.751i 0.0805957 0.00428947i
\(911\) 29605.2 17092.5i 1.07669 0.621626i 0.146687 0.989183i \(-0.453139\pi\)
0.930001 + 0.367557i \(0.119806\pi\)
\(912\) −6270.51 39595.6i −0.227672 1.43766i
\(913\) 20873.1i 0.756624i
\(914\) 54289.4i 1.96470i
\(915\) −36368.2 13961.3i −1.31399 0.504422i
\(916\) −23666.8 + 13664.0i −0.853683 + 0.492874i
\(917\) 11141.2 + 17125.5i 0.401217 + 0.616723i
\(918\) 36304.5 55896.5i 1.30526 2.00965i
\(919\) −6975.24 + 12081.5i −0.250372 + 0.433657i −0.963628 0.267246i \(-0.913886\pi\)
0.713256 + 0.700903i \(0.247220\pi\)
\(920\) 2661.32 4609.55i 0.0953709 0.165187i
\(921\) 13613.6 11023.6i 0.487061 0.394398i
\(922\) −32563.2 + 18800.4i −1.16314 + 0.671537i
\(923\) −22.2350 + 38.5122i −0.000792931 + 0.00137340i
\(924\) 2886.67 + 13528.0i 0.102775 + 0.481645i
\(925\) −2594.79 4494.31i −0.0922337 0.159753i
\(926\) 53850.5 + 31090.6i 1.91105 + 1.10335i
\(927\) 6269.74 + 19298.9i 0.222141 + 0.683776i
\(928\) −21881.9 37900.6i −0.774041 1.34068i
\(929\) 31483.5 1.11188 0.555942 0.831221i \(-0.312357\pi\)
0.555942 + 0.831221i \(0.312357\pi\)
\(930\) −4071.32 + 10605.5i −0.143552 + 0.373944i
\(931\) 31581.6 + 13999.6i 1.11176 + 0.492825i
\(932\) 3807.30 + 2198.15i 0.133811 + 0.0772561i
\(933\) −16210.4 20019.0i −0.568816 0.702459i
\(934\) −9409.71 5432.70i −0.329652 0.190325i
\(935\) −37177.5 + 21464.5i −1.30036 + 0.750762i
\(936\) 378.828 + 341.126i 0.0132290 + 0.0119125i
\(937\) 40165.8i 1.40038i 0.713955 + 0.700192i \(0.246902\pi\)
−0.713955 + 0.700192i \(0.753098\pi\)
\(938\) 2386.03 + 44831.6i 0.0830562 + 1.56056i
\(939\) −31906.1 + 25836.0i −1.10886 + 0.897896i
\(940\) 20152.6 + 34905.3i 0.699260 + 1.21115i
\(941\) 1053.93 0.0365114 0.0182557 0.999833i \(-0.494189\pi\)
0.0182557 + 0.999833i \(0.494189\pi\)
\(942\) −528.802 653.044i −0.0182901 0.0225874i
\(943\) 9008.71i 0.311097i
\(944\) 23912.8 0.824466
\(945\) −30766.3 17732.2i −1.05908 0.610399i
\(946\) 33948.0 1.16675
\(947\) 42313.5i 1.45196i 0.687716 + 0.725980i \(0.258613\pi\)
−0.687716 + 0.725980i \(0.741387\pi\)
\(948\) −8319.64 10274.3i −0.285031 0.351998i
\(949\) 1427.10 0.0488151
\(950\) 11575.1 + 20048.6i 0.395311 + 0.684698i
\(951\) 24235.6 19624.8i 0.826386 0.669166i
\(952\) −15908.1 + 10349.2i −0.541580 + 0.352332i
\(953\) 20155.3i 0.685095i 0.939501 + 0.342547i \(0.111290\pi\)
−0.939501 + 0.342547i \(0.888710\pi\)
\(954\) 41115.5 13357.4i 1.39535 0.453314i
\(955\) 2490.06 1437.64i 0.0843732 0.0487129i
\(956\) 10521.9 + 6074.81i 0.355965 + 0.205516i
\(957\) 15943.3 + 19689.1i 0.538529 + 0.665056i
\(958\) 20283.5 + 11710.7i 0.684062 + 0.394943i
\(959\) 20550.2 + 10449.8i 0.691971 + 0.351870i
\(960\) −5312.14 + 13837.8i −0.178592 + 0.465220i
\(961\) 27942.4 0.937948
\(962\) 367.653 + 636.794i 0.0123218 + 0.0213420i
\(963\) −29340.1 + 32582.8i −0.981798 + 1.09031i
\(964\) 19767.0 + 11412.5i 0.660426 + 0.381297i
\(965\) 5656.83 + 9797.92i 0.188705 + 0.326846i
\(966\) 5356.39 16529.8i 0.178405 0.550556i
\(967\) −2887.13 + 5000.66i −0.0960123 + 0.166298i −0.910031 0.414541i \(-0.863942\pi\)
0.814018 + 0.580839i \(0.197275\pi\)
\(968\) −5044.62 + 2912.51i −0.167500 + 0.0967064i
\(969\) 51932.4 42052.3i 1.72168 1.39413i
\(970\) 26450.1 45812.9i 0.875527 1.51646i
\(971\) −5434.98 + 9413.66i −0.179626 + 0.311121i −0.941752 0.336307i \(-0.890822\pi\)
0.762126 + 0.647428i \(0.224155\pi\)
\(972\) 5726.36 + 21379.8i 0.188964 + 0.705511i
\(973\) −38083.7 19365.7i −1.25479 0.638062i
\(974\) 17602.1 10162.6i 0.579064 0.334323i
\(975\) −705.072 270.668i −0.0231593 0.00889058i
\(976\) 42021.8i 1.37816i
\(977\) 32409.0i 1.06127i −0.847602 0.530633i \(-0.821954\pi\)
0.847602 0.530633i \(-0.178046\pi\)
\(978\) 8090.76 + 51089.8i 0.264534 + 1.67042i
\(979\) 6263.66 3616.33i 0.204482 0.118058i
\(980\) −16135.6 22133.0i −0.525951 0.721443i
\(981\) −37220.8 + 12092.1i −1.21139 + 0.393548i
\(982\) 8018.22 13888.0i 0.260562 0.451306i
\(983\) −14236.2 + 24657.9i −0.461918 + 0.800065i −0.999057 0.0434287i \(-0.986172\pi\)
0.537139 + 0.843494i \(0.319505\pi\)
\(984\) −1210.81 7645.76i −0.0392268 0.247701i
\(985\) −58815.7 + 33957.3i −1.90256 + 1.09845i
\(986\) 47079.6 81544.3i 1.52061 2.63377i
\(987\) −32529.6 36070.4i −1.04907 1.16325i
\(988\) −692.257 1199.02i −0.0222911 0.0386093i
\(989\) −15588.2 8999.87i −0.501190 0.289362i
\(990\) 7023.31 33035.5i 0.225470 1.06054i
\(991\) 9926.08 + 17192.5i 0.318176 + 0.551097i 0.980107 0.198468i \(-0.0635964\pi\)
−0.661932 + 0.749564i \(0.730263\pi\)
\(992\) −9493.78 −0.303859
\(993\) 22083.3 + 27271.8i 0.705734 + 0.871545i
\(994\) 1300.63 69.2223i 0.0415026 0.00220885i
\(995\) 27263.2 + 15740.4i 0.868646 + 0.501513i
\(996\) 9232.56 24050.2i 0.293720 0.765119i
\(997\) 8045.34 + 4644.98i 0.255565 + 0.147551i 0.622310 0.782771i \(-0.286194\pi\)
−0.366745 + 0.930322i \(0.619528\pi\)
\(998\) −58099.2 + 33543.6i −1.84278 + 1.06393i
\(999\) 617.510 11769.0i 0.0195567 0.372727i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.4.i.a.5.5 44
3.2 odd 2 189.4.i.a.152.18 44
7.3 odd 6 63.4.s.a.59.18 yes 44
9.2 odd 6 63.4.s.a.47.18 yes 44
9.7 even 3 189.4.s.a.89.5 44
21.17 even 6 189.4.s.a.17.5 44
63.38 even 6 inner 63.4.i.a.38.18 yes 44
63.52 odd 6 189.4.i.a.143.5 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.4.i.a.5.5 44 1.1 even 1 trivial
63.4.i.a.38.18 yes 44 63.38 even 6 inner
63.4.s.a.47.18 yes 44 9.2 odd 6
63.4.s.a.59.18 yes 44 7.3 odd 6
189.4.i.a.143.5 44 63.52 odd 6
189.4.i.a.152.18 44 3.2 odd 2
189.4.s.a.17.5 44 21.17 even 6
189.4.s.a.89.5 44 9.7 even 3