Properties

Label 626.4.a.d.1.11
Level $626$
Weight $4$
Character 626.1
Self dual yes
Analytic conductor $36.935$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [626,4,Mod(1,626)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("626.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(626, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 626 = 2 \cdot 313 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 626.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.9351956636\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 626.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -2.41450 q^{3} +4.00000 q^{4} +13.1695 q^{5} -4.82900 q^{6} +31.3107 q^{7} +8.00000 q^{8} -21.1702 q^{9} +26.3390 q^{10} +31.9442 q^{11} -9.65801 q^{12} +48.6300 q^{13} +62.6214 q^{14} -31.7977 q^{15} +16.0000 q^{16} -59.9639 q^{17} -42.3404 q^{18} +42.6947 q^{19} +52.6779 q^{20} -75.5997 q^{21} +63.8884 q^{22} +114.316 q^{23} -19.3160 q^{24} +48.4354 q^{25} +97.2601 q^{26} +116.307 q^{27} +125.243 q^{28} -100.304 q^{29} -63.5955 q^{30} -305.730 q^{31} +32.0000 q^{32} -77.1293 q^{33} -119.928 q^{34} +412.346 q^{35} -84.6807 q^{36} -217.137 q^{37} +85.3893 q^{38} -117.417 q^{39} +105.356 q^{40} -50.1667 q^{41} -151.199 q^{42} -43.0764 q^{43} +127.777 q^{44} -278.800 q^{45} +228.632 q^{46} +372.771 q^{47} -38.6320 q^{48} +637.359 q^{49} +96.8708 q^{50} +144.783 q^{51} +194.520 q^{52} -168.677 q^{53} +232.614 q^{54} +420.689 q^{55} +250.486 q^{56} -103.086 q^{57} -200.607 q^{58} -313.750 q^{59} -127.191 q^{60} +273.453 q^{61} -611.459 q^{62} -662.853 q^{63} +64.0000 q^{64} +640.433 q^{65} -154.259 q^{66} +361.493 q^{67} -239.856 q^{68} -276.016 q^{69} +824.691 q^{70} -449.493 q^{71} -169.361 q^{72} +549.733 q^{73} -434.275 q^{74} -116.947 q^{75} +170.779 q^{76} +1000.19 q^{77} -234.835 q^{78} +782.074 q^{79} +210.712 q^{80} +290.772 q^{81} -100.333 q^{82} -357.863 q^{83} -302.399 q^{84} -789.694 q^{85} -86.1528 q^{86} +242.183 q^{87} +255.554 q^{88} -975.788 q^{89} -557.601 q^{90} +1522.64 q^{91} +457.264 q^{92} +738.185 q^{93} +745.541 q^{94} +562.267 q^{95} -77.2640 q^{96} +1010.53 q^{97} +1274.72 q^{98} -676.264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 50 q^{2} + 16 q^{3} + 100 q^{4} + 40 q^{5} + 32 q^{6} + 51 q^{7} + 200 q^{8} + 351 q^{9} + 80 q^{10} + 178 q^{11} + 64 q^{12} + 142 q^{13} + 102 q^{14} + 151 q^{15} + 400 q^{16} + 339 q^{17} + 702 q^{18}+ \cdots + 2233 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −2.41450 −0.464671 −0.232336 0.972636i \(-0.574637\pi\)
−0.232336 + 0.972636i \(0.574637\pi\)
\(4\) 4.00000 0.500000
\(5\) 13.1695 1.17791 0.588957 0.808164i \(-0.299539\pi\)
0.588957 + 0.808164i \(0.299539\pi\)
\(6\) −4.82900 −0.328572
\(7\) 31.3107 1.69062 0.845309 0.534278i \(-0.179416\pi\)
0.845309 + 0.534278i \(0.179416\pi\)
\(8\) 8.00000 0.353553
\(9\) −21.1702 −0.784081
\(10\) 26.3390 0.832911
\(11\) 31.9442 0.875594 0.437797 0.899074i \(-0.355759\pi\)
0.437797 + 0.899074i \(0.355759\pi\)
\(12\) −9.65801 −0.232336
\(13\) 48.6300 1.03750 0.518752 0.854925i \(-0.326397\pi\)
0.518752 + 0.854925i \(0.326397\pi\)
\(14\) 62.6214 1.19545
\(15\) −31.7977 −0.547343
\(16\) 16.0000 0.250000
\(17\) −59.9639 −0.855493 −0.427747 0.903899i \(-0.640692\pi\)
−0.427747 + 0.903899i \(0.640692\pi\)
\(18\) −42.3404 −0.554429
\(19\) 42.6947 0.515517 0.257759 0.966209i \(-0.417016\pi\)
0.257759 + 0.966209i \(0.417016\pi\)
\(20\) 52.6779 0.588957
\(21\) −75.5997 −0.785581
\(22\) 63.8884 0.619139
\(23\) 114.316 1.03637 0.518185 0.855269i \(-0.326608\pi\)
0.518185 + 0.855269i \(0.326608\pi\)
\(24\) −19.3160 −0.164286
\(25\) 48.4354 0.387483
\(26\) 97.2601 0.733626
\(27\) 116.307 0.829011
\(28\) 125.243 0.845309
\(29\) −100.304 −0.642273 −0.321136 0.947033i \(-0.604065\pi\)
−0.321136 + 0.947033i \(0.604065\pi\)
\(30\) −63.5955 −0.387030
\(31\) −305.730 −1.77131 −0.885656 0.464342i \(-0.846291\pi\)
−0.885656 + 0.464342i \(0.846291\pi\)
\(32\) 32.0000 0.176777
\(33\) −77.1293 −0.406863
\(34\) −119.928 −0.604925
\(35\) 412.346 1.99140
\(36\) −84.6807 −0.392040
\(37\) −217.137 −0.964788 −0.482394 0.875954i \(-0.660233\pi\)
−0.482394 + 0.875954i \(0.660233\pi\)
\(38\) 85.3893 0.364526
\(39\) −117.417 −0.482098
\(40\) 105.356 0.416456
\(41\) −50.1667 −0.191091 −0.0955454 0.995425i \(-0.530460\pi\)
−0.0955454 + 0.995425i \(0.530460\pi\)
\(42\) −151.199 −0.555490
\(43\) −43.0764 −0.152770 −0.0763848 0.997078i \(-0.524338\pi\)
−0.0763848 + 0.997078i \(0.524338\pi\)
\(44\) 127.777 0.437797
\(45\) −278.800 −0.923580
\(46\) 228.632 0.732824
\(47\) 372.771 1.15690 0.578449 0.815719i \(-0.303658\pi\)
0.578449 + 0.815719i \(0.303658\pi\)
\(48\) −38.6320 −0.116168
\(49\) 637.359 1.85819
\(50\) 96.8708 0.273992
\(51\) 144.783 0.397523
\(52\) 194.520 0.518752
\(53\) −168.677 −0.437161 −0.218581 0.975819i \(-0.570143\pi\)
−0.218581 + 0.975819i \(0.570143\pi\)
\(54\) 232.614 0.586199
\(55\) 420.689 1.03138
\(56\) 250.486 0.597724
\(57\) −103.086 −0.239546
\(58\) −200.607 −0.454155
\(59\) −313.750 −0.692319 −0.346159 0.938176i \(-0.612514\pi\)
−0.346159 + 0.938176i \(0.612514\pi\)
\(60\) −127.191 −0.273671
\(61\) 273.453 0.573967 0.286984 0.957935i \(-0.407347\pi\)
0.286984 + 0.957935i \(0.407347\pi\)
\(62\) −611.459 −1.25251
\(63\) −662.853 −1.32558
\(64\) 64.0000 0.125000
\(65\) 640.433 1.22209
\(66\) −154.259 −0.287696
\(67\) 361.493 0.659155 0.329578 0.944128i \(-0.393094\pi\)
0.329578 + 0.944128i \(0.393094\pi\)
\(68\) −239.856 −0.427747
\(69\) −276.016 −0.481571
\(70\) 824.691 1.40814
\(71\) −449.493 −0.751338 −0.375669 0.926754i \(-0.622587\pi\)
−0.375669 + 0.926754i \(0.622587\pi\)
\(72\) −169.361 −0.277214
\(73\) 549.733 0.881388 0.440694 0.897657i \(-0.354732\pi\)
0.440694 + 0.897657i \(0.354732\pi\)
\(74\) −434.275 −0.682208
\(75\) −116.947 −0.180052
\(76\) 170.779 0.257759
\(77\) 1000.19 1.48030
\(78\) −234.835 −0.340895
\(79\) 782.074 1.11380 0.556900 0.830580i \(-0.311991\pi\)
0.556900 + 0.830580i \(0.311991\pi\)
\(80\) 210.712 0.294479
\(81\) 290.772 0.398864
\(82\) −100.333 −0.135122
\(83\) −357.863 −0.473260 −0.236630 0.971600i \(-0.576043\pi\)
−0.236630 + 0.971600i \(0.576043\pi\)
\(84\) −302.399 −0.392791
\(85\) −789.694 −1.00770
\(86\) −86.1528 −0.108024
\(87\) 242.183 0.298446
\(88\) 255.554 0.309569
\(89\) −975.788 −1.16217 −0.581086 0.813842i \(-0.697372\pi\)
−0.581086 + 0.813842i \(0.697372\pi\)
\(90\) −557.601 −0.653070
\(91\) 1522.64 1.75402
\(92\) 457.264 0.518185
\(93\) 738.185 0.823077
\(94\) 745.541 0.818050
\(95\) 562.267 0.607235
\(96\) −77.2640 −0.0821430
\(97\) 1010.53 1.05777 0.528887 0.848692i \(-0.322610\pi\)
0.528887 + 0.848692i \(0.322610\pi\)
\(98\) 1274.72 1.31394
\(99\) −676.264 −0.686537
\(100\) 193.742 0.193742
\(101\) 878.455 0.865441 0.432720 0.901528i \(-0.357554\pi\)
0.432720 + 0.901528i \(0.357554\pi\)
\(102\) 289.566 0.281091
\(103\) 604.590 0.578369 0.289184 0.957273i \(-0.406616\pi\)
0.289184 + 0.957273i \(0.406616\pi\)
\(104\) 389.040 0.366813
\(105\) −995.609 −0.925348
\(106\) −337.354 −0.309120
\(107\) 1380.57 1.24733 0.623667 0.781690i \(-0.285642\pi\)
0.623667 + 0.781690i \(0.285642\pi\)
\(108\) 465.228 0.414505
\(109\) −732.249 −0.643456 −0.321728 0.946832i \(-0.604264\pi\)
−0.321728 + 0.946832i \(0.604264\pi\)
\(110\) 841.377 0.729293
\(111\) 524.278 0.448309
\(112\) 500.971 0.422655
\(113\) 1644.07 1.36868 0.684341 0.729162i \(-0.260090\pi\)
0.684341 + 0.729162i \(0.260090\pi\)
\(114\) −206.173 −0.169385
\(115\) 1505.48 1.22076
\(116\) −401.214 −0.321136
\(117\) −1029.51 −0.813486
\(118\) −627.500 −0.489543
\(119\) −1877.51 −1.44631
\(120\) −254.382 −0.193515
\(121\) −310.568 −0.233335
\(122\) 546.905 0.405856
\(123\) 121.128 0.0887944
\(124\) −1222.92 −0.885656
\(125\) −1008.32 −0.721493
\(126\) −1325.71 −0.937328
\(127\) −2363.58 −1.65144 −0.825722 0.564077i \(-0.809232\pi\)
−0.825722 + 0.564077i \(0.809232\pi\)
\(128\) 128.000 0.0883883
\(129\) 104.008 0.0709876
\(130\) 1280.87 0.864148
\(131\) −1243.40 −0.829285 −0.414643 0.909984i \(-0.636093\pi\)
−0.414643 + 0.909984i \(0.636093\pi\)
\(132\) −308.517 −0.203432
\(133\) 1336.80 0.871543
\(134\) 722.986 0.466093
\(135\) 1531.70 0.976504
\(136\) −479.711 −0.302463
\(137\) 311.125 0.194023 0.0970117 0.995283i \(-0.469072\pi\)
0.0970117 + 0.995283i \(0.469072\pi\)
\(138\) −552.032 −0.340522
\(139\) −674.419 −0.411536 −0.205768 0.978601i \(-0.565969\pi\)
−0.205768 + 0.978601i \(0.565969\pi\)
\(140\) 1649.38 0.995702
\(141\) −900.055 −0.537577
\(142\) −898.986 −0.531276
\(143\) 1553.45 0.908432
\(144\) −338.723 −0.196020
\(145\) −1320.95 −0.756542
\(146\) 1099.47 0.623236
\(147\) −1538.90 −0.863447
\(148\) −868.549 −0.482394
\(149\) −777.281 −0.427365 −0.213682 0.976903i \(-0.568546\pi\)
−0.213682 + 0.976903i \(0.568546\pi\)
\(150\) −233.895 −0.127316
\(151\) −899.823 −0.484944 −0.242472 0.970158i \(-0.577958\pi\)
−0.242472 + 0.970158i \(0.577958\pi\)
\(152\) 341.557 0.182263
\(153\) 1269.45 0.670776
\(154\) 2000.39 1.04673
\(155\) −4026.30 −2.08645
\(156\) −469.669 −0.241049
\(157\) 1139.38 0.579187 0.289593 0.957150i \(-0.406480\pi\)
0.289593 + 0.957150i \(0.406480\pi\)
\(158\) 1564.15 0.787575
\(159\) 407.271 0.203136
\(160\) 421.424 0.208228
\(161\) 3579.31 1.75211
\(162\) 581.543 0.282039
\(163\) −892.421 −0.428833 −0.214417 0.976742i \(-0.568785\pi\)
−0.214417 + 0.976742i \(0.568785\pi\)
\(164\) −200.667 −0.0955454
\(165\) −1015.75 −0.479250
\(166\) −715.726 −0.334645
\(167\) 1354.18 0.627484 0.313742 0.949508i \(-0.398417\pi\)
0.313742 + 0.949508i \(0.398417\pi\)
\(168\) −604.798 −0.277745
\(169\) 167.880 0.0764131
\(170\) −1579.39 −0.712550
\(171\) −903.854 −0.404207
\(172\) −172.306 −0.0763848
\(173\) −3827.68 −1.68216 −0.841079 0.540913i \(-0.818079\pi\)
−0.841079 + 0.540913i \(0.818079\pi\)
\(174\) 484.366 0.211033
\(175\) 1516.55 0.655086
\(176\) 511.107 0.218899
\(177\) 757.550 0.321700
\(178\) −1951.58 −0.821780
\(179\) −3736.29 −1.56013 −0.780066 0.625697i \(-0.784815\pi\)
−0.780066 + 0.625697i \(0.784815\pi\)
\(180\) −1115.20 −0.461790
\(181\) −3855.37 −1.58325 −0.791623 0.611010i \(-0.790764\pi\)
−0.791623 + 0.611010i \(0.790764\pi\)
\(182\) 3045.28 1.24028
\(183\) −660.252 −0.266706
\(184\) 914.527 0.366412
\(185\) −2859.59 −1.13644
\(186\) 1476.37 0.582003
\(187\) −1915.50 −0.749065
\(188\) 1491.08 0.578449
\(189\) 3641.65 1.40154
\(190\) 1124.53 0.429380
\(191\) −358.483 −0.135806 −0.0679029 0.997692i \(-0.521631\pi\)
−0.0679029 + 0.997692i \(0.521631\pi\)
\(192\) −154.528 −0.0580839
\(193\) 485.330 0.181010 0.0905048 0.995896i \(-0.471152\pi\)
0.0905048 + 0.995896i \(0.471152\pi\)
\(194\) 2021.06 0.747959
\(195\) −1546.33 −0.567870
\(196\) 2549.44 0.929095
\(197\) 1630.34 0.589628 0.294814 0.955555i \(-0.404742\pi\)
0.294814 + 0.955555i \(0.404742\pi\)
\(198\) −1352.53 −0.485455
\(199\) 3915.98 1.39496 0.697479 0.716605i \(-0.254305\pi\)
0.697479 + 0.716605i \(0.254305\pi\)
\(200\) 387.483 0.136996
\(201\) −872.825 −0.306290
\(202\) 1756.91 0.611959
\(203\) −3140.57 −1.08584
\(204\) 579.132 0.198761
\(205\) −660.670 −0.225089
\(206\) 1209.18 0.408968
\(207\) −2420.09 −0.812598
\(208\) 778.080 0.259376
\(209\) 1363.85 0.451384
\(210\) −1991.22 −0.654320
\(211\) −2837.92 −0.925927 −0.462963 0.886377i \(-0.653214\pi\)
−0.462963 + 0.886377i \(0.653214\pi\)
\(212\) −674.707 −0.218581
\(213\) 1085.30 0.349125
\(214\) 2761.14 0.881998
\(215\) −567.294 −0.179950
\(216\) 930.456 0.293100
\(217\) −9572.60 −2.99461
\(218\) −1464.50 −0.454992
\(219\) −1327.33 −0.409556
\(220\) 1682.75 0.515688
\(221\) −2916.05 −0.887577
\(222\) 1048.56 0.317002
\(223\) 1470.72 0.441645 0.220822 0.975314i \(-0.429126\pi\)
0.220822 + 0.975314i \(0.429126\pi\)
\(224\) 1001.94 0.298862
\(225\) −1025.39 −0.303818
\(226\) 3288.14 0.967805
\(227\) −1176.66 −0.344043 −0.172021 0.985093i \(-0.555030\pi\)
−0.172021 + 0.985093i \(0.555030\pi\)
\(228\) −412.345 −0.119773
\(229\) 1563.34 0.451129 0.225565 0.974228i \(-0.427577\pi\)
0.225565 + 0.974228i \(0.427577\pi\)
\(230\) 3010.96 0.863205
\(231\) −2414.97 −0.687851
\(232\) −802.429 −0.227078
\(233\) 1205.41 0.338924 0.169462 0.985537i \(-0.445797\pi\)
0.169462 + 0.985537i \(0.445797\pi\)
\(234\) −2059.01 −0.575222
\(235\) 4909.20 1.36273
\(236\) −1255.00 −0.346159
\(237\) −1888.32 −0.517550
\(238\) −3755.02 −1.02270
\(239\) −6209.66 −1.68062 −0.840312 0.542102i \(-0.817628\pi\)
−0.840312 + 0.542102i \(0.817628\pi\)
\(240\) −508.764 −0.136836
\(241\) −3873.34 −1.03529 −0.517643 0.855597i \(-0.673190\pi\)
−0.517643 + 0.855597i \(0.673190\pi\)
\(242\) −621.137 −0.164993
\(243\) −3842.36 −1.01435
\(244\) 1093.81 0.286984
\(245\) 8393.69 2.18879
\(246\) 242.255 0.0627871
\(247\) 2076.24 0.534851
\(248\) −2445.84 −0.626253
\(249\) 864.060 0.219910
\(250\) −2016.63 −0.510172
\(251\) −4704.21 −1.18298 −0.591489 0.806313i \(-0.701460\pi\)
−0.591489 + 0.806313i \(0.701460\pi\)
\(252\) −2651.41 −0.662791
\(253\) 3651.73 0.907440
\(254\) −4727.15 −1.16775
\(255\) 1906.72 0.468248
\(256\) 256.000 0.0625000
\(257\) 649.133 0.157556 0.0787779 0.996892i \(-0.474898\pi\)
0.0787779 + 0.996892i \(0.474898\pi\)
\(258\) 208.016 0.0501958
\(259\) −6798.72 −1.63109
\(260\) 2561.73 0.611045
\(261\) 2123.45 0.503594
\(262\) −2486.80 −0.586393
\(263\) −5152.41 −1.20803 −0.604014 0.796974i \(-0.706433\pi\)
−0.604014 + 0.796974i \(0.706433\pi\)
\(264\) −617.034 −0.143848
\(265\) −2221.39 −0.514939
\(266\) 2673.60 0.616274
\(267\) 2356.04 0.540028
\(268\) 1445.97 0.329578
\(269\) 6092.70 1.38096 0.690480 0.723351i \(-0.257399\pi\)
0.690480 + 0.723351i \(0.257399\pi\)
\(270\) 3063.41 0.690493
\(271\) 6681.27 1.49763 0.748816 0.662778i \(-0.230623\pi\)
0.748816 + 0.662778i \(0.230623\pi\)
\(272\) −959.423 −0.213873
\(273\) −3676.42 −0.815043
\(274\) 622.250 0.137195
\(275\) 1547.23 0.339278
\(276\) −1104.06 −0.240786
\(277\) 5127.44 1.11219 0.556097 0.831117i \(-0.312298\pi\)
0.556097 + 0.831117i \(0.312298\pi\)
\(278\) −1348.84 −0.291000
\(279\) 6472.35 1.38885
\(280\) 3298.77 0.704068
\(281\) 6161.22 1.30800 0.653999 0.756495i \(-0.273090\pi\)
0.653999 + 0.756495i \(0.273090\pi\)
\(282\) −1800.11 −0.380124
\(283\) −669.144 −0.140553 −0.0702764 0.997528i \(-0.522388\pi\)
−0.0702764 + 0.997528i \(0.522388\pi\)
\(284\) −1797.97 −0.375669
\(285\) −1357.59 −0.282165
\(286\) 3106.89 0.642358
\(287\) −1570.75 −0.323062
\(288\) −677.446 −0.138607
\(289\) −1317.33 −0.268131
\(290\) −2641.89 −0.534956
\(291\) −2439.93 −0.491517
\(292\) 2198.93 0.440694
\(293\) 6111.15 1.21849 0.609244 0.792982i \(-0.291473\pi\)
0.609244 + 0.792982i \(0.291473\pi\)
\(294\) −3077.81 −0.610549
\(295\) −4131.93 −0.815492
\(296\) −1737.10 −0.341104
\(297\) 3715.33 0.725877
\(298\) −1554.56 −0.302192
\(299\) 5559.18 1.07524
\(300\) −467.789 −0.0900261
\(301\) −1348.75 −0.258275
\(302\) −1799.65 −0.342907
\(303\) −2121.03 −0.402145
\(304\) 683.115 0.128879
\(305\) 3601.23 0.676085
\(306\) 2538.89 0.474310
\(307\) −5430.67 −1.00959 −0.504796 0.863238i \(-0.668432\pi\)
−0.504796 + 0.863238i \(0.668432\pi\)
\(308\) 4000.78 0.740148
\(309\) −1459.78 −0.268751
\(310\) −8052.60 −1.47535
\(311\) −9228.67 −1.68267 −0.841335 0.540515i \(-0.818230\pi\)
−0.841335 + 0.540515i \(0.818230\pi\)
\(312\) −939.338 −0.170447
\(313\) 313.000 0.0565233
\(314\) 2278.76 0.409547
\(315\) −8729.43 −1.56142
\(316\) 3128.29 0.556900
\(317\) 5573.47 0.987499 0.493749 0.869604i \(-0.335626\pi\)
0.493749 + 0.869604i \(0.335626\pi\)
\(318\) 814.541 0.143639
\(319\) −3204.12 −0.562370
\(320\) 842.847 0.147239
\(321\) −3333.39 −0.579600
\(322\) 7158.62 1.23893
\(323\) −2560.14 −0.441022
\(324\) 1163.09 0.199432
\(325\) 2355.41 0.402015
\(326\) −1784.84 −0.303231
\(327\) 1768.02 0.298995
\(328\) −401.334 −0.0675608
\(329\) 11671.7 1.95587
\(330\) −2031.51 −0.338881
\(331\) −2722.75 −0.452132 −0.226066 0.974112i \(-0.572587\pi\)
−0.226066 + 0.974112i \(0.572587\pi\)
\(332\) −1431.45 −0.236630
\(333\) 4596.84 0.756472
\(334\) 2708.36 0.443698
\(335\) 4760.68 0.776429
\(336\) −1209.60 −0.196395
\(337\) −4755.70 −0.768722 −0.384361 0.923183i \(-0.625578\pi\)
−0.384361 + 0.923183i \(0.625578\pi\)
\(338\) 335.759 0.0540322
\(339\) −3969.61 −0.635987
\(340\) −3158.78 −0.503849
\(341\) −9766.29 −1.55095
\(342\) −1807.71 −0.285818
\(343\) 9216.59 1.45087
\(344\) −344.611 −0.0540122
\(345\) −3634.99 −0.567250
\(346\) −7655.36 −1.18946
\(347\) 9543.31 1.47640 0.738201 0.674581i \(-0.235676\pi\)
0.738201 + 0.674581i \(0.235676\pi\)
\(348\) 968.733 0.149223
\(349\) 1659.02 0.254456 0.127228 0.991873i \(-0.459392\pi\)
0.127228 + 0.991873i \(0.459392\pi\)
\(350\) 3033.09 0.463216
\(351\) 5656.01 0.860101
\(352\) 1022.21 0.154785
\(353\) 3483.10 0.525174 0.262587 0.964908i \(-0.415424\pi\)
0.262587 + 0.964908i \(0.415424\pi\)
\(354\) 1515.10 0.227477
\(355\) −5919.59 −0.885012
\(356\) −3903.15 −0.581086
\(357\) 4533.25 0.672060
\(358\) −7472.59 −1.10318
\(359\) 6864.34 1.00915 0.504577 0.863367i \(-0.331649\pi\)
0.504577 + 0.863367i \(0.331649\pi\)
\(360\) −2230.40 −0.326535
\(361\) −5036.17 −0.734242
\(362\) −7710.74 −1.11952
\(363\) 749.868 0.108424
\(364\) 6090.56 0.877011
\(365\) 7239.70 1.03820
\(366\) −1320.50 −0.188590
\(367\) −1332.52 −0.189528 −0.0947641 0.995500i \(-0.530210\pi\)
−0.0947641 + 0.995500i \(0.530210\pi\)
\(368\) 1829.05 0.259093
\(369\) 1062.04 0.149831
\(370\) −5719.18 −0.803583
\(371\) −5281.39 −0.739073
\(372\) 2952.74 0.411539
\(373\) 3635.23 0.504625 0.252313 0.967646i \(-0.418809\pi\)
0.252313 + 0.967646i \(0.418809\pi\)
\(374\) −3831.00 −0.529669
\(375\) 2434.58 0.335257
\(376\) 2982.16 0.409025
\(377\) −4877.77 −0.666360
\(378\) 7283.30 0.991039
\(379\) −6746.47 −0.914361 −0.457181 0.889374i \(-0.651141\pi\)
−0.457181 + 0.889374i \(0.651141\pi\)
\(380\) 2249.07 0.303618
\(381\) 5706.86 0.767378
\(382\) −716.966 −0.0960292
\(383\) −14523.4 −1.93763 −0.968816 0.247780i \(-0.920299\pi\)
−0.968816 + 0.247780i \(0.920299\pi\)
\(384\) −309.056 −0.0410715
\(385\) 13172.1 1.74366
\(386\) 970.660 0.127993
\(387\) 911.936 0.119784
\(388\) 4042.13 0.528887
\(389\) −9524.62 −1.24143 −0.620717 0.784035i \(-0.713158\pi\)
−0.620717 + 0.784035i \(0.713158\pi\)
\(390\) −3092.65 −0.401545
\(391\) −6854.83 −0.886608
\(392\) 5098.87 0.656969
\(393\) 3002.19 0.385345
\(394\) 3260.67 0.416930
\(395\) 10299.5 1.31196
\(396\) −2705.06 −0.343268
\(397\) 1990.99 0.251699 0.125850 0.992049i \(-0.459834\pi\)
0.125850 + 0.992049i \(0.459834\pi\)
\(398\) 7831.97 0.986384
\(399\) −3227.70 −0.404981
\(400\) 774.966 0.0968708
\(401\) −14394.5 −1.79259 −0.896296 0.443456i \(-0.853752\pi\)
−0.896296 + 0.443456i \(0.853752\pi\)
\(402\) −1745.65 −0.216580
\(403\) −14867.6 −1.83774
\(404\) 3513.82 0.432720
\(405\) 3829.31 0.469827
\(406\) −6281.15 −0.767803
\(407\) −6936.28 −0.844763
\(408\) 1158.26 0.140546
\(409\) −9881.22 −1.19461 −0.597305 0.802015i \(-0.703762\pi\)
−0.597305 + 0.802015i \(0.703762\pi\)
\(410\) −1321.34 −0.159162
\(411\) −751.212 −0.0901570
\(412\) 2418.36 0.289184
\(413\) −9823.74 −1.17045
\(414\) −4840.18 −0.574593
\(415\) −4712.87 −0.557459
\(416\) 1556.16 0.183406
\(417\) 1628.39 0.191229
\(418\) 2727.69 0.319177
\(419\) −8409.17 −0.980465 −0.490232 0.871592i \(-0.663088\pi\)
−0.490232 + 0.871592i \(0.663088\pi\)
\(420\) −3982.44 −0.462674
\(421\) −2527.03 −0.292541 −0.146271 0.989245i \(-0.546727\pi\)
−0.146271 + 0.989245i \(0.546727\pi\)
\(422\) −5675.84 −0.654729
\(423\) −7891.62 −0.907101
\(424\) −1349.41 −0.154560
\(425\) −2904.38 −0.331489
\(426\) 2170.60 0.246869
\(427\) 8561.99 0.970360
\(428\) 5522.28 0.623667
\(429\) −3750.80 −0.422122
\(430\) −1134.59 −0.127244
\(431\) −612.663 −0.0684709 −0.0342355 0.999414i \(-0.510900\pi\)
−0.0342355 + 0.999414i \(0.510900\pi\)
\(432\) 1860.91 0.207253
\(433\) 6878.34 0.763399 0.381700 0.924286i \(-0.375339\pi\)
0.381700 + 0.924286i \(0.375339\pi\)
\(434\) −19145.2 −2.11751
\(435\) 3189.43 0.351543
\(436\) −2929.00 −0.321728
\(437\) 4880.68 0.534267
\(438\) −2654.66 −0.289600
\(439\) 10905.3 1.18561 0.592804 0.805347i \(-0.298021\pi\)
0.592804 + 0.805347i \(0.298021\pi\)
\(440\) 3365.51 0.364646
\(441\) −13493.0 −1.45697
\(442\) −5832.09 −0.627612
\(443\) 4473.36 0.479765 0.239882 0.970802i \(-0.422891\pi\)
0.239882 + 0.970802i \(0.422891\pi\)
\(444\) 2097.11 0.224155
\(445\) −12850.6 −1.36894
\(446\) 2941.44 0.312290
\(447\) 1876.75 0.198584
\(448\) 2003.88 0.211327
\(449\) −13836.8 −1.45434 −0.727171 0.686456i \(-0.759165\pi\)
−0.727171 + 0.686456i \(0.759165\pi\)
\(450\) −2050.77 −0.214832
\(451\) −1602.54 −0.167318
\(452\) 6576.28 0.684341
\(453\) 2172.62 0.225340
\(454\) −2353.32 −0.243275
\(455\) 20052.4 2.06609
\(456\) −824.691 −0.0846923
\(457\) 10802.0 1.10568 0.552842 0.833286i \(-0.313543\pi\)
0.552842 + 0.833286i \(0.313543\pi\)
\(458\) 3126.69 0.318997
\(459\) −6974.22 −0.709213
\(460\) 6021.93 0.610378
\(461\) −1528.99 −0.154473 −0.0772366 0.997013i \(-0.524610\pi\)
−0.0772366 + 0.997013i \(0.524610\pi\)
\(462\) −4829.94 −0.486384
\(463\) 2301.24 0.230989 0.115494 0.993308i \(-0.463155\pi\)
0.115494 + 0.993308i \(0.463155\pi\)
\(464\) −1604.86 −0.160568
\(465\) 9721.51 0.969515
\(466\) 2410.83 0.239655
\(467\) −3794.11 −0.375954 −0.187977 0.982173i \(-0.560193\pi\)
−0.187977 + 0.982173i \(0.560193\pi\)
\(468\) −4118.03 −0.406743
\(469\) 11318.6 1.11438
\(470\) 9818.40 0.963593
\(471\) −2751.03 −0.269131
\(472\) −2510.00 −0.244772
\(473\) −1376.04 −0.133764
\(474\) −3776.64 −0.365963
\(475\) 2067.93 0.199754
\(476\) −7510.05 −0.723156
\(477\) 3570.92 0.342770
\(478\) −12419.3 −1.18838
\(479\) 5385.96 0.513760 0.256880 0.966443i \(-0.417305\pi\)
0.256880 + 0.966443i \(0.417305\pi\)
\(480\) −1017.53 −0.0967575
\(481\) −10559.4 −1.00097
\(482\) −7746.68 −0.732058
\(483\) −8642.25 −0.814153
\(484\) −1242.27 −0.116667
\(485\) 13308.2 1.24597
\(486\) −7684.71 −0.717254
\(487\) 13683.2 1.27319 0.636595 0.771199i \(-0.280342\pi\)
0.636595 + 0.771199i \(0.280342\pi\)
\(488\) 2187.62 0.202928
\(489\) 2154.75 0.199266
\(490\) 16787.4 1.54771
\(491\) 6428.10 0.590827 0.295413 0.955370i \(-0.404543\pi\)
0.295413 + 0.955370i \(0.404543\pi\)
\(492\) 484.510 0.0443972
\(493\) 6014.60 0.549460
\(494\) 4152.49 0.378197
\(495\) −8906.06 −0.808682
\(496\) −4891.67 −0.442828
\(497\) −14073.9 −1.27023
\(498\) 1728.12 0.155500
\(499\) 12256.6 1.09956 0.549782 0.835308i \(-0.314711\pi\)
0.549782 + 0.835308i \(0.314711\pi\)
\(500\) −4033.27 −0.360746
\(501\) −3269.67 −0.291573
\(502\) −9408.43 −0.836491
\(503\) −2499.20 −0.221539 −0.110769 0.993846i \(-0.535331\pi\)
−0.110769 + 0.993846i \(0.535331\pi\)
\(504\) −5302.82 −0.468664
\(505\) 11568.8 1.01942
\(506\) 7303.46 0.641657
\(507\) −405.345 −0.0355069
\(508\) −9454.30 −0.825722
\(509\) 17573.2 1.53029 0.765146 0.643857i \(-0.222667\pi\)
0.765146 + 0.643857i \(0.222667\pi\)
\(510\) 3813.43 0.331101
\(511\) 17212.5 1.49009
\(512\) 512.000 0.0441942
\(513\) 4965.69 0.427369
\(514\) 1298.27 0.111409
\(515\) 7962.13 0.681269
\(516\) 416.032 0.0354938
\(517\) 11907.9 1.01297
\(518\) −13597.4 −1.15335
\(519\) 9241.94 0.781650
\(520\) 5123.46 0.432074
\(521\) −12697.2 −1.06770 −0.533851 0.845578i \(-0.679256\pi\)
−0.533851 + 0.845578i \(0.679256\pi\)
\(522\) 4246.89 0.356095
\(523\) 11541.7 0.964978 0.482489 0.875902i \(-0.339733\pi\)
0.482489 + 0.875902i \(0.339733\pi\)
\(524\) −4973.60 −0.414643
\(525\) −3661.70 −0.304399
\(526\) −10304.8 −0.854205
\(527\) 18332.7 1.51535
\(528\) −1234.07 −0.101716
\(529\) 901.123 0.0740628
\(530\) −4442.78 −0.364117
\(531\) 6642.15 0.542834
\(532\) 5347.20 0.435771
\(533\) −2439.61 −0.198257
\(534\) 4712.08 0.381857
\(535\) 18181.4 1.46925
\(536\) 2891.94 0.233047
\(537\) 9021.29 0.724948
\(538\) 12185.4 0.976486
\(539\) 20359.9 1.62702
\(540\) 6126.81 0.488252
\(541\) −18020.6 −1.43210 −0.716051 0.698048i \(-0.754052\pi\)
−0.716051 + 0.698048i \(0.754052\pi\)
\(542\) 13362.5 1.05899
\(543\) 9308.80 0.735689
\(544\) −1918.85 −0.151231
\(545\) −9643.34 −0.757936
\(546\) −7352.83 −0.576323
\(547\) 17542.8 1.37126 0.685629 0.727951i \(-0.259527\pi\)
0.685629 + 0.727951i \(0.259527\pi\)
\(548\) 1244.50 0.0970117
\(549\) −5789.04 −0.450037
\(550\) 3094.46 0.239906
\(551\) −4282.43 −0.331103
\(552\) −2208.13 −0.170261
\(553\) 24487.3 1.88301
\(554\) 10254.9 0.786441
\(555\) 6904.48 0.528070
\(556\) −2697.68 −0.205768
\(557\) −12860.7 −0.978321 −0.489160 0.872194i \(-0.662697\pi\)
−0.489160 + 0.872194i \(0.662697\pi\)
\(558\) 12944.7 0.982066
\(559\) −2094.81 −0.158499
\(560\) 6597.53 0.497851
\(561\) 4624.98 0.348069
\(562\) 12322.4 0.924894
\(563\) 7577.64 0.567246 0.283623 0.958936i \(-0.408464\pi\)
0.283623 + 0.958936i \(0.408464\pi\)
\(564\) −3600.22 −0.268788
\(565\) 21651.6 1.61219
\(566\) −1338.29 −0.0993859
\(567\) 9104.26 0.674326
\(568\) −3595.94 −0.265638
\(569\) 2939.67 0.216586 0.108293 0.994119i \(-0.465462\pi\)
0.108293 + 0.994119i \(0.465462\pi\)
\(570\) −2715.19 −0.199521
\(571\) −24699.3 −1.81022 −0.905108 0.425181i \(-0.860210\pi\)
−0.905108 + 0.425181i \(0.860210\pi\)
\(572\) 6213.79 0.454216
\(573\) 865.558 0.0631050
\(574\) −3141.51 −0.228439
\(575\) 5536.93 0.401576
\(576\) −1354.89 −0.0980101
\(577\) 2379.15 0.171656 0.0858279 0.996310i \(-0.472646\pi\)
0.0858279 + 0.996310i \(0.472646\pi\)
\(578\) −2634.66 −0.189597
\(579\) −1171.83 −0.0841099
\(580\) −5283.79 −0.378271
\(581\) −11204.9 −0.800101
\(582\) −4879.86 −0.347555
\(583\) −5388.25 −0.382776
\(584\) 4397.86 0.311618
\(585\) −13558.1 −0.958218
\(586\) 12222.3 0.861602
\(587\) −1807.02 −0.127059 −0.0635295 0.997980i \(-0.520236\pi\)
−0.0635295 + 0.997980i \(0.520236\pi\)
\(588\) −6155.62 −0.431724
\(589\) −13053.0 −0.913142
\(590\) −8263.86 −0.576640
\(591\) −3936.45 −0.273983
\(592\) −3474.20 −0.241197
\(593\) −12579.2 −0.871104 −0.435552 0.900164i \(-0.643447\pi\)
−0.435552 + 0.900164i \(0.643447\pi\)
\(594\) 7430.67 0.513273
\(595\) −24725.9 −1.70363
\(596\) −3109.12 −0.213682
\(597\) −9455.15 −0.648197
\(598\) 11118.4 0.760308
\(599\) 12501.1 0.852723 0.426361 0.904553i \(-0.359795\pi\)
0.426361 + 0.904553i \(0.359795\pi\)
\(600\) −935.578 −0.0636581
\(601\) 19561.0 1.32764 0.663818 0.747894i \(-0.268935\pi\)
0.663818 + 0.747894i \(0.268935\pi\)
\(602\) −2697.50 −0.182628
\(603\) −7652.87 −0.516831
\(604\) −3599.29 −0.242472
\(605\) −4090.03 −0.274848
\(606\) −4242.06 −0.284360
\(607\) −26049.7 −1.74188 −0.870942 0.491386i \(-0.836490\pi\)
−0.870942 + 0.491386i \(0.836490\pi\)
\(608\) 1366.23 0.0911314
\(609\) 7582.92 0.504557
\(610\) 7202.46 0.478064
\(611\) 18127.8 1.20028
\(612\) 5077.79 0.335388
\(613\) −10439.2 −0.687823 −0.343911 0.939002i \(-0.611752\pi\)
−0.343911 + 0.939002i \(0.611752\pi\)
\(614\) −10861.3 −0.713890
\(615\) 1595.19 0.104592
\(616\) 8001.56 0.523364
\(617\) 24810.8 1.61887 0.809437 0.587207i \(-0.199772\pi\)
0.809437 + 0.587207i \(0.199772\pi\)
\(618\) −2919.56 −0.190036
\(619\) 27224.0 1.76773 0.883864 0.467744i \(-0.154933\pi\)
0.883864 + 0.467744i \(0.154933\pi\)
\(620\) −16105.2 −1.04323
\(621\) 13295.7 0.859162
\(622\) −18457.3 −1.18983
\(623\) −30552.6 −1.96479
\(624\) −1878.68 −0.120524
\(625\) −19333.4 −1.23734
\(626\) 626.000 0.0399680
\(627\) −3293.01 −0.209745
\(628\) 4557.52 0.289593
\(629\) 13020.4 0.825370
\(630\) −17458.9 −1.10409
\(631\) −20277.6 −1.27930 −0.639650 0.768667i \(-0.720921\pi\)
−0.639650 + 0.768667i \(0.720921\pi\)
\(632\) 6256.59 0.393788
\(633\) 6852.16 0.430251
\(634\) 11146.9 0.698267
\(635\) −31127.1 −1.94526
\(636\) 1629.08 0.101568
\(637\) 30994.8 1.92788
\(638\) −6408.23 −0.397656
\(639\) 9515.85 0.589110
\(640\) 1685.69 0.104114
\(641\) 8812.26 0.543001 0.271500 0.962438i \(-0.412480\pi\)
0.271500 + 0.962438i \(0.412480\pi\)
\(642\) −6666.78 −0.409839
\(643\) −22072.2 −1.35372 −0.676861 0.736111i \(-0.736660\pi\)
−0.676861 + 0.736111i \(0.736660\pi\)
\(644\) 14317.2 0.876053
\(645\) 1369.73 0.0836173
\(646\) −5120.28 −0.311849
\(647\) 8614.02 0.523419 0.261710 0.965147i \(-0.415714\pi\)
0.261710 + 0.965147i \(0.415714\pi\)
\(648\) 2326.17 0.141020
\(649\) −10022.5 −0.606190
\(650\) 4710.83 0.284268
\(651\) 23113.1 1.39151
\(652\) −3569.69 −0.214417
\(653\) −9785.80 −0.586444 −0.293222 0.956044i \(-0.594728\pi\)
−0.293222 + 0.956044i \(0.594728\pi\)
\(654\) 3536.03 0.211422
\(655\) −16374.9 −0.976827
\(656\) −802.667 −0.0477727
\(657\) −11637.9 −0.691080
\(658\) 23343.4 1.38301
\(659\) −5647.85 −0.333853 −0.166926 0.985969i \(-0.553384\pi\)
−0.166926 + 0.985969i \(0.553384\pi\)
\(660\) −4063.01 −0.239625
\(661\) 3365.97 0.198065 0.0990325 0.995084i \(-0.468425\pi\)
0.0990325 + 0.995084i \(0.468425\pi\)
\(662\) −5445.49 −0.319706
\(663\) 7040.80 0.412431
\(664\) −2862.90 −0.167323
\(665\) 17605.0 1.02660
\(666\) 9193.68 0.534906
\(667\) −11466.3 −0.665632
\(668\) 5416.73 0.313742
\(669\) −3551.06 −0.205219
\(670\) 9521.36 0.549018
\(671\) 8735.22 0.502563
\(672\) −2419.19 −0.138872
\(673\) 10650.6 0.610030 0.305015 0.952348i \(-0.401339\pi\)
0.305015 + 0.952348i \(0.401339\pi\)
\(674\) −9511.40 −0.543569
\(675\) 5633.37 0.321228
\(676\) 671.518 0.0382065
\(677\) 12454.3 0.707028 0.353514 0.935429i \(-0.384987\pi\)
0.353514 + 0.935429i \(0.384987\pi\)
\(678\) −7939.22 −0.449711
\(679\) 31640.5 1.78829
\(680\) −6317.55 −0.356275
\(681\) 2841.05 0.159867
\(682\) −19532.6 −1.09669
\(683\) −24732.9 −1.38562 −0.692810 0.721120i \(-0.743628\pi\)
−0.692810 + 0.721120i \(0.743628\pi\)
\(684\) −3615.42 −0.202104
\(685\) 4097.36 0.228543
\(686\) 18433.2 1.02592
\(687\) −3774.69 −0.209627
\(688\) −689.223 −0.0381924
\(689\) −8202.76 −0.453556
\(690\) −7269.98 −0.401106
\(691\) 23654.6 1.30226 0.651130 0.758966i \(-0.274295\pi\)
0.651130 + 0.758966i \(0.274295\pi\)
\(692\) −15310.7 −0.841079
\(693\) −21174.3 −1.16067
\(694\) 19086.6 1.04397
\(695\) −8881.76 −0.484754
\(696\) 1937.47 0.105516
\(697\) 3008.19 0.163477
\(698\) 3318.04 0.179928
\(699\) −2910.47 −0.157488
\(700\) 6066.18 0.327543
\(701\) 9197.68 0.495566 0.247783 0.968816i \(-0.420298\pi\)
0.247783 + 0.968816i \(0.420298\pi\)
\(702\) 11312.0 0.608183
\(703\) −9270.61 −0.497365
\(704\) 2044.43 0.109449
\(705\) −11853.3 −0.633220
\(706\) 6966.19 0.371354
\(707\) 27505.0 1.46313
\(708\) 3030.20 0.160850
\(709\) 33840.9 1.79255 0.896277 0.443496i \(-0.146262\pi\)
0.896277 + 0.443496i \(0.146262\pi\)
\(710\) −11839.2 −0.625798
\(711\) −16556.6 −0.873309
\(712\) −7806.30 −0.410890
\(713\) −34949.8 −1.83573
\(714\) 9066.51 0.475218
\(715\) 20458.1 1.07006
\(716\) −14945.2 −0.780066
\(717\) 14993.2 0.780938
\(718\) 13728.7 0.713579
\(719\) −32933.1 −1.70820 −0.854102 0.520105i \(-0.825893\pi\)
−0.854102 + 0.520105i \(0.825893\pi\)
\(720\) −4460.81 −0.230895
\(721\) 18930.1 0.977801
\(722\) −10072.3 −0.519187
\(723\) 9352.19 0.481067
\(724\) −15421.5 −0.791623
\(725\) −4858.24 −0.248870
\(726\) 1499.74 0.0766672
\(727\) 34287.8 1.74919 0.874596 0.484852i \(-0.161126\pi\)
0.874596 + 0.484852i \(0.161126\pi\)
\(728\) 12181.1 0.620140
\(729\) 1426.54 0.0724759
\(730\) 14479.4 0.734119
\(731\) 2583.03 0.130693
\(732\) −2641.01 −0.133353
\(733\) 21750.3 1.09600 0.547998 0.836480i \(-0.315390\pi\)
0.547998 + 0.836480i \(0.315390\pi\)
\(734\) −2665.03 −0.134017
\(735\) −20266.6 −1.01707
\(736\) 3658.11 0.183206
\(737\) 11547.6 0.577153
\(738\) 2124.08 0.105946
\(739\) 15996.8 0.796280 0.398140 0.917325i \(-0.369656\pi\)
0.398140 + 0.917325i \(0.369656\pi\)
\(740\) −11438.4 −0.568219
\(741\) −5013.09 −0.248530
\(742\) −10562.8 −0.522603
\(743\) −24335.4 −1.20159 −0.600793 0.799405i \(-0.705148\pi\)
−0.600793 + 0.799405i \(0.705148\pi\)
\(744\) 5905.48 0.291002
\(745\) −10236.4 −0.503399
\(746\) 7270.47 0.356824
\(747\) 7576.02 0.371074
\(748\) −7662.00 −0.374533
\(749\) 43226.6 2.10877
\(750\) 4869.16 0.237062
\(751\) −7852.93 −0.381568 −0.190784 0.981632i \(-0.561103\pi\)
−0.190784 + 0.981632i \(0.561103\pi\)
\(752\) 5964.33 0.289224
\(753\) 11358.3 0.549695
\(754\) −9755.53 −0.471188
\(755\) −11850.2 −0.571223
\(756\) 14566.6 0.700770
\(757\) 28080.7 1.34823 0.674116 0.738625i \(-0.264525\pi\)
0.674116 + 0.738625i \(0.264525\pi\)
\(758\) −13492.9 −0.646551
\(759\) −8817.11 −0.421661
\(760\) 4498.13 0.214690
\(761\) −36954.5 −1.76032 −0.880158 0.474681i \(-0.842563\pi\)
−0.880158 + 0.474681i \(0.842563\pi\)
\(762\) 11413.7 0.542618
\(763\) −22927.2 −1.08784
\(764\) −1433.93 −0.0679029
\(765\) 16718.0 0.790117
\(766\) −29046.9 −1.37011
\(767\) −15257.7 −0.718283
\(768\) −618.112 −0.0290419
\(769\) 23536.0 1.10368 0.551841 0.833950i \(-0.313926\pi\)
0.551841 + 0.833950i \(0.313926\pi\)
\(770\) 26344.1 1.23296
\(771\) −1567.33 −0.0732116
\(772\) 1941.32 0.0905048
\(773\) −33874.0 −1.57615 −0.788074 0.615580i \(-0.788922\pi\)
−0.788074 + 0.615580i \(0.788922\pi\)
\(774\) 1823.87 0.0846999
\(775\) −14808.1 −0.686353
\(776\) 8084.26 0.373979
\(777\) 16415.5 0.757920
\(778\) −19049.2 −0.877826
\(779\) −2141.85 −0.0985106
\(780\) −6185.30 −0.283935
\(781\) −14358.7 −0.657867
\(782\) −13709.7 −0.626926
\(783\) −11666.0 −0.532451
\(784\) 10197.7 0.464548
\(785\) 15005.0 0.682233
\(786\) 6004.38 0.272480
\(787\) −37968.0 −1.71971 −0.859857 0.510536i \(-0.829447\pi\)
−0.859857 + 0.510536i \(0.829447\pi\)
\(788\) 6521.34 0.294814
\(789\) 12440.5 0.561336
\(790\) 20599.0 0.927696
\(791\) 51477.0 2.31392
\(792\) −5410.12 −0.242727
\(793\) 13298.0 0.595493
\(794\) 3981.97 0.177978
\(795\) 5363.54 0.239277
\(796\) 15663.9 0.697479
\(797\) 5028.90 0.223504 0.111752 0.993736i \(-0.464354\pi\)
0.111752 + 0.993736i \(0.464354\pi\)
\(798\) −6455.41 −0.286365
\(799\) −22352.8 −0.989718
\(800\) 1549.93 0.0684980
\(801\) 20657.6 0.911237
\(802\) −28789.1 −1.26755
\(803\) 17560.8 0.771739
\(804\) −3491.30 −0.153145
\(805\) 47137.7 2.06383
\(806\) −29735.3 −1.29948
\(807\) −14710.8 −0.641692
\(808\) 7027.64 0.305980
\(809\) −31912.2 −1.38686 −0.693432 0.720522i \(-0.743902\pi\)
−0.693432 + 0.720522i \(0.743902\pi\)
\(810\) 7658.62 0.332218
\(811\) −13259.7 −0.574121 −0.287061 0.957912i \(-0.592678\pi\)
−0.287061 + 0.957912i \(0.592678\pi\)
\(812\) −12562.3 −0.542919
\(813\) −16131.9 −0.695906
\(814\) −13872.6 −0.597338
\(815\) −11752.7 −0.505129
\(816\) 2316.53 0.0993807
\(817\) −1839.13 −0.0787554
\(818\) −19762.4 −0.844716
\(819\) −32234.6 −1.37530
\(820\) −2642.68 −0.112544
\(821\) 33014.7 1.40344 0.701718 0.712455i \(-0.252417\pi\)
0.701718 + 0.712455i \(0.252417\pi\)
\(822\) −1502.42 −0.0637506
\(823\) 42448.5 1.79789 0.898943 0.438065i \(-0.144336\pi\)
0.898943 + 0.438065i \(0.144336\pi\)
\(824\) 4836.72 0.204484
\(825\) −3735.79 −0.157653
\(826\) −19647.5 −0.827631
\(827\) 5124.77 0.215485 0.107742 0.994179i \(-0.465638\pi\)
0.107742 + 0.994179i \(0.465638\pi\)
\(828\) −9680.35 −0.406299
\(829\) −11237.9 −0.470817 −0.235409 0.971896i \(-0.575643\pi\)
−0.235409 + 0.971896i \(0.575643\pi\)
\(830\) −9425.74 −0.394183
\(831\) −12380.2 −0.516805
\(832\) 3112.32 0.129688
\(833\) −38218.6 −1.58967
\(834\) 3256.77 0.135219
\(835\) 17833.9 0.739122
\(836\) 5455.39 0.225692
\(837\) −35558.5 −1.46844
\(838\) −16818.3 −0.693293
\(839\) −12030.2 −0.495030 −0.247515 0.968884i \(-0.579614\pi\)
−0.247515 + 0.968884i \(0.579614\pi\)
\(840\) −7964.87 −0.327160
\(841\) −14328.2 −0.587486
\(842\) −5054.06 −0.206858
\(843\) −14876.3 −0.607789
\(844\) −11351.7 −0.462963
\(845\) 2210.89 0.0900081
\(846\) −15783.2 −0.641417
\(847\) −9724.11 −0.394480
\(848\) −2698.83 −0.109290
\(849\) 1615.65 0.0653108
\(850\) −5808.75 −0.234398
\(851\) −24822.3 −0.999878
\(852\) 4341.21 0.174563
\(853\) 39445.0 1.58332 0.791659 0.610963i \(-0.209217\pi\)
0.791659 + 0.610963i \(0.209217\pi\)
\(854\) 17124.0 0.686148
\(855\) −11903.3 −0.476122
\(856\) 11044.6 0.440999
\(857\) −4905.92 −0.195546 −0.0977732 0.995209i \(-0.531172\pi\)
−0.0977732 + 0.995209i \(0.531172\pi\)
\(858\) −7501.60 −0.298485
\(859\) −3407.05 −0.135328 −0.0676642 0.997708i \(-0.521555\pi\)
−0.0676642 + 0.997708i \(0.521555\pi\)
\(860\) −2269.18 −0.0899748
\(861\) 3792.59 0.150117
\(862\) −1225.33 −0.0484162
\(863\) 7821.25 0.308503 0.154252 0.988032i \(-0.450703\pi\)
0.154252 + 0.988032i \(0.450703\pi\)
\(864\) 3721.82 0.146550
\(865\) −50408.6 −1.98144
\(866\) 13756.7 0.539805
\(867\) 3180.69 0.124593
\(868\) −38290.4 −1.49731
\(869\) 24982.7 0.975236
\(870\) 6378.86 0.248579
\(871\) 17579.4 0.683876
\(872\) −5857.99 −0.227496
\(873\) −21393.2 −0.829380
\(874\) 9761.36 0.377784
\(875\) −31571.1 −1.21977
\(876\) −5309.32 −0.204778
\(877\) 21958.9 0.845494 0.422747 0.906248i \(-0.361066\pi\)
0.422747 + 0.906248i \(0.361066\pi\)
\(878\) 21810.6 0.838351
\(879\) −14755.4 −0.566196
\(880\) 6731.02 0.257844
\(881\) −28068.9 −1.07340 −0.536700 0.843773i \(-0.680329\pi\)
−0.536700 + 0.843773i \(0.680329\pi\)
\(882\) −26986.0 −1.03023
\(883\) −32976.9 −1.25681 −0.628405 0.777887i \(-0.716292\pi\)
−0.628405 + 0.777887i \(0.716292\pi\)
\(884\) −11664.2 −0.443789
\(885\) 9976.55 0.378936
\(886\) 8946.72 0.339245
\(887\) −24303.8 −0.920002 −0.460001 0.887918i \(-0.652151\pi\)
−0.460001 + 0.887918i \(0.652151\pi\)
\(888\) 4194.23 0.158501
\(889\) −74005.2 −2.79196
\(890\) −25701.3 −0.967987
\(891\) 9288.46 0.349243
\(892\) 5882.88 0.220822
\(893\) 15915.3 0.596401
\(894\) 3753.49 0.140420
\(895\) −49205.1 −1.83770
\(896\) 4007.77 0.149431
\(897\) −13422.7 −0.499632
\(898\) −27673.6 −1.02838
\(899\) 30665.8 1.13767
\(900\) −4101.54 −0.151909
\(901\) 10114.5 0.373989
\(902\) −3205.07 −0.118312
\(903\) 3256.56 0.120013
\(904\) 13152.6 0.483902
\(905\) −50773.3 −1.86493
\(906\) 4345.25 0.159339
\(907\) 18529.5 0.678347 0.339173 0.940724i \(-0.389853\pi\)
0.339173 + 0.940724i \(0.389853\pi\)
\(908\) −4706.64 −0.172021
\(909\) −18597.0 −0.678575
\(910\) 40104.8 1.46095
\(911\) 23987.1 0.872367 0.436184 0.899858i \(-0.356330\pi\)
0.436184 + 0.899858i \(0.356330\pi\)
\(912\) −1649.38 −0.0598865
\(913\) −11431.6 −0.414383
\(914\) 21604.0 0.781836
\(915\) −8695.18 −0.314157
\(916\) 6253.37 0.225565
\(917\) −38931.7 −1.40201
\(918\) −13948.4 −0.501489
\(919\) −11836.0 −0.424847 −0.212424 0.977178i \(-0.568136\pi\)
−0.212424 + 0.977178i \(0.568136\pi\)
\(920\) 12043.9 0.431602
\(921\) 13112.4 0.469128
\(922\) −3057.98 −0.109229
\(923\) −21858.9 −0.779516
\(924\) −9659.89 −0.343925
\(925\) −10517.1 −0.373839
\(926\) 4602.48 0.163334
\(927\) −12799.3 −0.453488
\(928\) −3209.71 −0.113539
\(929\) 32429.5 1.14529 0.572647 0.819802i \(-0.305917\pi\)
0.572647 + 0.819802i \(0.305917\pi\)
\(930\) 19443.0 0.685550
\(931\) 27211.8 0.957929
\(932\) 4821.65 0.169462
\(933\) 22282.6 0.781888
\(934\) −7588.22 −0.265839
\(935\) −25226.1 −0.882335
\(936\) −8236.05 −0.287611
\(937\) −42685.6 −1.48824 −0.744118 0.668048i \(-0.767130\pi\)
−0.744118 + 0.668048i \(0.767130\pi\)
\(938\) 22637.2 0.787986
\(939\) −755.739 −0.0262648
\(940\) 19636.8 0.681363
\(941\) 4872.38 0.168794 0.0843970 0.996432i \(-0.473104\pi\)
0.0843970 + 0.996432i \(0.473104\pi\)
\(942\) −5502.06 −0.190305
\(943\) −5734.85 −0.198041
\(944\) −5020.00 −0.173080
\(945\) 47958.7 1.65090
\(946\) −2752.08 −0.0945855
\(947\) −49189.9 −1.68792 −0.843959 0.536408i \(-0.819781\pi\)
−0.843959 + 0.536408i \(0.819781\pi\)
\(948\) −7553.27 −0.258775
\(949\) 26733.5 0.914443
\(950\) 4135.87 0.141248
\(951\) −13457.1 −0.458862
\(952\) −15020.1 −0.511349
\(953\) 27492.4 0.934486 0.467243 0.884129i \(-0.345247\pi\)
0.467243 + 0.884129i \(0.345247\pi\)
\(954\) 7141.84 0.242375
\(955\) −4721.04 −0.159968
\(956\) −24838.6 −0.840312
\(957\) 7736.35 0.261317
\(958\) 10771.9 0.363283
\(959\) 9741.54 0.328019
\(960\) −2035.06 −0.0684179
\(961\) 63679.6 2.13754
\(962\) −21118.8 −0.707793
\(963\) −29226.9 −0.978011
\(964\) −15493.4 −0.517643
\(965\) 6391.55 0.213214
\(966\) −17284.5 −0.575693
\(967\) 33211.6 1.10446 0.552230 0.833692i \(-0.313777\pi\)
0.552230 + 0.833692i \(0.313777\pi\)
\(968\) −2484.55 −0.0824963
\(969\) 6181.46 0.204930
\(970\) 26616.4 0.881032
\(971\) −25814.8 −0.853180 −0.426590 0.904445i \(-0.640285\pi\)
−0.426590 + 0.904445i \(0.640285\pi\)
\(972\) −15369.4 −0.507176
\(973\) −21116.5 −0.695750
\(974\) 27366.3 0.900281
\(975\) −5687.15 −0.186805
\(976\) 4375.24 0.143492
\(977\) 29129.0 0.953858 0.476929 0.878942i \(-0.341750\pi\)
0.476929 + 0.878942i \(0.341750\pi\)
\(978\) 4309.51 0.140903
\(979\) −31170.8 −1.01759
\(980\) 33574.8 1.09439
\(981\) 15501.8 0.504522
\(982\) 12856.2 0.417778
\(983\) −30415.4 −0.986876 −0.493438 0.869781i \(-0.664260\pi\)
−0.493438 + 0.869781i \(0.664260\pi\)
\(984\) 969.021 0.0313936
\(985\) 21470.7 0.694531
\(986\) 12029.2 0.388527
\(987\) −28181.3 −0.908837
\(988\) 8304.97 0.267425
\(989\) −4924.32 −0.158326
\(990\) −17812.1 −0.571824
\(991\) −28364.3 −0.909206 −0.454603 0.890694i \(-0.650219\pi\)
−0.454603 + 0.890694i \(0.650219\pi\)
\(992\) −9783.35 −0.313127
\(993\) 6574.08 0.210093
\(994\) −28147.9 −0.898185
\(995\) 51571.5 1.64314
\(996\) 3456.24 0.109955
\(997\) 34690.3 1.10196 0.550979 0.834519i \(-0.314255\pi\)
0.550979 + 0.834519i \(0.314255\pi\)
\(998\) 24513.3 0.777509
\(999\) −25254.6 −0.799820
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 626.4.a.d.1.11 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
626.4.a.d.1.11 25 1.1 even 1 trivial