Properties

Label 624.6.a.r.1.2
Level $624$
Weight $6$
Character 624.1
Self dual yes
Analytic conductor $100.080$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,6,Mod(1,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-27,0,4,0,-242] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 238x + 778 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(14.0186\) of defining polynomial
Character \(\chi\) \(=\) 624.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} +26.3472 q^{5} +108.570 q^{7} +81.0000 q^{9} -285.612 q^{11} +169.000 q^{13} -237.125 q^{15} +964.281 q^{17} -1122.52 q^{19} -977.133 q^{21} -3199.74 q^{23} -2430.82 q^{25} -729.000 q^{27} -150.648 q^{29} +1018.47 q^{31} +2570.51 q^{33} +2860.53 q^{35} +11302.4 q^{37} -1521.00 q^{39} +3400.17 q^{41} -12816.8 q^{43} +2134.13 q^{45} -19597.8 q^{47} -5019.49 q^{49} -8678.53 q^{51} -9707.26 q^{53} -7525.09 q^{55} +10102.7 q^{57} +22700.9 q^{59} +41402.6 q^{61} +8794.20 q^{63} +4452.68 q^{65} +15356.0 q^{67} +28797.6 q^{69} -29876.9 q^{71} +37685.4 q^{73} +21877.4 q^{75} -31009.0 q^{77} -28054.2 q^{79} +6561.00 q^{81} +30521.3 q^{83} +25406.1 q^{85} +1355.83 q^{87} +6658.25 q^{89} +18348.4 q^{91} -9166.24 q^{93} -29575.2 q^{95} -68607.1 q^{97} -23134.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 27 q^{3} + 4 q^{5} - 242 q^{7} + 243 q^{9} - 64 q^{11} + 507 q^{13} - 36 q^{15} + 622 q^{17} - 2330 q^{19} + 2178 q^{21} - 816 q^{23} + 6313 q^{25} - 2187 q^{27} + 6726 q^{29} - 5010 q^{31} + 576 q^{33}+ \cdots - 5184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 26.3472 0.471314 0.235657 0.971836i \(-0.424276\pi\)
0.235657 + 0.971836i \(0.424276\pi\)
\(6\) 0 0
\(7\) 108.570 0.837464 0.418732 0.908110i \(-0.362475\pi\)
0.418732 + 0.908110i \(0.362475\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −285.612 −0.711696 −0.355848 0.934544i \(-0.615808\pi\)
−0.355848 + 0.934544i \(0.615808\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −237.125 −0.272113
\(16\) 0 0
\(17\) 964.281 0.809248 0.404624 0.914483i \(-0.367402\pi\)
0.404624 + 0.914483i \(0.367402\pi\)
\(18\) 0 0
\(19\) −1122.52 −0.713361 −0.356680 0.934226i \(-0.616091\pi\)
−0.356680 + 0.934226i \(0.616091\pi\)
\(20\) 0 0
\(21\) −977.133 −0.483510
\(22\) 0 0
\(23\) −3199.74 −1.26123 −0.630615 0.776096i \(-0.717197\pi\)
−0.630615 + 0.776096i \(0.717197\pi\)
\(24\) 0 0
\(25\) −2430.82 −0.777863
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −150.648 −0.0332635 −0.0166317 0.999862i \(-0.505294\pi\)
−0.0166317 + 0.999862i \(0.505294\pi\)
\(30\) 0 0
\(31\) 1018.47 0.190346 0.0951732 0.995461i \(-0.469660\pi\)
0.0951732 + 0.995461i \(0.469660\pi\)
\(32\) 0 0
\(33\) 2570.51 0.410898
\(34\) 0 0
\(35\) 2860.53 0.394708
\(36\) 0 0
\(37\) 11302.4 1.35726 0.678632 0.734478i \(-0.262573\pi\)
0.678632 + 0.734478i \(0.262573\pi\)
\(38\) 0 0
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) 3400.17 0.315894 0.157947 0.987448i \(-0.449512\pi\)
0.157947 + 0.987448i \(0.449512\pi\)
\(42\) 0 0
\(43\) −12816.8 −1.05708 −0.528539 0.848909i \(-0.677260\pi\)
−0.528539 + 0.848909i \(0.677260\pi\)
\(44\) 0 0
\(45\) 2134.13 0.157105
\(46\) 0 0
\(47\) −19597.8 −1.29409 −0.647043 0.762453i \(-0.723995\pi\)
−0.647043 + 0.762453i \(0.723995\pi\)
\(48\) 0 0
\(49\) −5019.49 −0.298655
\(50\) 0 0
\(51\) −8678.53 −0.467219
\(52\) 0 0
\(53\) −9707.26 −0.474687 −0.237343 0.971426i \(-0.576277\pi\)
−0.237343 + 0.971426i \(0.576277\pi\)
\(54\) 0 0
\(55\) −7525.09 −0.335432
\(56\) 0 0
\(57\) 10102.7 0.411859
\(58\) 0 0
\(59\) 22700.9 0.849010 0.424505 0.905426i \(-0.360448\pi\)
0.424505 + 0.905426i \(0.360448\pi\)
\(60\) 0 0
\(61\) 41402.6 1.42463 0.712317 0.701858i \(-0.247646\pi\)
0.712317 + 0.701858i \(0.247646\pi\)
\(62\) 0 0
\(63\) 8794.20 0.279155
\(64\) 0 0
\(65\) 4452.68 0.130719
\(66\) 0 0
\(67\) 15356.0 0.417918 0.208959 0.977924i \(-0.432992\pi\)
0.208959 + 0.977924i \(0.432992\pi\)
\(68\) 0 0
\(69\) 28797.6 0.728172
\(70\) 0 0
\(71\) −29876.9 −0.703380 −0.351690 0.936116i \(-0.614393\pi\)
−0.351690 + 0.936116i \(0.614393\pi\)
\(72\) 0 0
\(73\) 37685.4 0.827686 0.413843 0.910348i \(-0.364186\pi\)
0.413843 + 0.910348i \(0.364186\pi\)
\(74\) 0 0
\(75\) 21877.4 0.449100
\(76\) 0 0
\(77\) −31009.0 −0.596020
\(78\) 0 0
\(79\) −28054.2 −0.505743 −0.252872 0.967500i \(-0.581375\pi\)
−0.252872 + 0.967500i \(0.581375\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 30521.3 0.486305 0.243152 0.969988i \(-0.421818\pi\)
0.243152 + 0.969988i \(0.421818\pi\)
\(84\) 0 0
\(85\) 25406.1 0.381409
\(86\) 0 0
\(87\) 1355.83 0.0192047
\(88\) 0 0
\(89\) 6658.25 0.0891015 0.0445507 0.999007i \(-0.485814\pi\)
0.0445507 + 0.999007i \(0.485814\pi\)
\(90\) 0 0
\(91\) 18348.4 0.232271
\(92\) 0 0
\(93\) −9166.24 −0.109897
\(94\) 0 0
\(95\) −29575.2 −0.336217
\(96\) 0 0
\(97\) −68607.1 −0.740354 −0.370177 0.928961i \(-0.620703\pi\)
−0.370177 + 0.928961i \(0.620703\pi\)
\(98\) 0 0
\(99\) −23134.6 −0.237232
\(100\) 0 0
\(101\) −193596. −1.88839 −0.944196 0.329383i \(-0.893159\pi\)
−0.944196 + 0.329383i \(0.893159\pi\)
\(102\) 0 0
\(103\) 32133.9 0.298450 0.149225 0.988803i \(-0.452322\pi\)
0.149225 + 0.988803i \(0.452322\pi\)
\(104\) 0 0
\(105\) −25744.7 −0.227885
\(106\) 0 0
\(107\) 188835. 1.59449 0.797247 0.603653i \(-0.206289\pi\)
0.797247 + 0.603653i \(0.206289\pi\)
\(108\) 0 0
\(109\) −143157. −1.15410 −0.577052 0.816707i \(-0.695797\pi\)
−0.577052 + 0.816707i \(0.695797\pi\)
\(110\) 0 0
\(111\) −101721. −0.783617
\(112\) 0 0
\(113\) −125402. −0.923862 −0.461931 0.886916i \(-0.652843\pi\)
−0.461931 + 0.886916i \(0.652843\pi\)
\(114\) 0 0
\(115\) −84304.2 −0.594435
\(116\) 0 0
\(117\) 13689.0 0.0924500
\(118\) 0 0
\(119\) 104692. 0.677715
\(120\) 0 0
\(121\) −79476.8 −0.493488
\(122\) 0 0
\(123\) −30601.6 −0.182382
\(124\) 0 0
\(125\) −146381. −0.837931
\(126\) 0 0
\(127\) −96499.1 −0.530901 −0.265451 0.964124i \(-0.585521\pi\)
−0.265451 + 0.964124i \(0.585521\pi\)
\(128\) 0 0
\(129\) 115351. 0.610305
\(130\) 0 0
\(131\) −10012.2 −0.0509744 −0.0254872 0.999675i \(-0.508114\pi\)
−0.0254872 + 0.999675i \(0.508114\pi\)
\(132\) 0 0
\(133\) −121872. −0.597414
\(134\) 0 0
\(135\) −19207.1 −0.0907044
\(136\) 0 0
\(137\) −189227. −0.861356 −0.430678 0.902506i \(-0.641726\pi\)
−0.430678 + 0.902506i \(0.641726\pi\)
\(138\) 0 0
\(139\) −63574.5 −0.279091 −0.139545 0.990216i \(-0.544564\pi\)
−0.139545 + 0.990216i \(0.544564\pi\)
\(140\) 0 0
\(141\) 176380. 0.747141
\(142\) 0 0
\(143\) −48268.4 −0.197389
\(144\) 0 0
\(145\) −3969.15 −0.0156775
\(146\) 0 0
\(147\) 45175.4 0.172428
\(148\) 0 0
\(149\) −2413.19 −0.00890484 −0.00445242 0.999990i \(-0.501417\pi\)
−0.00445242 + 0.999990i \(0.501417\pi\)
\(150\) 0 0
\(151\) −452236. −1.61407 −0.807036 0.590502i \(-0.798930\pi\)
−0.807036 + 0.590502i \(0.798930\pi\)
\(152\) 0 0
\(153\) 78106.8 0.269749
\(154\) 0 0
\(155\) 26833.9 0.0897128
\(156\) 0 0
\(157\) −195398. −0.632661 −0.316330 0.948649i \(-0.602451\pi\)
−0.316330 + 0.948649i \(0.602451\pi\)
\(158\) 0 0
\(159\) 87365.3 0.274060
\(160\) 0 0
\(161\) −347396. −1.05623
\(162\) 0 0
\(163\) −335838. −0.990060 −0.495030 0.868876i \(-0.664843\pi\)
−0.495030 + 0.868876i \(0.664843\pi\)
\(164\) 0 0
\(165\) 67725.8 0.193662
\(166\) 0 0
\(167\) 266301. 0.738893 0.369446 0.929252i \(-0.379547\pi\)
0.369446 + 0.929252i \(0.379547\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −90924.0 −0.237787
\(172\) 0 0
\(173\) −413083. −1.04936 −0.524678 0.851301i \(-0.675814\pi\)
−0.524678 + 0.851301i \(0.675814\pi\)
\(174\) 0 0
\(175\) −263915. −0.651432
\(176\) 0 0
\(177\) −204308. −0.490176
\(178\) 0 0
\(179\) 864.231 0.00201603 0.00100802 0.999999i \(-0.499679\pi\)
0.00100802 + 0.999999i \(0.499679\pi\)
\(180\) 0 0
\(181\) 334650. 0.759266 0.379633 0.925137i \(-0.376050\pi\)
0.379633 + 0.925137i \(0.376050\pi\)
\(182\) 0 0
\(183\) −372624. −0.822513
\(184\) 0 0
\(185\) 297786. 0.639697
\(186\) 0 0
\(187\) −275410. −0.575939
\(188\) 0 0
\(189\) −79147.8 −0.161170
\(190\) 0 0
\(191\) −811587. −1.60973 −0.804863 0.593461i \(-0.797761\pi\)
−0.804863 + 0.593461i \(0.797761\pi\)
\(192\) 0 0
\(193\) −29461.9 −0.0569334 −0.0284667 0.999595i \(-0.509062\pi\)
−0.0284667 + 0.999595i \(0.509062\pi\)
\(194\) 0 0
\(195\) −40074.1 −0.0754706
\(196\) 0 0
\(197\) −334514. −0.614113 −0.307056 0.951691i \(-0.599344\pi\)
−0.307056 + 0.951691i \(0.599344\pi\)
\(198\) 0 0
\(199\) 473775. 0.848086 0.424043 0.905642i \(-0.360611\pi\)
0.424043 + 0.905642i \(0.360611\pi\)
\(200\) 0 0
\(201\) −138204. −0.241285
\(202\) 0 0
\(203\) −16355.9 −0.0278570
\(204\) 0 0
\(205\) 89585.2 0.148885
\(206\) 0 0
\(207\) −259179. −0.420410
\(208\) 0 0
\(209\) 320605. 0.507696
\(210\) 0 0
\(211\) 179756. 0.277956 0.138978 0.990295i \(-0.455618\pi\)
0.138978 + 0.990295i \(0.455618\pi\)
\(212\) 0 0
\(213\) 268892. 0.406097
\(214\) 0 0
\(215\) −337686. −0.498216
\(216\) 0 0
\(217\) 110576. 0.159408
\(218\) 0 0
\(219\) −339168. −0.477865
\(220\) 0 0
\(221\) 162964. 0.224445
\(222\) 0 0
\(223\) −926508. −1.24763 −0.623817 0.781571i \(-0.714419\pi\)
−0.623817 + 0.781571i \(0.714419\pi\)
\(224\) 0 0
\(225\) −196897. −0.259288
\(226\) 0 0
\(227\) −583675. −0.751807 −0.375903 0.926659i \(-0.622668\pi\)
−0.375903 + 0.926659i \(0.622668\pi\)
\(228\) 0 0
\(229\) −373754. −0.470974 −0.235487 0.971877i \(-0.575669\pi\)
−0.235487 + 0.971877i \(0.575669\pi\)
\(230\) 0 0
\(231\) 279081. 0.344112
\(232\) 0 0
\(233\) −1.39688e6 −1.68566 −0.842829 0.538182i \(-0.819111\pi\)
−0.842829 + 0.538182i \(0.819111\pi\)
\(234\) 0 0
\(235\) −516349. −0.609921
\(236\) 0 0
\(237\) 252488. 0.291991
\(238\) 0 0
\(239\) 584527. 0.661926 0.330963 0.943644i \(-0.392626\pi\)
0.330963 + 0.943644i \(0.392626\pi\)
\(240\) 0 0
\(241\) 1.12255e6 1.24498 0.622490 0.782628i \(-0.286121\pi\)
0.622490 + 0.782628i \(0.286121\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) −132250. −0.140760
\(246\) 0 0
\(247\) −189706. −0.197851
\(248\) 0 0
\(249\) −274692. −0.280768
\(250\) 0 0
\(251\) −727271. −0.728638 −0.364319 0.931274i \(-0.618698\pi\)
−0.364319 + 0.931274i \(0.618698\pi\)
\(252\) 0 0
\(253\) 913883. 0.897613
\(254\) 0 0
\(255\) −228655. −0.220207
\(256\) 0 0
\(257\) 650466. 0.614316 0.307158 0.951659i \(-0.400622\pi\)
0.307158 + 0.951659i \(0.400622\pi\)
\(258\) 0 0
\(259\) 1.22710e6 1.13666
\(260\) 0 0
\(261\) −12202.5 −0.0110878
\(262\) 0 0
\(263\) −979886. −0.873547 −0.436774 0.899571i \(-0.643879\pi\)
−0.436774 + 0.899571i \(0.643879\pi\)
\(264\) 0 0
\(265\) −255759. −0.223726
\(266\) 0 0
\(267\) −59924.2 −0.0514428
\(268\) 0 0
\(269\) −242796. −0.204579 −0.102289 0.994755i \(-0.532617\pi\)
−0.102289 + 0.994755i \(0.532617\pi\)
\(270\) 0 0
\(271\) 917731. 0.759088 0.379544 0.925174i \(-0.376081\pi\)
0.379544 + 0.925174i \(0.376081\pi\)
\(272\) 0 0
\(273\) −165135. −0.134102
\(274\) 0 0
\(275\) 694272. 0.553603
\(276\) 0 0
\(277\) −1.70782e6 −1.33734 −0.668670 0.743560i \(-0.733136\pi\)
−0.668670 + 0.743560i \(0.733136\pi\)
\(278\) 0 0
\(279\) 82496.2 0.0634488
\(280\) 0 0
\(281\) −78457.8 −0.0592748 −0.0296374 0.999561i \(-0.509435\pi\)
−0.0296374 + 0.999561i \(0.509435\pi\)
\(282\) 0 0
\(283\) 1.12505e6 0.835038 0.417519 0.908668i \(-0.362900\pi\)
0.417519 + 0.908668i \(0.362900\pi\)
\(284\) 0 0
\(285\) 266177. 0.194115
\(286\) 0 0
\(287\) 369158. 0.264550
\(288\) 0 0
\(289\) −490019. −0.345118
\(290\) 0 0
\(291\) 617464. 0.427444
\(292\) 0 0
\(293\) −1.15641e6 −0.786940 −0.393470 0.919338i \(-0.628725\pi\)
−0.393470 + 0.919338i \(0.628725\pi\)
\(294\) 0 0
\(295\) 598106. 0.400150
\(296\) 0 0
\(297\) 208211. 0.136966
\(298\) 0 0
\(299\) −540755. −0.349802
\(300\) 0 0
\(301\) −1.39152e6 −0.885265
\(302\) 0 0
\(303\) 1.74236e6 1.09026
\(304\) 0 0
\(305\) 1.09084e6 0.671449
\(306\) 0 0
\(307\) 89309.1 0.0540816 0.0270408 0.999634i \(-0.491392\pi\)
0.0270408 + 0.999634i \(0.491392\pi\)
\(308\) 0 0
\(309\) −289205. −0.172310
\(310\) 0 0
\(311\) −234215. −0.137314 −0.0686569 0.997640i \(-0.521871\pi\)
−0.0686569 + 0.997640i \(0.521871\pi\)
\(312\) 0 0
\(313\) −480239. −0.277075 −0.138537 0.990357i \(-0.544240\pi\)
−0.138537 + 0.990357i \(0.544240\pi\)
\(314\) 0 0
\(315\) 231703. 0.131569
\(316\) 0 0
\(317\) 2.71795e6 1.51912 0.759561 0.650436i \(-0.225414\pi\)
0.759561 + 0.650436i \(0.225414\pi\)
\(318\) 0 0
\(319\) 43026.8 0.0236735
\(320\) 0 0
\(321\) −1.69951e6 −0.920582
\(322\) 0 0
\(323\) −1.08242e6 −0.577286
\(324\) 0 0
\(325\) −410809. −0.215740
\(326\) 0 0
\(327\) 1.28841e6 0.666323
\(328\) 0 0
\(329\) −2.12774e6 −1.08375
\(330\) 0 0
\(331\) 2.99899e6 1.50454 0.752272 0.658853i \(-0.228958\pi\)
0.752272 + 0.658853i \(0.228958\pi\)
\(332\) 0 0
\(333\) 915491. 0.452422
\(334\) 0 0
\(335\) 404588. 0.196970
\(336\) 0 0
\(337\) −2.05193e6 −0.984209 −0.492105 0.870536i \(-0.663772\pi\)
−0.492105 + 0.870536i \(0.663772\pi\)
\(338\) 0 0
\(339\) 1.12861e6 0.533392
\(340\) 0 0
\(341\) −290888. −0.135469
\(342\) 0 0
\(343\) −2.36971e6 −1.08758
\(344\) 0 0
\(345\) 758738. 0.343197
\(346\) 0 0
\(347\) −1.17162e6 −0.522353 −0.261176 0.965291i \(-0.584110\pi\)
−0.261176 + 0.965291i \(0.584110\pi\)
\(348\) 0 0
\(349\) 4.07956e6 1.79288 0.896438 0.443170i \(-0.146146\pi\)
0.896438 + 0.443170i \(0.146146\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) 0 0
\(353\) −1.76727e6 −0.754858 −0.377429 0.926039i \(-0.623192\pi\)
−0.377429 + 0.926039i \(0.623192\pi\)
\(354\) 0 0
\(355\) −787175. −0.331513
\(356\) 0 0
\(357\) −942231. −0.391279
\(358\) 0 0
\(359\) −2.98058e6 −1.22058 −0.610289 0.792179i \(-0.708947\pi\)
−0.610289 + 0.792179i \(0.708947\pi\)
\(360\) 0 0
\(361\) −1.21605e6 −0.491116
\(362\) 0 0
\(363\) 715291. 0.284916
\(364\) 0 0
\(365\) 992905. 0.390100
\(366\) 0 0
\(367\) 3.39556e6 1.31597 0.657986 0.753031i \(-0.271409\pi\)
0.657986 + 0.753031i \(0.271409\pi\)
\(368\) 0 0
\(369\) 275414. 0.105298
\(370\) 0 0
\(371\) −1.05392e6 −0.397533
\(372\) 0 0
\(373\) 1.93570e6 0.720387 0.360194 0.932878i \(-0.382711\pi\)
0.360194 + 0.932878i \(0.382711\pi\)
\(374\) 0 0
\(375\) 1.31743e6 0.483780
\(376\) 0 0
\(377\) −25459.5 −0.00922563
\(378\) 0 0
\(379\) 2.83891e6 1.01520 0.507601 0.861592i \(-0.330532\pi\)
0.507601 + 0.861592i \(0.330532\pi\)
\(380\) 0 0
\(381\) 868492. 0.306516
\(382\) 0 0
\(383\) −3.66320e6 −1.27604 −0.638019 0.770021i \(-0.720246\pi\)
−0.638019 + 0.770021i \(0.720246\pi\)
\(384\) 0 0
\(385\) −817001. −0.280912
\(386\) 0 0
\(387\) −1.03816e6 −0.352360
\(388\) 0 0
\(389\) −1.96777e6 −0.659327 −0.329664 0.944098i \(-0.606935\pi\)
−0.329664 + 0.944098i \(0.606935\pi\)
\(390\) 0 0
\(391\) −3.08545e6 −1.02065
\(392\) 0 0
\(393\) 90109.9 0.0294301
\(394\) 0 0
\(395\) −739151. −0.238364
\(396\) 0 0
\(397\) 2.79713e6 0.890711 0.445356 0.895354i \(-0.353077\pi\)
0.445356 + 0.895354i \(0.353077\pi\)
\(398\) 0 0
\(399\) 1.09685e6 0.344917
\(400\) 0 0
\(401\) 580264. 0.180204 0.0901020 0.995933i \(-0.471281\pi\)
0.0901020 + 0.995933i \(0.471281\pi\)
\(402\) 0 0
\(403\) 172122. 0.0527926
\(404\) 0 0
\(405\) 172864. 0.0523682
\(406\) 0 0
\(407\) −3.22809e6 −0.965960
\(408\) 0 0
\(409\) 1.36264e6 0.402784 0.201392 0.979511i \(-0.435453\pi\)
0.201392 + 0.979511i \(0.435453\pi\)
\(410\) 0 0
\(411\) 1.70305e6 0.497304
\(412\) 0 0
\(413\) 2.46464e6 0.711015
\(414\) 0 0
\(415\) 804153. 0.229202
\(416\) 0 0
\(417\) 572170. 0.161133
\(418\) 0 0
\(419\) 385118. 0.107166 0.0535832 0.998563i \(-0.482936\pi\)
0.0535832 + 0.998563i \(0.482936\pi\)
\(420\) 0 0
\(421\) 6.63054e6 1.82324 0.911619 0.411035i \(-0.134833\pi\)
0.911619 + 0.411035i \(0.134833\pi\)
\(422\) 0 0
\(423\) −1.58742e6 −0.431362
\(424\) 0 0
\(425\) −2.34400e6 −0.629484
\(426\) 0 0
\(427\) 4.49509e6 1.19308
\(428\) 0 0
\(429\) 434416. 0.113963
\(430\) 0 0
\(431\) 2.87522e6 0.745552 0.372776 0.927921i \(-0.378406\pi\)
0.372776 + 0.927921i \(0.378406\pi\)
\(432\) 0 0
\(433\) −1.63890e6 −0.420082 −0.210041 0.977693i \(-0.567360\pi\)
−0.210041 + 0.977693i \(0.567360\pi\)
\(434\) 0 0
\(435\) 35722.4 0.00905143
\(436\) 0 0
\(437\) 3.59176e6 0.899713
\(438\) 0 0
\(439\) 1.95804e6 0.484909 0.242455 0.970163i \(-0.422047\pi\)
0.242455 + 0.970163i \(0.422047\pi\)
\(440\) 0 0
\(441\) −406579. −0.0995515
\(442\) 0 0
\(443\) −7.54536e6 −1.82671 −0.913357 0.407159i \(-0.866520\pi\)
−0.913357 + 0.407159i \(0.866520\pi\)
\(444\) 0 0
\(445\) 175426. 0.0419947
\(446\) 0 0
\(447\) 21718.7 0.00514121
\(448\) 0 0
\(449\) 5.88112e6 1.37671 0.688357 0.725372i \(-0.258332\pi\)
0.688357 + 0.725372i \(0.258332\pi\)
\(450\) 0 0
\(451\) −971131. −0.224821
\(452\) 0 0
\(453\) 4.07012e6 0.931885
\(454\) 0 0
\(455\) 483429. 0.109472
\(456\) 0 0
\(457\) −3.27148e6 −0.732747 −0.366374 0.930468i \(-0.619401\pi\)
−0.366374 + 0.930468i \(0.619401\pi\)
\(458\) 0 0
\(459\) −702961. −0.155740
\(460\) 0 0
\(461\) −1.39477e6 −0.305668 −0.152834 0.988252i \(-0.548840\pi\)
−0.152834 + 0.988252i \(0.548840\pi\)
\(462\) 0 0
\(463\) −3.81656e6 −0.827407 −0.413704 0.910412i \(-0.635765\pi\)
−0.413704 + 0.910412i \(0.635765\pi\)
\(464\) 0 0
\(465\) −241505. −0.0517957
\(466\) 0 0
\(467\) 3.70467e6 0.786063 0.393031 0.919525i \(-0.371426\pi\)
0.393031 + 0.919525i \(0.371426\pi\)
\(468\) 0 0
\(469\) 1.66721e6 0.349991
\(470\) 0 0
\(471\) 1.75858e6 0.365267
\(472\) 0 0
\(473\) 3.66062e6 0.752319
\(474\) 0 0
\(475\) 2.72864e6 0.554897
\(476\) 0 0
\(477\) −786288. −0.158229
\(478\) 0 0
\(479\) 1.53152e6 0.304988 0.152494 0.988304i \(-0.451270\pi\)
0.152494 + 0.988304i \(0.451270\pi\)
\(480\) 0 0
\(481\) 1.91010e6 0.376437
\(482\) 0 0
\(483\) 3.12657e6 0.609818
\(484\) 0 0
\(485\) −1.80761e6 −0.348939
\(486\) 0 0
\(487\) 818721. 0.156428 0.0782138 0.996937i \(-0.475078\pi\)
0.0782138 + 0.996937i \(0.475078\pi\)
\(488\) 0 0
\(489\) 3.02255e6 0.571611
\(490\) 0 0
\(491\) −6.11842e6 −1.14534 −0.572672 0.819785i \(-0.694093\pi\)
−0.572672 + 0.819785i \(0.694093\pi\)
\(492\) 0 0
\(493\) −145267. −0.0269184
\(494\) 0 0
\(495\) −609532. −0.111811
\(496\) 0 0
\(497\) −3.24375e6 −0.589055
\(498\) 0 0
\(499\) −1.70315e6 −0.306198 −0.153099 0.988211i \(-0.548925\pi\)
−0.153099 + 0.988211i \(0.548925\pi\)
\(500\) 0 0
\(501\) −2.39671e6 −0.426600
\(502\) 0 0
\(503\) 8.17306e6 1.44034 0.720170 0.693798i \(-0.244064\pi\)
0.720170 + 0.693798i \(0.244064\pi\)
\(504\) 0 0
\(505\) −5.10071e6 −0.890025
\(506\) 0 0
\(507\) −257049. −0.0444116
\(508\) 0 0
\(509\) −5.84045e6 −0.999198 −0.499599 0.866257i \(-0.666519\pi\)
−0.499599 + 0.866257i \(0.666519\pi\)
\(510\) 0 0
\(511\) 4.09151e6 0.693157
\(512\) 0 0
\(513\) 818316. 0.137286
\(514\) 0 0
\(515\) 846640. 0.140663
\(516\) 0 0
\(517\) 5.59738e6 0.920997
\(518\) 0 0
\(519\) 3.71775e6 0.605845
\(520\) 0 0
\(521\) 4.06221e6 0.655644 0.327822 0.944740i \(-0.393685\pi\)
0.327822 + 0.944740i \(0.393685\pi\)
\(522\) 0 0
\(523\) −2.72472e6 −0.435580 −0.217790 0.975996i \(-0.569885\pi\)
−0.217790 + 0.975996i \(0.569885\pi\)
\(524\) 0 0
\(525\) 2.37524e6 0.376105
\(526\) 0 0
\(527\) 982093. 0.154037
\(528\) 0 0
\(529\) 3.80197e6 0.590703
\(530\) 0 0
\(531\) 1.83877e6 0.283003
\(532\) 0 0
\(533\) 574630. 0.0876133
\(534\) 0 0
\(535\) 4.97528e6 0.751507
\(536\) 0 0
\(537\) −7778.08 −0.00116396
\(538\) 0 0
\(539\) 1.43363e6 0.212551
\(540\) 0 0
\(541\) 1.11651e7 1.64010 0.820050 0.572291i \(-0.193945\pi\)
0.820050 + 0.572291i \(0.193945\pi\)
\(542\) 0 0
\(543\) −3.01185e6 −0.438362
\(544\) 0 0
\(545\) −3.77178e6 −0.543945
\(546\) 0 0
\(547\) −8.72639e6 −1.24700 −0.623500 0.781824i \(-0.714290\pi\)
−0.623500 + 0.781824i \(0.714290\pi\)
\(548\) 0 0
\(549\) 3.35361e6 0.474878
\(550\) 0 0
\(551\) 169105. 0.0237289
\(552\) 0 0
\(553\) −3.04585e6 −0.423542
\(554\) 0 0
\(555\) −2.68007e6 −0.369329
\(556\) 0 0
\(557\) −4.63674e6 −0.633250 −0.316625 0.948551i \(-0.602550\pi\)
−0.316625 + 0.948551i \(0.602550\pi\)
\(558\) 0 0
\(559\) −2.16603e6 −0.293181
\(560\) 0 0
\(561\) 2.47869e6 0.332518
\(562\) 0 0
\(563\) 9.08393e6 1.20782 0.603911 0.797052i \(-0.293608\pi\)
0.603911 + 0.797052i \(0.293608\pi\)
\(564\) 0 0
\(565\) −3.30399e6 −0.435429
\(566\) 0 0
\(567\) 712330. 0.0930515
\(568\) 0 0
\(569\) −4.73177e6 −0.612694 −0.306347 0.951920i \(-0.599107\pi\)
−0.306347 + 0.951920i \(0.599107\pi\)
\(570\) 0 0
\(571\) 1.38030e7 1.77167 0.885834 0.464002i \(-0.153587\pi\)
0.885834 + 0.464002i \(0.153587\pi\)
\(572\) 0 0
\(573\) 7.30428e6 0.929375
\(574\) 0 0
\(575\) 7.77799e6 0.981065
\(576\) 0 0
\(577\) 1.20728e7 1.50962 0.754811 0.655942i \(-0.227728\pi\)
0.754811 + 0.655942i \(0.227728\pi\)
\(578\) 0 0
\(579\) 265157. 0.0328705
\(580\) 0 0
\(581\) 3.31371e6 0.407263
\(582\) 0 0
\(583\) 2.77251e6 0.337833
\(584\) 0 0
\(585\) 360667. 0.0435730
\(586\) 0 0
\(587\) 1.57937e7 1.89186 0.945928 0.324378i \(-0.105155\pi\)
0.945928 + 0.324378i \(0.105155\pi\)
\(588\) 0 0
\(589\) −1.14325e6 −0.135786
\(590\) 0 0
\(591\) 3.01062e6 0.354558
\(592\) 0 0
\(593\) −1.30721e7 −1.52654 −0.763269 0.646080i \(-0.776407\pi\)
−0.763269 + 0.646080i \(0.776407\pi\)
\(594\) 0 0
\(595\) 2.75835e6 0.319417
\(596\) 0 0
\(597\) −4.26398e6 −0.489643
\(598\) 0 0
\(599\) −3.75229e6 −0.427296 −0.213648 0.976911i \(-0.568535\pi\)
−0.213648 + 0.976911i \(0.568535\pi\)
\(600\) 0 0
\(601\) −1.07459e7 −1.21355 −0.606775 0.794873i \(-0.707537\pi\)
−0.606775 + 0.794873i \(0.707537\pi\)
\(602\) 0 0
\(603\) 1.24384e6 0.139306
\(604\) 0 0
\(605\) −2.09399e6 −0.232588
\(606\) 0 0
\(607\) 1.30469e7 1.43726 0.718628 0.695394i \(-0.244770\pi\)
0.718628 + 0.695394i \(0.244770\pi\)
\(608\) 0 0
\(609\) 147203. 0.0160832
\(610\) 0 0
\(611\) −3.31203e6 −0.358915
\(612\) 0 0
\(613\) 699071. 0.0751398 0.0375699 0.999294i \(-0.488038\pi\)
0.0375699 + 0.999294i \(0.488038\pi\)
\(614\) 0 0
\(615\) −806267. −0.0859589
\(616\) 0 0
\(617\) −1.41603e7 −1.49748 −0.748738 0.662866i \(-0.769340\pi\)
−0.748738 + 0.662866i \(0.769340\pi\)
\(618\) 0 0
\(619\) 877757. 0.0920763 0.0460381 0.998940i \(-0.485340\pi\)
0.0460381 + 0.998940i \(0.485340\pi\)
\(620\) 0 0
\(621\) 2.33261e6 0.242724
\(622\) 0 0
\(623\) 722888. 0.0746192
\(624\) 0 0
\(625\) 3.73960e6 0.382935
\(626\) 0 0
\(627\) −2.88544e6 −0.293119
\(628\) 0 0
\(629\) 1.08986e7 1.09836
\(630\) 0 0
\(631\) −1.48609e7 −1.48584 −0.742921 0.669379i \(-0.766560\pi\)
−0.742921 + 0.669379i \(0.766560\pi\)
\(632\) 0 0
\(633\) −1.61780e6 −0.160478
\(634\) 0 0
\(635\) −2.54248e6 −0.250221
\(636\) 0 0
\(637\) −848293. −0.0828319
\(638\) 0 0
\(639\) −2.42003e6 −0.234460
\(640\) 0 0
\(641\) −1.93523e7 −1.86032 −0.930160 0.367155i \(-0.880332\pi\)
−0.930160 + 0.367155i \(0.880332\pi\)
\(642\) 0 0
\(643\) −4.09314e6 −0.390418 −0.195209 0.980762i \(-0.562538\pi\)
−0.195209 + 0.980762i \(0.562538\pi\)
\(644\) 0 0
\(645\) 3.03918e6 0.287645
\(646\) 0 0
\(647\) −3.02321e6 −0.283928 −0.141964 0.989872i \(-0.545342\pi\)
−0.141964 + 0.989872i \(0.545342\pi\)
\(648\) 0 0
\(649\) −6.48365e6 −0.604238
\(650\) 0 0
\(651\) −995182. −0.0920343
\(652\) 0 0
\(653\) −1.67741e7 −1.53942 −0.769709 0.638395i \(-0.779599\pi\)
−0.769709 + 0.638395i \(0.779599\pi\)
\(654\) 0 0
\(655\) −263794. −0.0240249
\(656\) 0 0
\(657\) 3.05251e6 0.275895
\(658\) 0 0
\(659\) −1.86700e6 −0.167468 −0.0837340 0.996488i \(-0.526685\pi\)
−0.0837340 + 0.996488i \(0.526685\pi\)
\(660\) 0 0
\(661\) 4.11497e6 0.366322 0.183161 0.983083i \(-0.441367\pi\)
0.183161 + 0.983083i \(0.441367\pi\)
\(662\) 0 0
\(663\) −1.46667e6 −0.129583
\(664\) 0 0
\(665\) −3.21099e6 −0.281569
\(666\) 0 0
\(667\) 482033. 0.0419529
\(668\) 0 0
\(669\) 8.33857e6 0.720321
\(670\) 0 0
\(671\) −1.18251e7 −1.01391
\(672\) 0 0
\(673\) 1.07014e7 0.910755 0.455377 0.890298i \(-0.349504\pi\)
0.455377 + 0.890298i \(0.349504\pi\)
\(674\) 0 0
\(675\) 1.77207e6 0.149700
\(676\) 0 0
\(677\) −3.73378e6 −0.313096 −0.156548 0.987670i \(-0.550037\pi\)
−0.156548 + 0.987670i \(0.550037\pi\)
\(678\) 0 0
\(679\) −7.44869e6 −0.620020
\(680\) 0 0
\(681\) 5.25307e6 0.434056
\(682\) 0 0
\(683\) −2.33008e7 −1.91126 −0.955628 0.294577i \(-0.904821\pi\)
−0.955628 + 0.294577i \(0.904821\pi\)
\(684\) 0 0
\(685\) −4.98562e6 −0.405969
\(686\) 0 0
\(687\) 3.36378e6 0.271917
\(688\) 0 0
\(689\) −1.64053e6 −0.131654
\(690\) 0 0
\(691\) 3.66731e6 0.292181 0.146091 0.989271i \(-0.453331\pi\)
0.146091 + 0.989271i \(0.453331\pi\)
\(692\) 0 0
\(693\) −2.51173e6 −0.198673
\(694\) 0 0
\(695\) −1.67501e6 −0.131539
\(696\) 0 0
\(697\) 3.27872e6 0.255637
\(698\) 0 0
\(699\) 1.25719e7 0.973215
\(700\) 0 0
\(701\) 6.26713e6 0.481697 0.240848 0.970563i \(-0.422574\pi\)
0.240848 + 0.970563i \(0.422574\pi\)
\(702\) 0 0
\(703\) −1.26871e7 −0.968219
\(704\) 0 0
\(705\) 4.64714e6 0.352138
\(706\) 0 0
\(707\) −2.10187e7 −1.58146
\(708\) 0 0
\(709\) 1.67388e7 1.25057 0.625284 0.780397i \(-0.284983\pi\)
0.625284 + 0.780397i \(0.284983\pi\)
\(710\) 0 0
\(711\) −2.27239e6 −0.168581
\(712\) 0 0
\(713\) −3.25884e6 −0.240071
\(714\) 0 0
\(715\) −1.27174e6 −0.0930322
\(716\) 0 0
\(717\) −5.26074e6 −0.382163
\(718\) 0 0
\(719\) 1.45447e6 0.104926 0.0524631 0.998623i \(-0.483293\pi\)
0.0524631 + 0.998623i \(0.483293\pi\)
\(720\) 0 0
\(721\) 3.48879e6 0.249941
\(722\) 0 0
\(723\) −1.01029e7 −0.718790
\(724\) 0 0
\(725\) 366198. 0.0258744
\(726\) 0 0
\(727\) 2.27668e7 1.59759 0.798795 0.601603i \(-0.205471\pi\)
0.798795 + 0.601603i \(0.205471\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.23590e7 −0.855438
\(732\) 0 0
\(733\) −5.66897e6 −0.389712 −0.194856 0.980832i \(-0.562424\pi\)
−0.194856 + 0.980832i \(0.562424\pi\)
\(734\) 0 0
\(735\) 1.19025e6 0.0812678
\(736\) 0 0
\(737\) −4.38586e6 −0.297431
\(738\) 0 0
\(739\) −1.65419e7 −1.11423 −0.557113 0.830437i \(-0.688091\pi\)
−0.557113 + 0.830437i \(0.688091\pi\)
\(740\) 0 0
\(741\) 1.70735e6 0.114229
\(742\) 0 0
\(743\) 2.51152e7 1.66903 0.834514 0.550986i \(-0.185748\pi\)
0.834514 + 0.550986i \(0.185748\pi\)
\(744\) 0 0
\(745\) −63580.9 −0.00419697
\(746\) 0 0
\(747\) 2.47223e6 0.162102
\(748\) 0 0
\(749\) 2.05019e7 1.33533
\(750\) 0 0
\(751\) 1.02904e7 0.665784 0.332892 0.942965i \(-0.391976\pi\)
0.332892 + 0.942965i \(0.391976\pi\)
\(752\) 0 0
\(753\) 6.54544e6 0.420679
\(754\) 0 0
\(755\) −1.19152e7 −0.760734
\(756\) 0 0
\(757\) 1.14246e7 0.724606 0.362303 0.932060i \(-0.381991\pi\)
0.362303 + 0.932060i \(0.381991\pi\)
\(758\) 0 0
\(759\) −8.22495e6 −0.518237
\(760\) 0 0
\(761\) −1.12573e7 −0.704646 −0.352323 0.935878i \(-0.614608\pi\)
−0.352323 + 0.935878i \(0.614608\pi\)
\(762\) 0 0
\(763\) −1.55426e7 −0.966521
\(764\) 0 0
\(765\) 2.05790e6 0.127136
\(766\) 0 0
\(767\) 3.83645e6 0.235473
\(768\) 0 0
\(769\) −2.63365e7 −1.60599 −0.802994 0.595987i \(-0.796761\pi\)
−0.802994 + 0.595987i \(0.796761\pi\)
\(770\) 0 0
\(771\) −5.85419e6 −0.354675
\(772\) 0 0
\(773\) 2.33227e7 1.40388 0.701941 0.712235i \(-0.252317\pi\)
0.701941 + 0.712235i \(0.252317\pi\)
\(774\) 0 0
\(775\) −2.47572e6 −0.148063
\(776\) 0 0
\(777\) −1.10439e7 −0.656251
\(778\) 0 0
\(779\) −3.81676e6 −0.225347
\(780\) 0 0
\(781\) 8.53321e6 0.500593
\(782\) 0 0
\(783\) 109822. 0.00640156
\(784\) 0 0
\(785\) −5.14820e6 −0.298182
\(786\) 0 0
\(787\) 5.48266e6 0.315540 0.157770 0.987476i \(-0.449570\pi\)
0.157770 + 0.987476i \(0.449570\pi\)
\(788\) 0 0
\(789\) 8.81898e6 0.504343
\(790\) 0 0
\(791\) −1.36149e7 −0.773701
\(792\) 0 0
\(793\) 6.99704e6 0.395122
\(794\) 0 0
\(795\) 2.30184e6 0.129168
\(796\) 0 0
\(797\) −1.67574e7 −0.934462 −0.467231 0.884135i \(-0.654748\pi\)
−0.467231 + 0.884135i \(0.654748\pi\)
\(798\) 0 0
\(799\) −1.88978e7 −1.04724
\(800\) 0 0
\(801\) 539318. 0.0297005
\(802\) 0 0
\(803\) −1.07634e7 −0.589061
\(804\) 0 0
\(805\) −9.15293e6 −0.497818
\(806\) 0 0
\(807\) 2.18516e6 0.118114
\(808\) 0 0
\(809\) −3.29903e7 −1.77221 −0.886104 0.463487i \(-0.846598\pi\)
−0.886104 + 0.463487i \(0.846598\pi\)
\(810\) 0 0
\(811\) −1.12019e7 −0.598052 −0.299026 0.954245i \(-0.596662\pi\)
−0.299026 + 0.954245i \(0.596662\pi\)
\(812\) 0 0
\(813\) −8.25958e6 −0.438260
\(814\) 0 0
\(815\) −8.84841e6 −0.466629
\(816\) 0 0
\(817\) 1.43871e7 0.754079
\(818\) 0 0
\(819\) 1.48622e6 0.0774235
\(820\) 0 0
\(821\) −7.15858e6 −0.370654 −0.185327 0.982677i \(-0.559334\pi\)
−0.185327 + 0.982677i \(0.559334\pi\)
\(822\) 0 0
\(823\) 1.87301e7 0.963918 0.481959 0.876194i \(-0.339925\pi\)
0.481959 + 0.876194i \(0.339925\pi\)
\(824\) 0 0
\(825\) −6.24845e6 −0.319623
\(826\) 0 0
\(827\) 2.33449e7 1.18694 0.593468 0.804857i \(-0.297758\pi\)
0.593468 + 0.804857i \(0.297758\pi\)
\(828\) 0 0
\(829\) 1.66953e7 0.843740 0.421870 0.906656i \(-0.361374\pi\)
0.421870 + 0.906656i \(0.361374\pi\)
\(830\) 0 0
\(831\) 1.53703e7 0.772113
\(832\) 0 0
\(833\) −4.84020e6 −0.241686
\(834\) 0 0
\(835\) 7.01629e6 0.348250
\(836\) 0 0
\(837\) −742466. −0.0366322
\(838\) 0 0
\(839\) −2.95646e7 −1.45000 −0.724998 0.688751i \(-0.758159\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(840\) 0 0
\(841\) −2.04885e7 −0.998894
\(842\) 0 0
\(843\) 706120. 0.0342223
\(844\) 0 0
\(845\) 752503. 0.0362549
\(846\) 0 0
\(847\) −8.62882e6 −0.413278
\(848\) 0 0
\(849\) −1.01255e7 −0.482110
\(850\) 0 0
\(851\) −3.61645e7 −1.71182
\(852\) 0 0
\(853\) 1.25512e7 0.590626 0.295313 0.955401i \(-0.404576\pi\)
0.295313 + 0.955401i \(0.404576\pi\)
\(854\) 0 0
\(855\) −2.39559e6 −0.112072
\(856\) 0 0
\(857\) −2.22431e7 −1.03453 −0.517266 0.855825i \(-0.673050\pi\)
−0.517266 + 0.855825i \(0.673050\pi\)
\(858\) 0 0
\(859\) 1.58384e7 0.732368 0.366184 0.930542i \(-0.380664\pi\)
0.366184 + 0.930542i \(0.380664\pi\)
\(860\) 0 0
\(861\) −3.32242e6 −0.152738
\(862\) 0 0
\(863\) −3.55005e6 −0.162259 −0.0811293 0.996704i \(-0.525853\pi\)
−0.0811293 + 0.996704i \(0.525853\pi\)
\(864\) 0 0
\(865\) −1.08836e7 −0.494575
\(866\) 0 0
\(867\) 4.41017e6 0.199254
\(868\) 0 0
\(869\) 8.01262e6 0.359936
\(870\) 0 0
\(871\) 2.59516e6 0.115910
\(872\) 0 0
\(873\) −5.55717e6 −0.246785
\(874\) 0 0
\(875\) −1.58926e7 −0.701737
\(876\) 0 0
\(877\) −2.90118e7 −1.27372 −0.636861 0.770978i \(-0.719768\pi\)
−0.636861 + 0.770978i \(0.719768\pi\)
\(878\) 0 0
\(879\) 1.04077e7 0.454340
\(880\) 0 0
\(881\) −1.87411e7 −0.813494 −0.406747 0.913541i \(-0.633337\pi\)
−0.406747 + 0.913541i \(0.633337\pi\)
\(882\) 0 0
\(883\) −907252. −0.0391585 −0.0195793 0.999808i \(-0.506233\pi\)
−0.0195793 + 0.999808i \(0.506233\pi\)
\(884\) 0 0
\(885\) −5.38295e6 −0.231027
\(886\) 0 0
\(887\) −4.40390e6 −0.187944 −0.0939720 0.995575i \(-0.529956\pi\)
−0.0939720 + 0.995575i \(0.529956\pi\)
\(888\) 0 0
\(889\) −1.04769e7 −0.444611
\(890\) 0 0
\(891\) −1.87390e6 −0.0790774
\(892\) 0 0
\(893\) 2.19989e7 0.923151
\(894\) 0 0
\(895\) 22770.1 0.000950183 0
\(896\) 0 0
\(897\) 4.86680e6 0.201959
\(898\) 0 0
\(899\) −153430. −0.00633158
\(900\) 0 0
\(901\) −9.36053e6 −0.384139
\(902\) 0 0
\(903\) 1.25237e7 0.511108
\(904\) 0 0
\(905\) 8.81709e6 0.357852
\(906\) 0 0
\(907\) 4.22081e7 1.70364 0.851820 0.523835i \(-0.175499\pi\)
0.851820 + 0.523835i \(0.175499\pi\)
\(908\) 0 0
\(909\) −1.56813e7 −0.629464
\(910\) 0 0
\(911\) −1.78418e7 −0.712266 −0.356133 0.934435i \(-0.615905\pi\)
−0.356133 + 0.934435i \(0.615905\pi\)
\(912\) 0 0
\(913\) −8.71726e6 −0.346101
\(914\) 0 0
\(915\) −9.81760e6 −0.387661
\(916\) 0 0
\(917\) −1.08703e6 −0.0426892
\(918\) 0 0
\(919\) −2.46819e6 −0.0964030 −0.0482015 0.998838i \(-0.515349\pi\)
−0.0482015 + 0.998838i \(0.515349\pi\)
\(920\) 0 0
\(921\) −803782. −0.0312240
\(922\) 0 0
\(923\) −5.04920e6 −0.195083
\(924\) 0 0
\(925\) −2.74740e7 −1.05577
\(926\) 0 0
\(927\) 2.60285e6 0.0994832
\(928\) 0 0
\(929\) 3.76239e7 1.43029 0.715146 0.698975i \(-0.246360\pi\)
0.715146 + 0.698975i \(0.246360\pi\)
\(930\) 0 0
\(931\) 5.63447e6 0.213049
\(932\) 0 0
\(933\) 2.10794e6 0.0792782
\(934\) 0 0
\(935\) −7.25630e6 −0.271448
\(936\) 0 0
\(937\) −2.72154e7 −1.01266 −0.506332 0.862339i \(-0.668999\pi\)
−0.506332 + 0.862339i \(0.668999\pi\)
\(938\) 0 0
\(939\) 4.32215e6 0.159969
\(940\) 0 0
\(941\) 5.51883e6 0.203176 0.101588 0.994827i \(-0.467608\pi\)
0.101588 + 0.994827i \(0.467608\pi\)
\(942\) 0 0
\(943\) −1.08797e7 −0.398415
\(944\) 0 0
\(945\) −2.08532e6 −0.0759616
\(946\) 0 0
\(947\) 4.03933e7 1.46364 0.731819 0.681499i \(-0.238671\pi\)
0.731819 + 0.681499i \(0.238671\pi\)
\(948\) 0 0
\(949\) 6.36883e6 0.229559
\(950\) 0 0
\(951\) −2.44615e7 −0.877065
\(952\) 0 0
\(953\) −3.42332e6 −0.122100 −0.0610499 0.998135i \(-0.519445\pi\)
−0.0610499 + 0.998135i \(0.519445\pi\)
\(954\) 0 0
\(955\) −2.13831e7 −0.758685
\(956\) 0 0
\(957\) −387241. −0.0136679
\(958\) 0 0
\(959\) −2.05445e7 −0.721354
\(960\) 0 0
\(961\) −2.75919e7 −0.963768
\(962\) 0 0
\(963\) 1.52956e7 0.531498
\(964\) 0 0
\(965\) −776239. −0.0268335
\(966\) 0 0
\(967\) 1.18244e7 0.406642 0.203321 0.979112i \(-0.434827\pi\)
0.203321 + 0.979112i \(0.434827\pi\)
\(968\) 0 0
\(969\) 9.74181e6 0.333296
\(970\) 0 0
\(971\) 3.02651e6 0.103013 0.0515067 0.998673i \(-0.483598\pi\)
0.0515067 + 0.998673i \(0.483598\pi\)
\(972\) 0 0
\(973\) −6.90230e6 −0.233729
\(974\) 0 0
\(975\) 3.69728e6 0.124558
\(976\) 0 0
\(977\) −7.03356e6 −0.235743 −0.117871 0.993029i \(-0.537607\pi\)
−0.117871 + 0.993029i \(0.537607\pi\)
\(978\) 0 0
\(979\) −1.90168e6 −0.0634132
\(980\) 0 0
\(981\) −1.15957e7 −0.384702
\(982\) 0 0
\(983\) 2.26337e7 0.747086 0.373543 0.927613i \(-0.378143\pi\)
0.373543 + 0.927613i \(0.378143\pi\)
\(984\) 0 0
\(985\) −8.81351e6 −0.289440
\(986\) 0 0
\(987\) 1.91497e7 0.625704
\(988\) 0 0
\(989\) 4.10103e7 1.33322
\(990\) 0 0
\(991\) −5.45429e6 −0.176423 −0.0882113 0.996102i \(-0.528115\pi\)
−0.0882113 + 0.996102i \(0.528115\pi\)
\(992\) 0 0
\(993\) −2.69909e7 −0.868649
\(994\) 0 0
\(995\) 1.24827e7 0.399715
\(996\) 0 0
\(997\) −6.16465e6 −0.196413 −0.0982066 0.995166i \(-0.531311\pi\)
−0.0982066 + 0.995166i \(0.531311\pi\)
\(998\) 0 0
\(999\) −8.23942e6 −0.261206
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.r.1.2 3
4.3 odd 2 156.6.a.d.1.2 3
12.11 even 2 468.6.a.f.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.6.a.d.1.2 3 4.3 odd 2
468.6.a.f.1.2 3 12.11 even 2
624.6.a.r.1.2 3 1.1 even 1 trivial