Properties

Label 625.8.a.c.1.22
Level $625$
Weight $8$
Character 625.1
Self dual yes
Analytic conductor $195.241$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,8,Mod(1,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 625.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34,-17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(195.240640928\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: no (minimal twist has level 25)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.22
Character \(\chi\) \(=\) 625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.51166 q^{2} -8.67312 q^{3} -71.5749 q^{4} -65.1495 q^{6} +1153.54 q^{7} -1499.14 q^{8} -2111.78 q^{9} -431.045 q^{11} +620.778 q^{12} +280.582 q^{13} +8664.99 q^{14} -2099.44 q^{16} -32775.7 q^{17} -15863.0 q^{18} -30708.4 q^{19} -10004.8 q^{21} -3237.87 q^{22} +4439.92 q^{23} +13002.2 q^{24} +2107.64 q^{26} +37283.8 q^{27} -82564.5 q^{28} +111225. q^{29} -145021. q^{31} +176120. q^{32} +3738.50 q^{33} -246200. q^{34} +151150. q^{36} +484149. q^{37} -230671. q^{38} -2433.52 q^{39} -519048. q^{41} -75152.5 q^{42} -146858. q^{43} +30852.0 q^{44} +33351.2 q^{46} +1.16866e6 q^{47} +18208.7 q^{48} +507109. q^{49} +284267. q^{51} -20082.6 q^{52} -894659. q^{53} +280063. q^{54} -1.72932e6 q^{56} +266337. q^{57} +835484. q^{58} -2.59298e6 q^{59} -2.90419e6 q^{61} -1.08935e6 q^{62} -2.43602e6 q^{63} +1.59168e6 q^{64} +28082.4 q^{66} -631516. q^{67} +2.34592e6 q^{68} -38508.0 q^{69} +3.96661e6 q^{71} +3.16585e6 q^{72} -161087. q^{73} +3.63676e6 q^{74} +2.19795e6 q^{76} -497227. q^{77} -18279.8 q^{78} -3.68737e6 q^{79} +4.29509e6 q^{81} -3.89892e6 q^{82} +3.18889e6 q^{83} +716091. q^{84} -1.10315e6 q^{86} -964667. q^{87} +646197. q^{88} -6.63496e6 q^{89} +323662. q^{91} -317787. q^{92} +1.25778e6 q^{93} +8.77861e6 q^{94} -1.52751e6 q^{96} +7.70700e6 q^{97} +3.80923e6 q^{98} +910271. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q - 17 q^{2} - 14 q^{3} + 2177 q^{4} + 993 q^{6} - 867 q^{7} - 2700 q^{8} + 23708 q^{9} + 8718 q^{11} - 2377 q^{12} - 8769 q^{13} + 17674 q^{14} + 139109 q^{16} + 48258 q^{17} - 58104 q^{18} + 61955 q^{19}+ \cdots + 35633116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.51166 0.663943 0.331972 0.943289i \(-0.392286\pi\)
0.331972 + 0.943289i \(0.392286\pi\)
\(3\) −8.67312 −0.185460 −0.0927301 0.995691i \(-0.529559\pi\)
−0.0927301 + 0.995691i \(0.529559\pi\)
\(4\) −71.5749 −0.559179
\(5\) 0 0
\(6\) −65.1495 −0.123135
\(7\) 1153.54 1.27113 0.635564 0.772048i \(-0.280768\pi\)
0.635564 + 0.772048i \(0.280768\pi\)
\(8\) −1499.14 −1.03521
\(9\) −2111.78 −0.965604
\(10\) 0 0
\(11\) −431.045 −0.0976446 −0.0488223 0.998807i \(-0.515547\pi\)
−0.0488223 + 0.998807i \(0.515547\pi\)
\(12\) 620.778 0.103705
\(13\) 280.582 0.0354208 0.0177104 0.999843i \(-0.494362\pi\)
0.0177104 + 0.999843i \(0.494362\pi\)
\(14\) 8664.99 0.843957
\(15\) 0 0
\(16\) −2099.44 −0.128140
\(17\) −32775.7 −1.61801 −0.809004 0.587803i \(-0.799993\pi\)
−0.809004 + 0.587803i \(0.799993\pi\)
\(18\) −15863.0 −0.641107
\(19\) −30708.4 −1.02712 −0.513558 0.858055i \(-0.671673\pi\)
−0.513558 + 0.858055i \(0.671673\pi\)
\(20\) 0 0
\(21\) −10004.8 −0.235744
\(22\) −3237.87 −0.0648305
\(23\) 4439.92 0.0760901 0.0380450 0.999276i \(-0.487887\pi\)
0.0380450 + 0.999276i \(0.487887\pi\)
\(24\) 13002.2 0.191990
\(25\) 0 0
\(26\) 2107.64 0.0235174
\(27\) 37283.8 0.364541
\(28\) −82564.5 −0.710788
\(29\) 111225. 0.846855 0.423428 0.905930i \(-0.360827\pi\)
0.423428 + 0.905930i \(0.360827\pi\)
\(30\) 0 0
\(31\) −145021. −0.874309 −0.437154 0.899386i \(-0.644014\pi\)
−0.437154 + 0.899386i \(0.644014\pi\)
\(32\) 176120. 0.950129
\(33\) 3738.50 0.0181092
\(34\) −246200. −1.07427
\(35\) 0 0
\(36\) 151150. 0.539946
\(37\) 484149. 1.57135 0.785675 0.618639i \(-0.212316\pi\)
0.785675 + 0.618639i \(0.212316\pi\)
\(38\) −230671. −0.681946
\(39\) −2433.52 −0.00656915
\(40\) 0 0
\(41\) −519048. −1.17615 −0.588077 0.808805i \(-0.700115\pi\)
−0.588077 + 0.808805i \(0.700115\pi\)
\(42\) −75152.5 −0.156520
\(43\) −146858. −0.281681 −0.140841 0.990032i \(-0.544980\pi\)
−0.140841 + 0.990032i \(0.544980\pi\)
\(44\) 30852.0 0.0546008
\(45\) 0 0
\(46\) 33351.2 0.0505195
\(47\) 1.16866e6 1.64190 0.820951 0.570999i \(-0.193444\pi\)
0.820951 + 0.570999i \(0.193444\pi\)
\(48\) 18208.7 0.0237648
\(49\) 507109. 0.615765
\(50\) 0 0
\(51\) 284267. 0.300076
\(52\) −20082.6 −0.0198066
\(53\) −894659. −0.825452 −0.412726 0.910855i \(-0.635423\pi\)
−0.412726 + 0.910855i \(0.635423\pi\)
\(54\) 280063. 0.242035
\(55\) 0 0
\(56\) −1.72932e6 −1.31588
\(57\) 266337. 0.190489
\(58\) 835484. 0.562264
\(59\) −2.59298e6 −1.64368 −0.821840 0.569719i \(-0.807052\pi\)
−0.821840 + 0.569719i \(0.807052\pi\)
\(60\) 0 0
\(61\) −2.90419e6 −1.63822 −0.819108 0.573640i \(-0.805531\pi\)
−0.819108 + 0.573640i \(0.805531\pi\)
\(62\) −1.08935e6 −0.580492
\(63\) −2.43602e6 −1.22741
\(64\) 1.59168e6 0.758972
\(65\) 0 0
\(66\) 28082.4 0.0120235
\(67\) −631516. −0.256521 −0.128260 0.991741i \(-0.540939\pi\)
−0.128260 + 0.991741i \(0.540939\pi\)
\(68\) 2.34592e6 0.904756
\(69\) −38508.0 −0.0141117
\(70\) 0 0
\(71\) 3.96661e6 1.31527 0.657635 0.753336i \(-0.271557\pi\)
0.657635 + 0.753336i \(0.271557\pi\)
\(72\) 3.16585e6 0.999600
\(73\) −161087. −0.0484651 −0.0242326 0.999706i \(-0.507714\pi\)
−0.0242326 + 0.999706i \(0.507714\pi\)
\(74\) 3.63676e6 1.04329
\(75\) 0 0
\(76\) 2.19795e6 0.574341
\(77\) −497227. −0.124119
\(78\) −18279.8 −0.00436154
\(79\) −3.68737e6 −0.841439 −0.420719 0.907191i \(-0.638222\pi\)
−0.420719 + 0.907191i \(0.638222\pi\)
\(80\) 0 0
\(81\) 4.29509e6 0.897997
\(82\) −3.89892e6 −0.780900
\(83\) 3.18889e6 0.612161 0.306081 0.952006i \(-0.400982\pi\)
0.306081 + 0.952006i \(0.400982\pi\)
\(84\) 716091. 0.131823
\(85\) 0 0
\(86\) −1.10315e6 −0.187020
\(87\) −964667. −0.157058
\(88\) 646197. 0.101082
\(89\) −6.63496e6 −0.997638 −0.498819 0.866706i \(-0.666233\pi\)
−0.498819 + 0.866706i \(0.666233\pi\)
\(90\) 0 0
\(91\) 323662. 0.0450243
\(92\) −317787. −0.0425480
\(93\) 1.25778e6 0.162150
\(94\) 8.77861e6 1.09013
\(95\) 0 0
\(96\) −1.52751e6 −0.176211
\(97\) 7.70700e6 0.857401 0.428701 0.903447i \(-0.358971\pi\)
0.428701 + 0.903447i \(0.358971\pi\)
\(98\) 3.80923e6 0.408833
\(99\) 910271. 0.0942861
\(100\) 0 0
\(101\) −8.72630e6 −0.842762 −0.421381 0.906884i \(-0.638455\pi\)
−0.421381 + 0.906884i \(0.638455\pi\)
\(102\) 2.13532e6 0.199234
\(103\) 3.70713e6 0.334278 0.167139 0.985933i \(-0.446547\pi\)
0.167139 + 0.985933i \(0.446547\pi\)
\(104\) −420632. −0.0366678
\(105\) 0 0
\(106\) −6.72038e6 −0.548054
\(107\) 3.47058e6 0.273879 0.136940 0.990579i \(-0.456273\pi\)
0.136940 + 0.990579i \(0.456273\pi\)
\(108\) −2.66859e6 −0.203844
\(109\) 1.88426e7 1.39364 0.696818 0.717248i \(-0.254599\pi\)
0.696818 + 0.717248i \(0.254599\pi\)
\(110\) 0 0
\(111\) −4.19908e6 −0.291423
\(112\) −2.42178e6 −0.162882
\(113\) 1.30688e6 0.0852040 0.0426020 0.999092i \(-0.486435\pi\)
0.0426020 + 0.999092i \(0.486435\pi\)
\(114\) 2.00064e6 0.126474
\(115\) 0 0
\(116\) −7.96092e6 −0.473544
\(117\) −592527. −0.0342025
\(118\) −1.94776e7 −1.09131
\(119\) −3.78080e7 −2.05669
\(120\) 0 0
\(121\) −1.93014e7 −0.990466
\(122\) −2.18153e7 −1.08768
\(123\) 4.50177e6 0.218130
\(124\) 1.03799e7 0.488895
\(125\) 0 0
\(126\) −1.82985e7 −0.814928
\(127\) 7.46597e6 0.323425 0.161712 0.986838i \(-0.448298\pi\)
0.161712 + 0.986838i \(0.448298\pi\)
\(128\) −1.05872e7 −0.446215
\(129\) 1.27372e6 0.0522406
\(130\) 0 0
\(131\) 3.49463e6 0.135816 0.0679081 0.997692i \(-0.478368\pi\)
0.0679081 + 0.997692i \(0.478368\pi\)
\(132\) −267583. −0.0101263
\(133\) −3.54233e7 −1.30559
\(134\) −4.74374e6 −0.170315
\(135\) 0 0
\(136\) 4.91353e7 1.67497
\(137\) 1.58891e7 0.527931 0.263965 0.964532i \(-0.414970\pi\)
0.263965 + 0.964532i \(0.414970\pi\)
\(138\) −289259. −0.00936936
\(139\) 5.89020e7 1.86028 0.930140 0.367204i \(-0.119685\pi\)
0.930140 + 0.367204i \(0.119685\pi\)
\(140\) 0 0
\(141\) −1.01360e7 −0.304508
\(142\) 2.97958e7 0.873265
\(143\) −120944. −0.00345865
\(144\) 4.43355e6 0.123732
\(145\) 0 0
\(146\) −1.21003e6 −0.0321781
\(147\) −4.39821e6 −0.114200
\(148\) −3.46529e7 −0.878666
\(149\) 1.42458e7 0.352804 0.176402 0.984318i \(-0.443554\pi\)
0.176402 + 0.984318i \(0.443554\pi\)
\(150\) 0 0
\(151\) 3.54311e7 0.837463 0.418731 0.908110i \(-0.362475\pi\)
0.418731 + 0.908110i \(0.362475\pi\)
\(152\) 4.60361e7 1.06328
\(153\) 6.92149e7 1.56236
\(154\) −3.73500e6 −0.0824078
\(155\) 0 0
\(156\) 174179. 0.00367333
\(157\) 6.89639e7 1.42224 0.711120 0.703071i \(-0.248188\pi\)
0.711120 + 0.703071i \(0.248188\pi\)
\(158\) −2.76983e7 −0.558668
\(159\) 7.75948e6 0.153089
\(160\) 0 0
\(161\) 5.12162e6 0.0967202
\(162\) 3.22633e7 0.596219
\(163\) −1.90470e7 −0.344485 −0.172243 0.985055i \(-0.555101\pi\)
−0.172243 + 0.985055i \(0.555101\pi\)
\(164\) 3.71508e7 0.657681
\(165\) 0 0
\(166\) 2.39539e7 0.406441
\(167\) 8.40000e7 1.39563 0.697817 0.716276i \(-0.254155\pi\)
0.697817 + 0.716276i \(0.254155\pi\)
\(168\) 1.49986e7 0.244043
\(169\) −6.26698e7 −0.998745
\(170\) 0 0
\(171\) 6.48492e7 0.991787
\(172\) 1.05113e7 0.157510
\(173\) 1.06207e8 1.55952 0.779760 0.626079i \(-0.215341\pi\)
0.779760 + 0.626079i \(0.215341\pi\)
\(174\) −7.24625e6 −0.104278
\(175\) 0 0
\(176\) 904953. 0.0125121
\(177\) 2.24892e7 0.304837
\(178\) −4.98396e7 −0.662375
\(179\) 2.63771e7 0.343750 0.171875 0.985119i \(-0.445018\pi\)
0.171875 + 0.985119i \(0.445018\pi\)
\(180\) 0 0
\(181\) 3.85068e7 0.482683 0.241342 0.970440i \(-0.422413\pi\)
0.241342 + 0.970440i \(0.422413\pi\)
\(182\) 2.43124e6 0.0298936
\(183\) 2.51884e7 0.303824
\(184\) −6.65607e6 −0.0787690
\(185\) 0 0
\(186\) 9.44805e6 0.107658
\(187\) 1.41278e7 0.157990
\(188\) −8.36470e7 −0.918117
\(189\) 4.30083e7 0.463379
\(190\) 0 0
\(191\) 7.29101e7 0.757131 0.378565 0.925575i \(-0.376418\pi\)
0.378565 + 0.925575i \(0.376418\pi\)
\(192\) −1.38048e7 −0.140759
\(193\) −2.71019e7 −0.271362 −0.135681 0.990753i \(-0.543322\pi\)
−0.135681 + 0.990753i \(0.543322\pi\)
\(194\) 5.78924e7 0.569266
\(195\) 0 0
\(196\) −3.62963e7 −0.344323
\(197\) 1.10128e8 1.02628 0.513140 0.858305i \(-0.328482\pi\)
0.513140 + 0.858305i \(0.328482\pi\)
\(198\) 6.83765e6 0.0626006
\(199\) 1.86918e8 1.68138 0.840689 0.541518i \(-0.182150\pi\)
0.840689 + 0.541518i \(0.182150\pi\)
\(200\) 0 0
\(201\) 5.47721e6 0.0475744
\(202\) −6.55490e7 −0.559547
\(203\) 1.28302e8 1.07646
\(204\) −2.03464e7 −0.167796
\(205\) 0 0
\(206\) 2.78467e7 0.221942
\(207\) −9.37613e6 −0.0734729
\(208\) −589065. −0.00453881
\(209\) 1.32367e7 0.100292
\(210\) 0 0
\(211\) −2.46634e8 −1.80744 −0.903719 0.428125i \(-0.859174\pi\)
−0.903719 + 0.428125i \(0.859174\pi\)
\(212\) 6.40352e7 0.461576
\(213\) −3.44029e7 −0.243930
\(214\) 2.60698e7 0.181840
\(215\) 0 0
\(216\) −5.58936e7 −0.377376
\(217\) −1.67287e8 −1.11136
\(218\) 1.41540e8 0.925295
\(219\) 1.39712e6 0.00898836
\(220\) 0 0
\(221\) −9.19627e6 −0.0573111
\(222\) −3.15421e7 −0.193488
\(223\) 2.42861e8 1.46653 0.733265 0.679943i \(-0.237995\pi\)
0.733265 + 0.679943i \(0.237995\pi\)
\(224\) 2.03161e8 1.20774
\(225\) 0 0
\(226\) 9.81682e6 0.0565706
\(227\) −1.84785e8 −1.04852 −0.524259 0.851559i \(-0.675658\pi\)
−0.524259 + 0.851559i \(0.675658\pi\)
\(228\) −1.90631e7 −0.106517
\(229\) 1.66838e7 0.0918062 0.0459031 0.998946i \(-0.485383\pi\)
0.0459031 + 0.998946i \(0.485383\pi\)
\(230\) 0 0
\(231\) 4.31251e6 0.0230191
\(232\) −1.66742e8 −0.876670
\(233\) 2.65848e7 0.137685 0.0688426 0.997628i \(-0.478069\pi\)
0.0688426 + 0.997628i \(0.478069\pi\)
\(234\) −4.45086e6 −0.0227085
\(235\) 0 0
\(236\) 1.85592e8 0.919111
\(237\) 3.19810e7 0.156053
\(238\) −2.84001e8 −1.36553
\(239\) −1.48396e8 −0.703119 −0.351559 0.936166i \(-0.614348\pi\)
−0.351559 + 0.936166i \(0.614348\pi\)
\(240\) 0 0
\(241\) 7.70326e7 0.354499 0.177250 0.984166i \(-0.443280\pi\)
0.177250 + 0.984166i \(0.443280\pi\)
\(242\) −1.44985e8 −0.657613
\(243\) −1.18791e8 −0.531084
\(244\) 2.07867e8 0.916056
\(245\) 0 0
\(246\) 3.38158e7 0.144826
\(247\) −8.61622e6 −0.0363812
\(248\) 2.17407e8 0.905090
\(249\) −2.76576e7 −0.113532
\(250\) 0 0
\(251\) 9.68092e7 0.386419 0.193210 0.981157i \(-0.438110\pi\)
0.193210 + 0.981157i \(0.438110\pi\)
\(252\) 1.74358e8 0.686340
\(253\) −1.91381e6 −0.00742979
\(254\) 5.60819e7 0.214736
\(255\) 0 0
\(256\) −2.83262e8 −1.05523
\(257\) 3.81802e8 1.40305 0.701524 0.712646i \(-0.252503\pi\)
0.701524 + 0.712646i \(0.252503\pi\)
\(258\) 9.56772e6 0.0346848
\(259\) 5.58485e8 1.99739
\(260\) 0 0
\(261\) −2.34882e8 −0.817727
\(262\) 2.62505e7 0.0901742
\(263\) −2.62839e8 −0.890933 −0.445467 0.895299i \(-0.646962\pi\)
−0.445467 + 0.895299i \(0.646962\pi\)
\(264\) −5.60454e6 −0.0187468
\(265\) 0 0
\(266\) −2.66088e8 −0.866841
\(267\) 5.75458e7 0.185022
\(268\) 4.52007e7 0.143441
\(269\) 4.53771e8 1.42136 0.710679 0.703516i \(-0.248388\pi\)
0.710679 + 0.703516i \(0.248388\pi\)
\(270\) 0 0
\(271\) 2.37184e8 0.723924 0.361962 0.932193i \(-0.382107\pi\)
0.361962 + 0.932193i \(0.382107\pi\)
\(272\) 6.88106e7 0.207331
\(273\) −2.80716e6 −0.00835022
\(274\) 1.19353e8 0.350516
\(275\) 0 0
\(276\) 2.75621e6 0.00789096
\(277\) 2.37577e7 0.0671621 0.0335811 0.999436i \(-0.489309\pi\)
0.0335811 + 0.999436i \(0.489309\pi\)
\(278\) 4.42452e8 1.23512
\(279\) 3.06252e8 0.844237
\(280\) 0 0
\(281\) −2.58925e8 −0.696149 −0.348075 0.937467i \(-0.613164\pi\)
−0.348075 + 0.937467i \(0.613164\pi\)
\(282\) −7.61379e7 −0.202176
\(283\) −6.58845e8 −1.72795 −0.863975 0.503535i \(-0.832032\pi\)
−0.863975 + 0.503535i \(0.832032\pi\)
\(284\) −2.83910e8 −0.735472
\(285\) 0 0
\(286\) −908487. −0.00229635
\(287\) −5.98742e8 −1.49504
\(288\) −3.71925e8 −0.917449
\(289\) 6.63907e8 1.61795
\(290\) 0 0
\(291\) −6.68437e7 −0.159014
\(292\) 1.15298e7 0.0271007
\(293\) −1.72715e8 −0.401138 −0.200569 0.979680i \(-0.564279\pi\)
−0.200569 + 0.979680i \(0.564279\pi\)
\(294\) −3.30379e7 −0.0758222
\(295\) 0 0
\(296\) −7.25807e8 −1.62667
\(297\) −1.60710e7 −0.0355955
\(298\) 1.07009e8 0.234242
\(299\) 1.24576e6 0.00269517
\(300\) 0 0
\(301\) −1.69406e8 −0.358053
\(302\) 2.66147e8 0.556028
\(303\) 7.56842e7 0.156299
\(304\) 6.44703e7 0.131614
\(305\) 0 0
\(306\) 5.19919e8 1.03732
\(307\) −7.32875e8 −1.44559 −0.722796 0.691062i \(-0.757143\pi\)
−0.722796 + 0.691062i \(0.757143\pi\)
\(308\) 3.55890e7 0.0694046
\(309\) −3.21524e7 −0.0619952
\(310\) 0 0
\(311\) 6.16425e8 1.16203 0.581017 0.813892i \(-0.302655\pi\)
0.581017 + 0.813892i \(0.302655\pi\)
\(312\) 3.64819e6 0.00680043
\(313\) −1.27350e8 −0.234743 −0.117372 0.993088i \(-0.537447\pi\)
−0.117372 + 0.993088i \(0.537447\pi\)
\(314\) 5.18033e8 0.944287
\(315\) 0 0
\(316\) 2.63924e8 0.470515
\(317\) 8.27570e8 1.45914 0.729571 0.683905i \(-0.239720\pi\)
0.729571 + 0.683905i \(0.239720\pi\)
\(318\) 5.82866e7 0.101642
\(319\) −4.79430e7 −0.0826909
\(320\) 0 0
\(321\) −3.01007e7 −0.0507937
\(322\) 3.84719e7 0.0642167
\(323\) 1.00649e9 1.66188
\(324\) −3.07421e8 −0.502141
\(325\) 0 0
\(326\) −1.43075e8 −0.228719
\(327\) −1.63424e8 −0.258464
\(328\) 7.78126e8 1.21756
\(329\) 1.34810e9 2.08707
\(330\) 0 0
\(331\) 6.57727e7 0.0996891 0.0498446 0.998757i \(-0.484127\pi\)
0.0498446 + 0.998757i \(0.484127\pi\)
\(332\) −2.28244e8 −0.342308
\(333\) −1.02241e9 −1.51730
\(334\) 6.30980e8 0.926622
\(335\) 0 0
\(336\) 2.10044e7 0.0302081
\(337\) −2.09900e8 −0.298751 −0.149375 0.988781i \(-0.547726\pi\)
−0.149375 + 0.988781i \(0.547726\pi\)
\(338\) −4.70754e8 −0.663110
\(339\) −1.13347e7 −0.0158020
\(340\) 0 0
\(341\) 6.25106e7 0.0853716
\(342\) 4.87125e8 0.658490
\(343\) −3.65019e8 −0.488412
\(344\) 2.20160e8 0.291598
\(345\) 0 0
\(346\) 7.97790e8 1.03543
\(347\) −6.20434e8 −0.797154 −0.398577 0.917135i \(-0.630496\pi\)
−0.398577 + 0.917135i \(0.630496\pi\)
\(348\) 6.90460e7 0.0878235
\(349\) −3.39227e8 −0.427171 −0.213585 0.976924i \(-0.568514\pi\)
−0.213585 + 0.976924i \(0.568514\pi\)
\(350\) 0 0
\(351\) 1.04612e7 0.0129123
\(352\) −7.59155e7 −0.0927750
\(353\) 5.78449e8 0.699928 0.349964 0.936763i \(-0.386194\pi\)
0.349964 + 0.936763i \(0.386194\pi\)
\(354\) 1.68931e8 0.202395
\(355\) 0 0
\(356\) 4.74897e8 0.557858
\(357\) 3.27913e8 0.381435
\(358\) 1.98136e8 0.228230
\(359\) 1.13435e9 1.29394 0.646971 0.762514i \(-0.276035\pi\)
0.646971 + 0.762514i \(0.276035\pi\)
\(360\) 0 0
\(361\) 4.91321e7 0.0549655
\(362\) 2.89250e8 0.320474
\(363\) 1.67403e8 0.183692
\(364\) −2.31661e7 −0.0251767
\(365\) 0 0
\(366\) 1.89207e8 0.201722
\(367\) −1.78022e9 −1.87993 −0.939965 0.341271i \(-0.889143\pi\)
−0.939965 + 0.341271i \(0.889143\pi\)
\(368\) −9.32135e6 −0.00975015
\(369\) 1.09611e9 1.13570
\(370\) 0 0
\(371\) −1.03202e9 −1.04925
\(372\) −9.00258e7 −0.0906706
\(373\) 1.43035e9 1.42712 0.713561 0.700593i \(-0.247081\pi\)
0.713561 + 0.700593i \(0.247081\pi\)
\(374\) 1.06123e8 0.104896
\(375\) 0 0
\(376\) −1.75199e9 −1.69971
\(377\) 3.12077e7 0.0299963
\(378\) 3.23064e8 0.307657
\(379\) −1.48628e8 −0.140237 −0.0701187 0.997539i \(-0.522338\pi\)
−0.0701187 + 0.997539i \(0.522338\pi\)
\(380\) 0 0
\(381\) −6.47532e7 −0.0599824
\(382\) 5.47676e8 0.502692
\(383\) −6.98654e8 −0.635428 −0.317714 0.948187i \(-0.602915\pi\)
−0.317714 + 0.948187i \(0.602915\pi\)
\(384\) 9.18236e7 0.0827551
\(385\) 0 0
\(386\) −2.03580e8 −0.180169
\(387\) 3.10131e8 0.271993
\(388\) −5.51628e8 −0.479441
\(389\) −9.98228e8 −0.859817 −0.429909 0.902872i \(-0.641454\pi\)
−0.429909 + 0.902872i \(0.641454\pi\)
\(390\) 0 0
\(391\) −1.45522e8 −0.123114
\(392\) −7.60227e8 −0.637444
\(393\) −3.03093e7 −0.0251885
\(394\) 8.27245e8 0.681392
\(395\) 0 0
\(396\) −6.51526e7 −0.0527228
\(397\) −3.94543e8 −0.316467 −0.158233 0.987402i \(-0.550580\pi\)
−0.158233 + 0.987402i \(0.550580\pi\)
\(398\) 1.40407e9 1.11634
\(399\) 3.07230e8 0.242136
\(400\) 0 0
\(401\) 2.55787e9 1.98095 0.990475 0.137695i \(-0.0439694\pi\)
0.990475 + 0.137695i \(0.0439694\pi\)
\(402\) 4.11430e7 0.0315867
\(403\) −4.06903e7 −0.0309687
\(404\) 6.24584e8 0.471255
\(405\) 0 0
\(406\) 9.63763e8 0.714709
\(407\) −2.08690e8 −0.153434
\(408\) −4.26156e8 −0.310641
\(409\) 9.25958e8 0.669206 0.334603 0.942359i \(-0.391398\pi\)
0.334603 + 0.942359i \(0.391398\pi\)
\(410\) 0 0
\(411\) −1.37808e8 −0.0979101
\(412\) −2.65338e8 −0.186921
\(413\) −2.99110e9 −2.08933
\(414\) −7.04303e7 −0.0487819
\(415\) 0 0
\(416\) 4.94160e7 0.0336543
\(417\) −5.10864e8 −0.345008
\(418\) 9.94296e7 0.0665884
\(419\) 1.71958e9 1.14202 0.571009 0.820944i \(-0.306552\pi\)
0.571009 + 0.820944i \(0.306552\pi\)
\(420\) 0 0
\(421\) 1.67565e9 1.09445 0.547226 0.836985i \(-0.315684\pi\)
0.547226 + 0.836985i \(0.315684\pi\)
\(422\) −1.85263e9 −1.20004
\(423\) −2.46796e9 −1.58543
\(424\) 1.34122e9 0.854514
\(425\) 0 0
\(426\) −2.58423e8 −0.161956
\(427\) −3.35010e9 −2.08238
\(428\) −2.48407e8 −0.153147
\(429\) 1.04896e6 0.000641442 0
\(430\) 0 0
\(431\) −2.76059e9 −1.66086 −0.830428 0.557127i \(-0.811904\pi\)
−0.830428 + 0.557127i \(0.811904\pi\)
\(432\) −7.82751e7 −0.0467122
\(433\) 1.19084e9 0.704932 0.352466 0.935825i \(-0.385343\pi\)
0.352466 + 0.935825i \(0.385343\pi\)
\(434\) −1.25661e9 −0.737879
\(435\) 0 0
\(436\) −1.34866e9 −0.779292
\(437\) −1.36343e8 −0.0781533
\(438\) 1.04947e7 0.00596776
\(439\) 1.01975e9 0.575263 0.287632 0.957741i \(-0.407132\pi\)
0.287632 + 0.957741i \(0.407132\pi\)
\(440\) 0 0
\(441\) −1.07090e9 −0.594585
\(442\) −6.90793e7 −0.0380513
\(443\) 1.28840e9 0.704107 0.352054 0.935980i \(-0.385483\pi\)
0.352054 + 0.935980i \(0.385483\pi\)
\(444\) 3.00549e8 0.162958
\(445\) 0 0
\(446\) 1.82429e9 0.973693
\(447\) −1.23555e8 −0.0654312
\(448\) 1.83606e9 0.964750
\(449\) 1.62106e9 0.845158 0.422579 0.906326i \(-0.361125\pi\)
0.422579 + 0.906326i \(0.361125\pi\)
\(450\) 0 0
\(451\) 2.23733e8 0.114845
\(452\) −9.35396e7 −0.0476443
\(453\) −3.07298e8 −0.155316
\(454\) −1.38804e9 −0.696157
\(455\) 0 0
\(456\) −3.99277e8 −0.197196
\(457\) −7.13086e8 −0.349490 −0.174745 0.984614i \(-0.555910\pi\)
−0.174745 + 0.984614i \(0.555910\pi\)
\(458\) 1.25323e8 0.0609541
\(459\) −1.22200e9 −0.589831
\(460\) 0 0
\(461\) 1.68400e9 0.800552 0.400276 0.916395i \(-0.368914\pi\)
0.400276 + 0.916395i \(0.368914\pi\)
\(462\) 3.23941e7 0.0152834
\(463\) −3.57567e9 −1.67426 −0.837131 0.547002i \(-0.815769\pi\)
−0.837131 + 0.547002i \(0.815769\pi\)
\(464\) −2.33510e8 −0.108516
\(465\) 0 0
\(466\) 1.99696e8 0.0914152
\(467\) 1.91003e9 0.867821 0.433910 0.900956i \(-0.357133\pi\)
0.433910 + 0.900956i \(0.357133\pi\)
\(468\) 4.24101e7 0.0191253
\(469\) −7.28478e8 −0.326071
\(470\) 0 0
\(471\) −5.98132e8 −0.263769
\(472\) 3.88724e9 1.70155
\(473\) 6.33024e7 0.0275046
\(474\) 2.40231e8 0.103611
\(475\) 0 0
\(476\) 2.70611e9 1.15006
\(477\) 1.88932e9 0.797060
\(478\) −1.11470e9 −0.466831
\(479\) 1.40567e8 0.0584398 0.0292199 0.999573i \(-0.490698\pi\)
0.0292199 + 0.999573i \(0.490698\pi\)
\(480\) 0 0
\(481\) 1.35844e8 0.0556585
\(482\) 5.78643e8 0.235367
\(483\) −4.44205e7 −0.0179378
\(484\) 1.38149e9 0.553848
\(485\) 0 0
\(486\) −8.92322e8 −0.352610
\(487\) 2.40398e9 0.943147 0.471574 0.881827i \(-0.343686\pi\)
0.471574 + 0.881827i \(0.343686\pi\)
\(488\) 4.35379e9 1.69589
\(489\) 1.65197e8 0.0638883
\(490\) 0 0
\(491\) −7.92000e7 −0.0301953 −0.0150977 0.999886i \(-0.504806\pi\)
−0.0150977 + 0.999886i \(0.504806\pi\)
\(492\) −3.22214e8 −0.121974
\(493\) −3.64547e9 −1.37022
\(494\) −6.47221e7 −0.0241551
\(495\) 0 0
\(496\) 3.04463e8 0.112034
\(497\) 4.57564e9 1.67188
\(498\) −2.07755e8 −0.0753786
\(499\) −1.86707e9 −0.672681 −0.336341 0.941740i \(-0.609189\pi\)
−0.336341 + 0.941740i \(0.609189\pi\)
\(500\) 0 0
\(501\) −7.28542e8 −0.258835
\(502\) 7.27198e8 0.256561
\(503\) 2.66640e9 0.934196 0.467098 0.884206i \(-0.345300\pi\)
0.467098 + 0.884206i \(0.345300\pi\)
\(504\) 3.65193e9 1.27062
\(505\) 0 0
\(506\) −1.43759e7 −0.00493296
\(507\) 5.43542e8 0.185228
\(508\) −5.34376e8 −0.180852
\(509\) −2.08545e9 −0.700952 −0.350476 0.936572i \(-0.613980\pi\)
−0.350476 + 0.936572i \(0.613980\pi\)
\(510\) 0 0
\(511\) −1.85820e8 −0.0616054
\(512\) −7.72613e8 −0.254400
\(513\) −1.14492e9 −0.374426
\(514\) 2.86797e9 0.931544
\(515\) 0 0
\(516\) −9.11661e7 −0.0292119
\(517\) −5.03747e8 −0.160323
\(518\) 4.19515e9 1.32615
\(519\) −9.21144e8 −0.289229
\(520\) 0 0
\(521\) −2.87115e9 −0.889456 −0.444728 0.895666i \(-0.646700\pi\)
−0.444728 + 0.895666i \(0.646700\pi\)
\(522\) −1.76436e9 −0.542925
\(523\) 3.01636e8 0.0921992 0.0460996 0.998937i \(-0.485321\pi\)
0.0460996 + 0.998937i \(0.485321\pi\)
\(524\) −2.50128e8 −0.0759455
\(525\) 0 0
\(526\) −1.97436e9 −0.591529
\(527\) 4.75316e9 1.41464
\(528\) −7.84876e6 −0.00232050
\(529\) −3.38511e9 −0.994210
\(530\) 0 0
\(531\) 5.47579e9 1.58714
\(532\) 2.53542e9 0.730061
\(533\) −1.45636e8 −0.0416603
\(534\) 4.32264e8 0.122844
\(535\) 0 0
\(536\) 9.46731e8 0.265552
\(537\) −2.28772e8 −0.0637519
\(538\) 3.40857e9 0.943702
\(539\) −2.18587e8 −0.0601261
\(540\) 0 0
\(541\) 6.16761e9 1.67466 0.837330 0.546698i \(-0.184116\pi\)
0.837330 + 0.546698i \(0.184116\pi\)
\(542\) 1.78165e9 0.480644
\(543\) −3.33974e8 −0.0895186
\(544\) −5.77244e9 −1.53732
\(545\) 0 0
\(546\) −2.10864e7 −0.00554408
\(547\) −2.77375e9 −0.724623 −0.362311 0.932057i \(-0.618012\pi\)
−0.362311 + 0.932057i \(0.618012\pi\)
\(548\) −1.13726e9 −0.295208
\(549\) 6.13301e9 1.58187
\(550\) 0 0
\(551\) −3.41554e9 −0.869818
\(552\) 5.77288e7 0.0146085
\(553\) −4.25353e9 −1.06958
\(554\) 1.78459e8 0.0445918
\(555\) 0 0
\(556\) −4.21591e9 −1.04023
\(557\) −2.17301e9 −0.532805 −0.266402 0.963862i \(-0.585835\pi\)
−0.266402 + 0.963862i \(0.585835\pi\)
\(558\) 2.30046e9 0.560525
\(559\) −4.12057e7 −0.00997737
\(560\) 0 0
\(561\) −1.22532e8 −0.0293008
\(562\) −1.94496e9 −0.462204
\(563\) 4.72838e9 1.11669 0.558346 0.829609i \(-0.311436\pi\)
0.558346 + 0.829609i \(0.311436\pi\)
\(564\) 7.25481e8 0.170274
\(565\) 0 0
\(566\) −4.94902e9 −1.14726
\(567\) 4.95455e9 1.14147
\(568\) −5.94650e9 −1.36158
\(569\) −8.32629e9 −1.89478 −0.947389 0.320084i \(-0.896289\pi\)
−0.947389 + 0.320084i \(0.896289\pi\)
\(570\) 0 0
\(571\) −6.21167e9 −1.39631 −0.698156 0.715946i \(-0.745996\pi\)
−0.698156 + 0.715946i \(0.745996\pi\)
\(572\) 8.65652e6 0.00193400
\(573\) −6.32358e8 −0.140418
\(574\) −4.49755e9 −0.992623
\(575\) 0 0
\(576\) −3.36127e9 −0.732866
\(577\) 1.03081e9 0.223389 0.111695 0.993743i \(-0.464372\pi\)
0.111695 + 0.993743i \(0.464372\pi\)
\(578\) 4.98705e9 1.07423
\(579\) 2.35058e8 0.0503268
\(580\) 0 0
\(581\) 3.67851e9 0.778135
\(582\) −5.02107e8 −0.105576
\(583\) 3.85638e8 0.0806010
\(584\) 2.41491e8 0.0501714
\(585\) 0 0
\(586\) −1.29738e9 −0.266333
\(587\) 3.52247e9 0.718810 0.359405 0.933182i \(-0.382980\pi\)
0.359405 + 0.933182i \(0.382980\pi\)
\(588\) 3.14802e8 0.0638582
\(589\) 4.45336e9 0.898016
\(590\) 0 0
\(591\) −9.55153e8 −0.190334
\(592\) −1.01644e9 −0.201352
\(593\) 6.88056e9 1.35498 0.677490 0.735532i \(-0.263068\pi\)
0.677490 + 0.735532i \(0.263068\pi\)
\(594\) −1.20720e8 −0.0236334
\(595\) 0 0
\(596\) −1.01964e9 −0.197281
\(597\) −1.62116e9 −0.311829
\(598\) 9.35775e6 0.00178944
\(599\) −5.51933e9 −1.04928 −0.524641 0.851324i \(-0.675800\pi\)
−0.524641 + 0.851324i \(0.675800\pi\)
\(600\) 0 0
\(601\) 3.02510e9 0.568433 0.284217 0.958760i \(-0.408267\pi\)
0.284217 + 0.958760i \(0.408267\pi\)
\(602\) −1.27252e9 −0.237727
\(603\) 1.33362e9 0.247698
\(604\) −2.53598e9 −0.468292
\(605\) 0 0
\(606\) 5.68514e8 0.103774
\(607\) −1.47941e9 −0.268489 −0.134245 0.990948i \(-0.542861\pi\)
−0.134245 + 0.990948i \(0.542861\pi\)
\(608\) −5.40834e9 −0.975892
\(609\) −1.11278e9 −0.199641
\(610\) 0 0
\(611\) 3.27906e8 0.0581575
\(612\) −4.95405e9 −0.873637
\(613\) 8.25601e9 1.44763 0.723816 0.689993i \(-0.242386\pi\)
0.723816 + 0.689993i \(0.242386\pi\)
\(614\) −5.50511e9 −0.959791
\(615\) 0 0
\(616\) 7.45413e8 0.128489
\(617\) 3.21145e8 0.0550432 0.0275216 0.999621i \(-0.491238\pi\)
0.0275216 + 0.999621i \(0.491238\pi\)
\(618\) −2.41518e8 −0.0411613
\(619\) 5.79681e9 0.982362 0.491181 0.871057i \(-0.336565\pi\)
0.491181 + 0.871057i \(0.336565\pi\)
\(620\) 0 0
\(621\) 1.65537e8 0.0277380
\(622\) 4.63037e9 0.771524
\(623\) −7.65368e9 −1.26813
\(624\) 5.10903e6 0.000841768 0
\(625\) 0 0
\(626\) −9.56609e8 −0.155856
\(627\) −1.14803e8 −0.0186002
\(628\) −4.93608e9 −0.795287
\(629\) −1.58683e10 −2.54246
\(630\) 0 0
\(631\) −1.00789e10 −1.59703 −0.798513 0.601977i \(-0.794380\pi\)
−0.798513 + 0.601977i \(0.794380\pi\)
\(632\) 5.52789e9 0.871063
\(633\) 2.13908e9 0.335208
\(634\) 6.21643e9 0.968787
\(635\) 0 0
\(636\) −5.55384e8 −0.0856039
\(637\) 1.42286e8 0.0218109
\(638\) −3.60131e8 −0.0549021
\(639\) −8.37659e9 −1.27003
\(640\) 0 0
\(641\) −1.27860e9 −0.191749 −0.0958745 0.995393i \(-0.530565\pi\)
−0.0958745 + 0.995393i \(0.530565\pi\)
\(642\) −2.26107e8 −0.0337241
\(643\) 6.82194e8 0.101197 0.0505987 0.998719i \(-0.483887\pi\)
0.0505987 + 0.998719i \(0.483887\pi\)
\(644\) −3.66580e8 −0.0540839
\(645\) 0 0
\(646\) 7.56040e9 1.10339
\(647\) −9.79624e9 −1.42198 −0.710992 0.703200i \(-0.751754\pi\)
−0.710992 + 0.703200i \(0.751754\pi\)
\(648\) −6.43894e9 −0.929612
\(649\) 1.11769e9 0.160496
\(650\) 0 0
\(651\) 1.45090e9 0.206113
\(652\) 1.36329e9 0.192629
\(653\) −8.15971e9 −1.14678 −0.573388 0.819284i \(-0.694371\pi\)
−0.573388 + 0.819284i \(0.694371\pi\)
\(654\) −1.22759e9 −0.171605
\(655\) 0 0
\(656\) 1.08971e9 0.150712
\(657\) 3.40179e8 0.0467981
\(658\) 1.01265e10 1.38569
\(659\) −2.52315e9 −0.343435 −0.171717 0.985146i \(-0.554932\pi\)
−0.171717 + 0.985146i \(0.554932\pi\)
\(660\) 0 0
\(661\) 4.13332e9 0.556665 0.278332 0.960485i \(-0.410218\pi\)
0.278332 + 0.960485i \(0.410218\pi\)
\(662\) 4.94062e8 0.0661879
\(663\) 7.97603e7 0.0106289
\(664\) −4.78059e9 −0.633714
\(665\) 0 0
\(666\) −7.68004e9 −1.00740
\(667\) 4.93830e8 0.0644373
\(668\) −6.01230e9 −0.780410
\(669\) −2.10636e9 −0.271983
\(670\) 0 0
\(671\) 1.25184e9 0.159963
\(672\) −1.76204e9 −0.223987
\(673\) −7.54972e9 −0.954725 −0.477363 0.878706i \(-0.658407\pi\)
−0.477363 + 0.878706i \(0.658407\pi\)
\(674\) −1.57670e9 −0.198353
\(675\) 0 0
\(676\) 4.48559e9 0.558478
\(677\) −1.88440e8 −0.0233407 −0.0116703 0.999932i \(-0.503715\pi\)
−0.0116703 + 0.999932i \(0.503715\pi\)
\(678\) −8.51424e7 −0.0104916
\(679\) 8.89032e9 1.08987
\(680\) 0 0
\(681\) 1.60266e9 0.194458
\(682\) 4.69558e8 0.0566819
\(683\) 1.37954e9 0.165677 0.0828385 0.996563i \(-0.473601\pi\)
0.0828385 + 0.996563i \(0.473601\pi\)
\(684\) −4.64158e9 −0.554587
\(685\) 0 0
\(686\) −2.74190e9 −0.324278
\(687\) −1.44701e8 −0.0170264
\(688\) 3.08319e8 0.0360945
\(689\) −2.51025e8 −0.0292382
\(690\) 0 0
\(691\) 1.40583e10 1.62091 0.810457 0.585799i \(-0.199219\pi\)
0.810457 + 0.585799i \(0.199219\pi\)
\(692\) −7.60174e9 −0.872051
\(693\) 1.05003e9 0.119850
\(694\) −4.66049e9 −0.529265
\(695\) 0 0
\(696\) 1.44617e9 0.162587
\(697\) 1.70122e10 1.90303
\(698\) −2.54816e9 −0.283617
\(699\) −2.30573e8 −0.0255351
\(700\) 0 0
\(701\) 9.62820e9 1.05568 0.527840 0.849344i \(-0.323002\pi\)
0.527840 + 0.849344i \(0.323002\pi\)
\(702\) 7.85807e7 0.00857307
\(703\) −1.48674e10 −1.61396
\(704\) −6.86085e8 −0.0741095
\(705\) 0 0
\(706\) 4.34511e9 0.464713
\(707\) −1.00661e10 −1.07126
\(708\) −1.60966e9 −0.170459
\(709\) −1.53677e10 −1.61937 −0.809686 0.586864i \(-0.800362\pi\)
−0.809686 + 0.586864i \(0.800362\pi\)
\(710\) 0 0
\(711\) 7.78691e9 0.812497
\(712\) 9.94673e9 1.03276
\(713\) −6.43882e8 −0.0665262
\(714\) 2.46318e9 0.253251
\(715\) 0 0
\(716\) −1.88794e9 −0.192218
\(717\) 1.28705e9 0.130401
\(718\) 8.52083e9 0.859105
\(719\) −2.94378e9 −0.295362 −0.147681 0.989035i \(-0.547181\pi\)
−0.147681 + 0.989035i \(0.547181\pi\)
\(720\) 0 0
\(721\) 4.27632e9 0.424910
\(722\) 3.69064e8 0.0364940
\(723\) −6.68113e8 −0.0657455
\(724\) −2.75612e9 −0.269906
\(725\) 0 0
\(726\) 1.25748e9 0.121961
\(727\) −1.75087e10 −1.68999 −0.844993 0.534778i \(-0.820395\pi\)
−0.844993 + 0.534778i \(0.820395\pi\)
\(728\) −4.85215e8 −0.0466095
\(729\) −8.36307e9 −0.799502
\(730\) 0 0
\(731\) 4.81337e9 0.455762
\(732\) −1.80286e9 −0.169892
\(733\) 1.74257e10 1.63428 0.817141 0.576438i \(-0.195558\pi\)
0.817141 + 0.576438i \(0.195558\pi\)
\(734\) −1.33724e10 −1.24817
\(735\) 0 0
\(736\) 7.81958e8 0.0722954
\(737\) 2.72212e8 0.0250479
\(738\) 8.23364e9 0.754041
\(739\) −6.63370e9 −0.604645 −0.302322 0.953206i \(-0.597762\pi\)
−0.302322 + 0.953206i \(0.597762\pi\)
\(740\) 0 0
\(741\) 7.47295e7 0.00674727
\(742\) −7.75221e9 −0.696646
\(743\) −6.11265e9 −0.546725 −0.273362 0.961911i \(-0.588136\pi\)
−0.273362 + 0.961911i \(0.588136\pi\)
\(744\) −1.88559e9 −0.167858
\(745\) 0 0
\(746\) 1.07443e10 0.947528
\(747\) −6.73422e9 −0.591106
\(748\) −1.01120e9 −0.0883446
\(749\) 4.00345e9 0.348135
\(750\) 0 0
\(751\) −6.47738e9 −0.558033 −0.279016 0.960286i \(-0.590008\pi\)
−0.279016 + 0.960286i \(0.590008\pi\)
\(752\) −2.45354e9 −0.210393
\(753\) −8.39638e8 −0.0716654
\(754\) 2.34422e8 0.0199158
\(755\) 0 0
\(756\) −3.07832e9 −0.259112
\(757\) 1.56639e10 1.31239 0.656195 0.754591i \(-0.272165\pi\)
0.656195 + 0.754591i \(0.272165\pi\)
\(758\) −1.11645e9 −0.0931098
\(759\) 1.65987e7 0.00137793
\(760\) 0 0
\(761\) −1.34424e10 −1.10568 −0.552840 0.833287i \(-0.686456\pi\)
−0.552840 + 0.833287i \(0.686456\pi\)
\(762\) −4.86405e8 −0.0398249
\(763\) 2.17357e10 1.77149
\(764\) −5.21853e9 −0.423372
\(765\) 0 0
\(766\) −5.24805e9 −0.421888
\(767\) −7.27544e8 −0.0582204
\(768\) 2.45676e9 0.195704
\(769\) 7.15384e9 0.567279 0.283640 0.958931i \(-0.408458\pi\)
0.283640 + 0.958931i \(0.408458\pi\)
\(770\) 0 0
\(771\) −3.31141e9 −0.260210
\(772\) 1.93981e9 0.151740
\(773\) −7.45322e9 −0.580385 −0.290192 0.956968i \(-0.593719\pi\)
−0.290192 + 0.956968i \(0.593719\pi\)
\(774\) 2.32960e9 0.180588
\(775\) 0 0
\(776\) −1.15539e10 −0.887588
\(777\) −4.84380e9 −0.370436
\(778\) −7.49835e9 −0.570870
\(779\) 1.59391e10 1.20805
\(780\) 0 0
\(781\) −1.70979e9 −0.128429
\(782\) −1.09311e9 −0.0817410
\(783\) 4.14689e9 0.308714
\(784\) −1.06464e9 −0.0789038
\(785\) 0 0
\(786\) −2.27673e8 −0.0167237
\(787\) 1.18197e10 0.864363 0.432182 0.901787i \(-0.357744\pi\)
0.432182 + 0.901787i \(0.357744\pi\)
\(788\) −7.88241e9 −0.573875
\(789\) 2.27964e9 0.165233
\(790\) 0 0
\(791\) 1.50753e9 0.108305
\(792\) −1.36462e9 −0.0976056
\(793\) −8.14864e8 −0.0580269
\(794\) −2.96368e9 −0.210116
\(795\) 0 0
\(796\) −1.33786e10 −0.940192
\(797\) 2.59127e9 0.181304 0.0906522 0.995883i \(-0.471105\pi\)
0.0906522 + 0.995883i \(0.471105\pi\)
\(798\) 2.30781e9 0.160764
\(799\) −3.83038e10 −2.65661
\(800\) 0 0
\(801\) 1.40115e10 0.963324
\(802\) 1.92139e10 1.31524
\(803\) 6.94356e7 0.00473236
\(804\) −3.92031e8 −0.0266026
\(805\) 0 0
\(806\) −3.05652e8 −0.0205615
\(807\) −3.93561e9 −0.263605
\(808\) 1.30819e10 0.872433
\(809\) 4.63994e9 0.308100 0.154050 0.988063i \(-0.450768\pi\)
0.154050 + 0.988063i \(0.450768\pi\)
\(810\) 0 0
\(811\) −1.12663e10 −0.741665 −0.370833 0.928700i \(-0.620928\pi\)
−0.370833 + 0.928700i \(0.620928\pi\)
\(812\) −9.18323e9 −0.601934
\(813\) −2.05712e9 −0.134259
\(814\) −1.56761e9 −0.101871
\(815\) 0 0
\(816\) −5.96802e8 −0.0384516
\(817\) 4.50977e9 0.289319
\(818\) 6.95548e9 0.444315
\(819\) −6.83503e8 −0.0434757
\(820\) 0 0
\(821\) 1.14770e10 0.723817 0.361909 0.932214i \(-0.382125\pi\)
0.361909 + 0.932214i \(0.382125\pi\)
\(822\) −1.03517e9 −0.0650068
\(823\) −1.28816e10 −0.805510 −0.402755 0.915308i \(-0.631947\pi\)
−0.402755 + 0.915308i \(0.631947\pi\)
\(824\) −5.55750e9 −0.346047
\(825\) 0 0
\(826\) −2.24682e10 −1.38719
\(827\) 9.86924e9 0.606757 0.303378 0.952870i \(-0.401885\pi\)
0.303378 + 0.952870i \(0.401885\pi\)
\(828\) 6.71096e8 0.0410845
\(829\) 4.83851e8 0.0294965 0.0147483 0.999891i \(-0.495305\pi\)
0.0147483 + 0.999891i \(0.495305\pi\)
\(830\) 0 0
\(831\) −2.06053e8 −0.0124559
\(832\) 4.46597e8 0.0268834
\(833\) −1.66208e10 −0.996312
\(834\) −3.83744e9 −0.229066
\(835\) 0 0
\(836\) −9.47415e8 −0.0560813
\(837\) −5.40693e9 −0.318722
\(838\) 1.29169e10 0.758235
\(839\) −2.18839e10 −1.27926 −0.639628 0.768685i \(-0.720912\pi\)
−0.639628 + 0.768685i \(0.720912\pi\)
\(840\) 0 0
\(841\) −4.87889e9 −0.282836
\(842\) 1.25869e10 0.726654
\(843\) 2.24569e9 0.129108
\(844\) 1.76528e10 1.01068
\(845\) 0 0
\(846\) −1.85385e10 −1.05263
\(847\) −2.22649e10 −1.25901
\(848\) 1.87828e9 0.105773
\(849\) 5.71424e9 0.320466
\(850\) 0 0
\(851\) 2.14959e9 0.119564
\(852\) 2.46238e9 0.136401
\(853\) 9.77094e9 0.539032 0.269516 0.962996i \(-0.413136\pi\)
0.269516 + 0.962996i \(0.413136\pi\)
\(854\) −2.51648e10 −1.38258
\(855\) 0 0
\(856\) −5.20288e9 −0.283521
\(857\) 1.82327e9 0.0989505 0.0494752 0.998775i \(-0.484245\pi\)
0.0494752 + 0.998775i \(0.484245\pi\)
\(858\) 7.87941e6 0.000425881 0
\(859\) 1.55684e10 0.838048 0.419024 0.907975i \(-0.362372\pi\)
0.419024 + 0.907975i \(0.362372\pi\)
\(860\) 0 0
\(861\) 5.19296e9 0.277271
\(862\) −2.07366e10 −1.10271
\(863\) −8.40410e8 −0.0445096 −0.0222548 0.999752i \(-0.507085\pi\)
−0.0222548 + 0.999752i \(0.507085\pi\)
\(864\) 6.56641e9 0.346362
\(865\) 0 0
\(866\) 8.94522e9 0.468035
\(867\) −5.75814e9 −0.300065
\(868\) 1.19736e10 0.621448
\(869\) 1.58942e9 0.0821619
\(870\) 0 0
\(871\) −1.77192e8 −0.00908617
\(872\) −2.82478e10 −1.44270
\(873\) −1.62755e10 −0.827911
\(874\) −1.02416e9 −0.0518894
\(875\) 0 0
\(876\) −9.99990e7 −0.00502610
\(877\) −2.99816e10 −1.50091 −0.750457 0.660919i \(-0.770167\pi\)
−0.750457 + 0.660919i \(0.770167\pi\)
\(878\) 7.66000e9 0.381942
\(879\) 1.49798e9 0.0743952
\(880\) 0 0
\(881\) 1.49601e10 0.737087 0.368544 0.929610i \(-0.379856\pi\)
0.368544 + 0.929610i \(0.379856\pi\)
\(882\) −8.04424e9 −0.394771
\(883\) −3.11793e10 −1.52407 −0.762033 0.647539i \(-0.775798\pi\)
−0.762033 + 0.647539i \(0.775798\pi\)
\(884\) 6.58222e8 0.0320472
\(885\) 0 0
\(886\) 9.67805e9 0.467487
\(887\) −2.56200e10 −1.23267 −0.616335 0.787484i \(-0.711383\pi\)
−0.616335 + 0.787484i \(0.711383\pi\)
\(888\) 6.29501e9 0.301683
\(889\) 8.61229e9 0.411114
\(890\) 0 0
\(891\) −1.85138e9 −0.0876845
\(892\) −1.73828e10 −0.820053
\(893\) −3.58878e10 −1.68642
\(894\) −9.28105e8 −0.0434426
\(895\) 0 0
\(896\) −1.22127e10 −0.567196
\(897\) −1.08046e7 −0.000499847 0
\(898\) 1.21769e10 0.561137
\(899\) −1.61299e10 −0.740413
\(900\) 0 0
\(901\) 2.93231e10 1.33559
\(902\) 1.68061e9 0.0762507
\(903\) 1.46928e9 0.0664045
\(904\) −1.95919e9 −0.0882038
\(905\) 0 0
\(906\) −2.30832e9 −0.103121
\(907\) −3.72736e10 −1.65873 −0.829364 0.558708i \(-0.811297\pi\)
−0.829364 + 0.558708i \(0.811297\pi\)
\(908\) 1.32260e10 0.586310
\(909\) 1.84280e10 0.813775
\(910\) 0 0
\(911\) 4.21284e10 1.84612 0.923062 0.384652i \(-0.125678\pi\)
0.923062 + 0.384652i \(0.125678\pi\)
\(912\) −5.59159e8 −0.0244092
\(913\) −1.37455e9 −0.0597743
\(914\) −5.35646e9 −0.232042
\(915\) 0 0
\(916\) −1.19415e9 −0.0513361
\(917\) 4.03119e9 0.172640
\(918\) −9.17927e9 −0.391614
\(919\) −2.04320e10 −0.868372 −0.434186 0.900823i \(-0.642964\pi\)
−0.434186 + 0.900823i \(0.642964\pi\)
\(920\) 0 0
\(921\) 6.35631e9 0.268100
\(922\) 1.26497e10 0.531521
\(923\) 1.11296e9 0.0465879
\(924\) −3.08668e8 −0.0128718
\(925\) 0 0
\(926\) −2.68592e10 −1.11162
\(927\) −7.82863e9 −0.322780
\(928\) 1.95889e10 0.804622
\(929\) 1.78330e10 0.729743 0.364872 0.931058i \(-0.381113\pi\)
0.364872 + 0.931058i \(0.381113\pi\)
\(930\) 0 0
\(931\) −1.55725e10 −0.632461
\(932\) −1.90280e9 −0.0769907
\(933\) −5.34632e9 −0.215511
\(934\) 1.43475e10 0.576184
\(935\) 0 0
\(936\) 8.88280e8 0.0354066
\(937\) 5.78607e9 0.229771 0.114886 0.993379i \(-0.463350\pi\)
0.114886 + 0.993379i \(0.463350\pi\)
\(938\) −5.47208e9 −0.216492
\(939\) 1.10452e9 0.0435356
\(940\) 0 0
\(941\) −1.39764e10 −0.546803 −0.273402 0.961900i \(-0.588149\pi\)
−0.273402 + 0.961900i \(0.588149\pi\)
\(942\) −4.49296e9 −0.175128
\(943\) −2.30454e9 −0.0894937
\(944\) 5.44380e9 0.210620
\(945\) 0 0
\(946\) 4.75506e8 0.0182615
\(947\) 3.10794e10 1.18918 0.594590 0.804029i \(-0.297314\pi\)
0.594590 + 0.804029i \(0.297314\pi\)
\(948\) −2.28904e9 −0.0872618
\(949\) −4.51980e7 −0.00171667
\(950\) 0 0
\(951\) −7.17761e9 −0.270613
\(952\) 5.66795e10 2.12910
\(953\) −5.05440e10 −1.89167 −0.945834 0.324651i \(-0.894753\pi\)
−0.945834 + 0.324651i \(0.894753\pi\)
\(954\) 1.41919e10 0.529203
\(955\) 0 0
\(956\) 1.06214e10 0.393169
\(957\) 4.15815e8 0.0153359
\(958\) 1.05589e9 0.0388007
\(959\) 1.83287e10 0.671067
\(960\) 0 0
\(961\) −6.48153e9 −0.235584
\(962\) 1.02041e9 0.0369541
\(963\) −7.32909e9 −0.264459
\(964\) −5.51360e9 −0.198228
\(965\) 0 0
\(966\) −3.33671e8 −0.0119097
\(967\) 5.23575e10 1.86203 0.931014 0.364985i \(-0.118926\pi\)
0.931014 + 0.364985i \(0.118926\pi\)
\(968\) 2.89354e10 1.02534
\(969\) −8.72939e9 −0.308213
\(970\) 0 0
\(971\) −9.90771e9 −0.347301 −0.173650 0.984807i \(-0.555556\pi\)
−0.173650 + 0.984807i \(0.555556\pi\)
\(972\) 8.50249e9 0.296971
\(973\) 6.79458e10 2.36465
\(974\) 1.80579e10 0.626196
\(975\) 0 0
\(976\) 6.09718e9 0.209920
\(977\) −2.78051e10 −0.953881 −0.476940 0.878936i \(-0.658254\pi\)
−0.476940 + 0.878936i \(0.658254\pi\)
\(978\) 1.24091e9 0.0424182
\(979\) 2.85997e9 0.0974140
\(980\) 0 0
\(981\) −3.97915e10 −1.34570
\(982\) −5.94923e8 −0.0200480
\(983\) −2.76912e10 −0.929832 −0.464916 0.885355i \(-0.653916\pi\)
−0.464916 + 0.885355i \(0.653916\pi\)
\(984\) −6.74878e9 −0.225810
\(985\) 0 0
\(986\) −2.73836e10 −0.909747
\(987\) −1.16922e10 −0.387068
\(988\) 6.16705e8 0.0203436
\(989\) −6.52038e8 −0.0214331
\(990\) 0 0
\(991\) 2.47025e10 0.806275 0.403137 0.915139i \(-0.367920\pi\)
0.403137 + 0.915139i \(0.367920\pi\)
\(992\) −2.55410e10 −0.830706
\(993\) −5.70455e8 −0.0184884
\(994\) 3.43706e10 1.11003
\(995\) 0 0
\(996\) 1.97959e9 0.0634845
\(997\) 1.48873e10 0.475754 0.237877 0.971295i \(-0.423548\pi\)
0.237877 + 0.971295i \(0.423548\pi\)
\(998\) −1.40248e10 −0.446622
\(999\) 1.80509e10 0.572822
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.8.a.c.1.22 34
5.4 even 2 625.8.a.d.1.13 34
25.4 even 10 25.8.d.a.16.11 yes 68
25.19 even 10 25.8.d.a.11.11 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.8.d.a.11.11 68 25.19 even 10
25.8.d.a.16.11 yes 68 25.4 even 10
625.8.a.c.1.22 34 1.1 even 1 trivial
625.8.a.d.1.13 34 5.4 even 2