Properties

Label 624.6.a.r.1.2
Level 624624
Weight 66
Character 624.1
Self dual yes
Analytic conductor 100.080100.080
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,6,Mod(1,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 624.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-27,0,4,0,-242] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 100.079503563100.079503563
Analytic rank: 11
Dimension: 33
Coefficient field: Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x2238x+778 x^{3} - x^{2} - 238x + 778 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 233 2^{3}\cdot 3
Twist minimal: no (minimal twist has level 156)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 14.018614.0186 of defining polynomial
Character χ\chi == 624.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q9.00000q3+26.3472q5+108.570q7+81.0000q9285.612q11+169.000q13237.125q15+964.281q171122.52q19977.133q213199.74q232430.82q25729.000q27150.648q29+1018.47q31+2570.51q33+2860.53q35+11302.4q371521.00q39+3400.17q4112816.8q43+2134.13q4519597.8q475019.49q498678.53q519707.26q537525.09q55+10102.7q57+22700.9q59+41402.6q61+8794.20q63+4452.68q65+15356.0q67+28797.6q6929876.9q71+37685.4q73+21877.4q7531009.0q7728054.2q79+6561.00q81+30521.3q83+25406.1q85+1355.83q87+6658.25q89+18348.4q919166.24q9329575.2q9568607.1q9723134.6q99+O(q100)q-9.00000 q^{3} +26.3472 q^{5} +108.570 q^{7} +81.0000 q^{9} -285.612 q^{11} +169.000 q^{13} -237.125 q^{15} +964.281 q^{17} -1122.52 q^{19} -977.133 q^{21} -3199.74 q^{23} -2430.82 q^{25} -729.000 q^{27} -150.648 q^{29} +1018.47 q^{31} +2570.51 q^{33} +2860.53 q^{35} +11302.4 q^{37} -1521.00 q^{39} +3400.17 q^{41} -12816.8 q^{43} +2134.13 q^{45} -19597.8 q^{47} -5019.49 q^{49} -8678.53 q^{51} -9707.26 q^{53} -7525.09 q^{55} +10102.7 q^{57} +22700.9 q^{59} +41402.6 q^{61} +8794.20 q^{63} +4452.68 q^{65} +15356.0 q^{67} +28797.6 q^{69} -29876.9 q^{71} +37685.4 q^{73} +21877.4 q^{75} -31009.0 q^{77} -28054.2 q^{79} +6561.00 q^{81} +30521.3 q^{83} +25406.1 q^{85} +1355.83 q^{87} +6658.25 q^{89} +18348.4 q^{91} -9166.24 q^{93} -29575.2 q^{95} -68607.1 q^{97} -23134.6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q27q3+4q5242q7+243q964q11+507q1336q15+622q172330q19+2178q21816q23+6313q252187q27+6726q295010q31+576q33+5184q99+O(q100) 3 q - 27 q^{3} + 4 q^{5} - 242 q^{7} + 243 q^{9} - 64 q^{11} + 507 q^{13} - 36 q^{15} + 622 q^{17} - 2330 q^{19} + 2178 q^{21} - 816 q^{23} + 6313 q^{25} - 2187 q^{27} + 6726 q^{29} - 5010 q^{31} + 576 q^{33}+ \cdots - 5184 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −9.00000 −0.577350
44 0 0
55 26.3472 0.471314 0.235657 0.971836i 0.424276π-0.424276\pi
0.235657 + 0.971836i 0.424276π0.424276\pi
66 0 0
77 108.570 0.837464 0.418732 0.908110i 0.362475π-0.362475\pi
0.418732 + 0.908110i 0.362475π0.362475\pi
88 0 0
99 81.0000 0.333333
1010 0 0
1111 −285.612 −0.711696 −0.355848 0.934544i 0.615808π-0.615808\pi
−0.355848 + 0.934544i 0.615808π0.615808\pi
1212 0 0
1313 169.000 0.277350
1414 0 0
1515 −237.125 −0.272113
1616 0 0
1717 964.281 0.809248 0.404624 0.914483i 0.367402π-0.367402\pi
0.404624 + 0.914483i 0.367402π0.367402\pi
1818 0 0
1919 −1122.52 −0.713361 −0.356680 0.934226i 0.616091π-0.616091\pi
−0.356680 + 0.934226i 0.616091π0.616091\pi
2020 0 0
2121 −977.133 −0.483510
2222 0 0
2323 −3199.74 −1.26123 −0.630615 0.776096i 0.717197π-0.717197\pi
−0.630615 + 0.776096i 0.717197π0.717197\pi
2424 0 0
2525 −2430.82 −0.777863
2626 0 0
2727 −729.000 −0.192450
2828 0 0
2929 −150.648 −0.0332635 −0.0166317 0.999862i 0.505294π-0.505294\pi
−0.0166317 + 0.999862i 0.505294π0.505294\pi
3030 0 0
3131 1018.47 0.190346 0.0951732 0.995461i 0.469660π-0.469660\pi
0.0951732 + 0.995461i 0.469660π0.469660\pi
3232 0 0
3333 2570.51 0.410898
3434 0 0
3535 2860.53 0.394708
3636 0 0
3737 11302.4 1.35726 0.678632 0.734478i 0.262573π-0.262573\pi
0.678632 + 0.734478i 0.262573π0.262573\pi
3838 0 0
3939 −1521.00 −0.160128
4040 0 0
4141 3400.17 0.315894 0.157947 0.987448i 0.449512π-0.449512\pi
0.157947 + 0.987448i 0.449512π0.449512\pi
4242 0 0
4343 −12816.8 −1.05708 −0.528539 0.848909i 0.677260π-0.677260\pi
−0.528539 + 0.848909i 0.677260π0.677260\pi
4444 0 0
4545 2134.13 0.157105
4646 0 0
4747 −19597.8 −1.29409 −0.647043 0.762453i 0.723995π-0.723995\pi
−0.647043 + 0.762453i 0.723995π0.723995\pi
4848 0 0
4949 −5019.49 −0.298655
5050 0 0
5151 −8678.53 −0.467219
5252 0 0
5353 −9707.26 −0.474687 −0.237343 0.971426i 0.576277π-0.576277\pi
−0.237343 + 0.971426i 0.576277π0.576277\pi
5454 0 0
5555 −7525.09 −0.335432
5656 0 0
5757 10102.7 0.411859
5858 0 0
5959 22700.9 0.849010 0.424505 0.905426i 0.360448π-0.360448\pi
0.424505 + 0.905426i 0.360448π0.360448\pi
6060 0 0
6161 41402.6 1.42463 0.712317 0.701858i 0.247646π-0.247646\pi
0.712317 + 0.701858i 0.247646π0.247646\pi
6262 0 0
6363 8794.20 0.279155
6464 0 0
6565 4452.68 0.130719
6666 0 0
6767 15356.0 0.417918 0.208959 0.977924i 0.432992π-0.432992\pi
0.208959 + 0.977924i 0.432992π0.432992\pi
6868 0 0
6969 28797.6 0.728172
7070 0 0
7171 −29876.9 −0.703380 −0.351690 0.936116i 0.614393π-0.614393\pi
−0.351690 + 0.936116i 0.614393π0.614393\pi
7272 0 0
7373 37685.4 0.827686 0.413843 0.910348i 0.364186π-0.364186\pi
0.413843 + 0.910348i 0.364186π0.364186\pi
7474 0 0
7575 21877.4 0.449100
7676 0 0
7777 −31009.0 −0.596020
7878 0 0
7979 −28054.2 −0.505743 −0.252872 0.967500i 0.581375π-0.581375\pi
−0.252872 + 0.967500i 0.581375π0.581375\pi
8080 0 0
8181 6561.00 0.111111
8282 0 0
8383 30521.3 0.486305 0.243152 0.969988i 0.421818π-0.421818\pi
0.243152 + 0.969988i 0.421818π0.421818\pi
8484 0 0
8585 25406.1 0.381409
8686 0 0
8787 1355.83 0.0192047
8888 0 0
8989 6658.25 0.0891015 0.0445507 0.999007i 0.485814π-0.485814\pi
0.0445507 + 0.999007i 0.485814π0.485814\pi
9090 0 0
9191 18348.4 0.232271
9292 0 0
9393 −9166.24 −0.109897
9494 0 0
9595 −29575.2 −0.336217
9696 0 0
9797 −68607.1 −0.740354 −0.370177 0.928961i 0.620703π-0.620703\pi
−0.370177 + 0.928961i 0.620703π0.620703\pi
9898 0 0
9999 −23134.6 −0.237232
100100 0 0
101101 −193596. −1.88839 −0.944196 0.329383i 0.893159π-0.893159\pi
−0.944196 + 0.329383i 0.893159π0.893159\pi
102102 0 0
103103 32133.9 0.298450 0.149225 0.988803i 0.452322π-0.452322\pi
0.149225 + 0.988803i 0.452322π0.452322\pi
104104 0 0
105105 −25744.7 −0.227885
106106 0 0
107107 188835. 1.59449 0.797247 0.603653i 0.206289π-0.206289\pi
0.797247 + 0.603653i 0.206289π0.206289\pi
108108 0 0
109109 −143157. −1.15410 −0.577052 0.816707i 0.695797π-0.695797\pi
−0.577052 + 0.816707i 0.695797π0.695797\pi
110110 0 0
111111 −101721. −0.783617
112112 0 0
113113 −125402. −0.923862 −0.461931 0.886916i 0.652843π-0.652843\pi
−0.461931 + 0.886916i 0.652843π0.652843\pi
114114 0 0
115115 −84304.2 −0.594435
116116 0 0
117117 13689.0 0.0924500
118118 0 0
119119 104692. 0.677715
120120 0 0
121121 −79476.8 −0.493488
122122 0 0
123123 −30601.6 −0.182382
124124 0 0
125125 −146381. −0.837931
126126 0 0
127127 −96499.1 −0.530901 −0.265451 0.964124i 0.585521π-0.585521\pi
−0.265451 + 0.964124i 0.585521π0.585521\pi
128128 0 0
129129 115351. 0.610305
130130 0 0
131131 −10012.2 −0.0509744 −0.0254872 0.999675i 0.508114π-0.508114\pi
−0.0254872 + 0.999675i 0.508114π0.508114\pi
132132 0 0
133133 −121872. −0.597414
134134 0 0
135135 −19207.1 −0.0907044
136136 0 0
137137 −189227. −0.861356 −0.430678 0.902506i 0.641726π-0.641726\pi
−0.430678 + 0.902506i 0.641726π0.641726\pi
138138 0 0
139139 −63574.5 −0.279091 −0.139545 0.990216i 0.544564π-0.544564\pi
−0.139545 + 0.990216i 0.544564π0.544564\pi
140140 0 0
141141 176380. 0.747141
142142 0 0
143143 −48268.4 −0.197389
144144 0 0
145145 −3969.15 −0.0156775
146146 0 0
147147 45175.4 0.172428
148148 0 0
149149 −2413.19 −0.00890484 −0.00445242 0.999990i 0.501417π-0.501417\pi
−0.00445242 + 0.999990i 0.501417π0.501417\pi
150150 0 0
151151 −452236. −1.61407 −0.807036 0.590502i 0.798930π-0.798930\pi
−0.807036 + 0.590502i 0.798930π0.798930\pi
152152 0 0
153153 78106.8 0.269749
154154 0 0
155155 26833.9 0.0897128
156156 0 0
157157 −195398. −0.632661 −0.316330 0.948649i 0.602451π-0.602451\pi
−0.316330 + 0.948649i 0.602451π0.602451\pi
158158 0 0
159159 87365.3 0.274060
160160 0 0
161161 −347396. −1.05623
162162 0 0
163163 −335838. −0.990060 −0.495030 0.868876i 0.664843π-0.664843\pi
−0.495030 + 0.868876i 0.664843π0.664843\pi
164164 0 0
165165 67725.8 0.193662
166166 0 0
167167 266301. 0.738893 0.369446 0.929252i 0.379547π-0.379547\pi
0.369446 + 0.929252i 0.379547π0.379547\pi
168168 0 0
169169 28561.0 0.0769231
170170 0 0
171171 −90924.0 −0.237787
172172 0 0
173173 −413083. −1.04936 −0.524678 0.851301i 0.675814π-0.675814\pi
−0.524678 + 0.851301i 0.675814π0.675814\pi
174174 0 0
175175 −263915. −0.651432
176176 0 0
177177 −204308. −0.490176
178178 0 0
179179 864.231 0.00201603 0.00100802 0.999999i 0.499679π-0.499679\pi
0.00100802 + 0.999999i 0.499679π0.499679\pi
180180 0 0
181181 334650. 0.759266 0.379633 0.925137i 0.376050π-0.376050\pi
0.379633 + 0.925137i 0.376050π0.376050\pi
182182 0 0
183183 −372624. −0.822513
184184 0 0
185185 297786. 0.639697
186186 0 0
187187 −275410. −0.575939
188188 0 0
189189 −79147.8 −0.161170
190190 0 0
191191 −811587. −1.60973 −0.804863 0.593461i 0.797761π-0.797761\pi
−0.804863 + 0.593461i 0.797761π0.797761\pi
192192 0 0
193193 −29461.9 −0.0569334 −0.0284667 0.999595i 0.509062π-0.509062\pi
−0.0284667 + 0.999595i 0.509062π0.509062\pi
194194 0 0
195195 −40074.1 −0.0754706
196196 0 0
197197 −334514. −0.614113 −0.307056 0.951691i 0.599344π-0.599344\pi
−0.307056 + 0.951691i 0.599344π0.599344\pi
198198 0 0
199199 473775. 0.848086 0.424043 0.905642i 0.360611π-0.360611\pi
0.424043 + 0.905642i 0.360611π0.360611\pi
200200 0 0
201201 −138204. −0.241285
202202 0 0
203203 −16355.9 −0.0278570
204204 0 0
205205 89585.2 0.148885
206206 0 0
207207 −259179. −0.420410
208208 0 0
209209 320605. 0.507696
210210 0 0
211211 179756. 0.277956 0.138978 0.990295i 0.455618π-0.455618\pi
0.138978 + 0.990295i 0.455618π0.455618\pi
212212 0 0
213213 268892. 0.406097
214214 0 0
215215 −337686. −0.498216
216216 0 0
217217 110576. 0.159408
218218 0 0
219219 −339168. −0.477865
220220 0 0
221221 162964. 0.224445
222222 0 0
223223 −926508. −1.24763 −0.623817 0.781571i 0.714419π-0.714419\pi
−0.623817 + 0.781571i 0.714419π0.714419\pi
224224 0 0
225225 −196897. −0.259288
226226 0 0
227227 −583675. −0.751807 −0.375903 0.926659i 0.622668π-0.622668\pi
−0.375903 + 0.926659i 0.622668π0.622668\pi
228228 0 0
229229 −373754. −0.470974 −0.235487 0.971877i 0.575669π-0.575669\pi
−0.235487 + 0.971877i 0.575669π0.575669\pi
230230 0 0
231231 279081. 0.344112
232232 0 0
233233 −1.39688e6 −1.68566 −0.842829 0.538182i 0.819111π-0.819111\pi
−0.842829 + 0.538182i 0.819111π0.819111\pi
234234 0 0
235235 −516349. −0.609921
236236 0 0
237237 252488. 0.291991
238238 0 0
239239 584527. 0.661926 0.330963 0.943644i 0.392626π-0.392626\pi
0.330963 + 0.943644i 0.392626π0.392626\pi
240240 0 0
241241 1.12255e6 1.24498 0.622490 0.782628i 0.286121π-0.286121\pi
0.622490 + 0.782628i 0.286121π0.286121\pi
242242 0 0
243243 −59049.0 −0.0641500
244244 0 0
245245 −132250. −0.140760
246246 0 0
247247 −189706. −0.197851
248248 0 0
249249 −274692. −0.280768
250250 0 0
251251 −727271. −0.728638 −0.364319 0.931274i 0.618698π-0.618698\pi
−0.364319 + 0.931274i 0.618698π0.618698\pi
252252 0 0
253253 913883. 0.897613
254254 0 0
255255 −228655. −0.220207
256256 0 0
257257 650466. 0.614316 0.307158 0.951659i 0.400622π-0.400622\pi
0.307158 + 0.951659i 0.400622π0.400622\pi
258258 0 0
259259 1.22710e6 1.13666
260260 0 0
261261 −12202.5 −0.0110878
262262 0 0
263263 −979886. −0.873547 −0.436774 0.899571i 0.643879π-0.643879\pi
−0.436774 + 0.899571i 0.643879π0.643879\pi
264264 0 0
265265 −255759. −0.223726
266266 0 0
267267 −59924.2 −0.0514428
268268 0 0
269269 −242796. −0.204579 −0.102289 0.994755i 0.532617π-0.532617\pi
−0.102289 + 0.994755i 0.532617π0.532617\pi
270270 0 0
271271 917731. 0.759088 0.379544 0.925174i 0.376081π-0.376081\pi
0.379544 + 0.925174i 0.376081π0.376081\pi
272272 0 0
273273 −165135. −0.134102
274274 0 0
275275 694272. 0.553603
276276 0 0
277277 −1.70782e6 −1.33734 −0.668670 0.743560i 0.733136π-0.733136\pi
−0.668670 + 0.743560i 0.733136π0.733136\pi
278278 0 0
279279 82496.2 0.0634488
280280 0 0
281281 −78457.8 −0.0592748 −0.0296374 0.999561i 0.509435π-0.509435\pi
−0.0296374 + 0.999561i 0.509435π0.509435\pi
282282 0 0
283283 1.12505e6 0.835038 0.417519 0.908668i 0.362900π-0.362900\pi
0.417519 + 0.908668i 0.362900π0.362900\pi
284284 0 0
285285 266177. 0.194115
286286 0 0
287287 369158. 0.264550
288288 0 0
289289 −490019. −0.345118
290290 0 0
291291 617464. 0.427444
292292 0 0
293293 −1.15641e6 −0.786940 −0.393470 0.919338i 0.628725π-0.628725\pi
−0.393470 + 0.919338i 0.628725π0.628725\pi
294294 0 0
295295 598106. 0.400150
296296 0 0
297297 208211. 0.136966
298298 0 0
299299 −540755. −0.349802
300300 0 0
301301 −1.39152e6 −0.885265
302302 0 0
303303 1.74236e6 1.09026
304304 0 0
305305 1.09084e6 0.671449
306306 0 0
307307 89309.1 0.0540816 0.0270408 0.999634i 0.491392π-0.491392\pi
0.0270408 + 0.999634i 0.491392π0.491392\pi
308308 0 0
309309 −289205. −0.172310
310310 0 0
311311 −234215. −0.137314 −0.0686569 0.997640i 0.521871π-0.521871\pi
−0.0686569 + 0.997640i 0.521871π0.521871\pi
312312 0 0
313313 −480239. −0.277075 −0.138537 0.990357i 0.544240π-0.544240\pi
−0.138537 + 0.990357i 0.544240π0.544240\pi
314314 0 0
315315 231703. 0.131569
316316 0 0
317317 2.71795e6 1.51912 0.759561 0.650436i 0.225414π-0.225414\pi
0.759561 + 0.650436i 0.225414π0.225414\pi
318318 0 0
319319 43026.8 0.0236735
320320 0 0
321321 −1.69951e6 −0.920582
322322 0 0
323323 −1.08242e6 −0.577286
324324 0 0
325325 −410809. −0.215740
326326 0 0
327327 1.28841e6 0.666323
328328 0 0
329329 −2.12774e6 −1.08375
330330 0 0
331331 2.99899e6 1.50454 0.752272 0.658853i 0.228958π-0.228958\pi
0.752272 + 0.658853i 0.228958π0.228958\pi
332332 0 0
333333 915491. 0.452422
334334 0 0
335335 404588. 0.196970
336336 0 0
337337 −2.05193e6 −0.984209 −0.492105 0.870536i 0.663772π-0.663772\pi
−0.492105 + 0.870536i 0.663772π0.663772\pi
338338 0 0
339339 1.12861e6 0.533392
340340 0 0
341341 −290888. −0.135469
342342 0 0
343343 −2.36971e6 −1.08758
344344 0 0
345345 758738. 0.343197
346346 0 0
347347 −1.17162e6 −0.522353 −0.261176 0.965291i 0.584110π-0.584110\pi
−0.261176 + 0.965291i 0.584110π0.584110\pi
348348 0 0
349349 4.07956e6 1.79288 0.896438 0.443170i 0.146146π-0.146146\pi
0.896438 + 0.443170i 0.146146π0.146146\pi
350350 0 0
351351 −123201. −0.0533761
352352 0 0
353353 −1.76727e6 −0.754858 −0.377429 0.926039i 0.623192π-0.623192\pi
−0.377429 + 0.926039i 0.623192π0.623192\pi
354354 0 0
355355 −787175. −0.331513
356356 0 0
357357 −942231. −0.391279
358358 0 0
359359 −2.98058e6 −1.22058 −0.610289 0.792179i 0.708947π-0.708947\pi
−0.610289 + 0.792179i 0.708947π0.708947\pi
360360 0 0
361361 −1.21605e6 −0.491116
362362 0 0
363363 715291. 0.284916
364364 0 0
365365 992905. 0.390100
366366 0 0
367367 3.39556e6 1.31597 0.657986 0.753031i 0.271409π-0.271409\pi
0.657986 + 0.753031i 0.271409π0.271409\pi
368368 0 0
369369 275414. 0.105298
370370 0 0
371371 −1.05392e6 −0.397533
372372 0 0
373373 1.93570e6 0.720387 0.360194 0.932878i 0.382711π-0.382711\pi
0.360194 + 0.932878i 0.382711π0.382711\pi
374374 0 0
375375 1.31743e6 0.483780
376376 0 0
377377 −25459.5 −0.00922563
378378 0 0
379379 2.83891e6 1.01520 0.507601 0.861592i 0.330532π-0.330532\pi
0.507601 + 0.861592i 0.330532π0.330532\pi
380380 0 0
381381 868492. 0.306516
382382 0 0
383383 −3.66320e6 −1.27604 −0.638019 0.770021i 0.720246π-0.720246\pi
−0.638019 + 0.770021i 0.720246π0.720246\pi
384384 0 0
385385 −817001. −0.280912
386386 0 0
387387 −1.03816e6 −0.352360
388388 0 0
389389 −1.96777e6 −0.659327 −0.329664 0.944098i 0.606935π-0.606935\pi
−0.329664 + 0.944098i 0.606935π0.606935\pi
390390 0 0
391391 −3.08545e6 −1.02065
392392 0 0
393393 90109.9 0.0294301
394394 0 0
395395 −739151. −0.238364
396396 0 0
397397 2.79713e6 0.890711 0.445356 0.895354i 0.353077π-0.353077\pi
0.445356 + 0.895354i 0.353077π0.353077\pi
398398 0 0
399399 1.09685e6 0.344917
400400 0 0
401401 580264. 0.180204 0.0901020 0.995933i 0.471281π-0.471281\pi
0.0901020 + 0.995933i 0.471281π0.471281\pi
402402 0 0
403403 172122. 0.0527926
404404 0 0
405405 172864. 0.0523682
406406 0 0
407407 −3.22809e6 −0.965960
408408 0 0
409409 1.36264e6 0.402784 0.201392 0.979511i 0.435453π-0.435453\pi
0.201392 + 0.979511i 0.435453π0.435453\pi
410410 0 0
411411 1.70305e6 0.497304
412412 0 0
413413 2.46464e6 0.711015
414414 0 0
415415 804153. 0.229202
416416 0 0
417417 572170. 0.161133
418418 0 0
419419 385118. 0.107166 0.0535832 0.998563i 0.482936π-0.482936\pi
0.0535832 + 0.998563i 0.482936π0.482936\pi
420420 0 0
421421 6.63054e6 1.82324 0.911619 0.411035i 0.134833π-0.134833\pi
0.911619 + 0.411035i 0.134833π0.134833\pi
422422 0 0
423423 −1.58742e6 −0.431362
424424 0 0
425425 −2.34400e6 −0.629484
426426 0 0
427427 4.49509e6 1.19308
428428 0 0
429429 434416. 0.113963
430430 0 0
431431 2.87522e6 0.745552 0.372776 0.927921i 0.378406π-0.378406\pi
0.372776 + 0.927921i 0.378406π0.378406\pi
432432 0 0
433433 −1.63890e6 −0.420082 −0.210041 0.977693i 0.567360π-0.567360\pi
−0.210041 + 0.977693i 0.567360π0.567360\pi
434434 0 0
435435 35722.4 0.00905143
436436 0 0
437437 3.59176e6 0.899713
438438 0 0
439439 1.95804e6 0.484909 0.242455 0.970163i 0.422047π-0.422047\pi
0.242455 + 0.970163i 0.422047π0.422047\pi
440440 0 0
441441 −406579. −0.0995515
442442 0 0
443443 −7.54536e6 −1.82671 −0.913357 0.407159i 0.866520π-0.866520\pi
−0.913357 + 0.407159i 0.866520π0.866520\pi
444444 0 0
445445 175426. 0.0419947
446446 0 0
447447 21718.7 0.00514121
448448 0 0
449449 5.88112e6 1.37671 0.688357 0.725372i 0.258332π-0.258332\pi
0.688357 + 0.725372i 0.258332π0.258332\pi
450450 0 0
451451 −971131. −0.224821
452452 0 0
453453 4.07012e6 0.931885
454454 0 0
455455 483429. 0.109472
456456 0 0
457457 −3.27148e6 −0.732747 −0.366374 0.930468i 0.619401π-0.619401\pi
−0.366374 + 0.930468i 0.619401π0.619401\pi
458458 0 0
459459 −702961. −0.155740
460460 0 0
461461 −1.39477e6 −0.305668 −0.152834 0.988252i 0.548840π-0.548840\pi
−0.152834 + 0.988252i 0.548840π0.548840\pi
462462 0 0
463463 −3.81656e6 −0.827407 −0.413704 0.910412i 0.635765π-0.635765\pi
−0.413704 + 0.910412i 0.635765π0.635765\pi
464464 0 0
465465 −241505. −0.0517957
466466 0 0
467467 3.70467e6 0.786063 0.393031 0.919525i 0.371426π-0.371426\pi
0.393031 + 0.919525i 0.371426π0.371426\pi
468468 0 0
469469 1.66721e6 0.349991
470470 0 0
471471 1.75858e6 0.365267
472472 0 0
473473 3.66062e6 0.752319
474474 0 0
475475 2.72864e6 0.554897
476476 0 0
477477 −786288. −0.158229
478478 0 0
479479 1.53152e6 0.304988 0.152494 0.988304i 0.451270π-0.451270\pi
0.152494 + 0.988304i 0.451270π0.451270\pi
480480 0 0
481481 1.91010e6 0.376437
482482 0 0
483483 3.12657e6 0.609818
484484 0 0
485485 −1.80761e6 −0.348939
486486 0 0
487487 818721. 0.156428 0.0782138 0.996937i 0.475078π-0.475078\pi
0.0782138 + 0.996937i 0.475078π0.475078\pi
488488 0 0
489489 3.02255e6 0.571611
490490 0 0
491491 −6.11842e6 −1.14534 −0.572672 0.819785i 0.694093π-0.694093\pi
−0.572672 + 0.819785i 0.694093π0.694093\pi
492492 0 0
493493 −145267. −0.0269184
494494 0 0
495495 −609532. −0.111811
496496 0 0
497497 −3.24375e6 −0.589055
498498 0 0
499499 −1.70315e6 −0.306198 −0.153099 0.988211i 0.548925π-0.548925\pi
−0.153099 + 0.988211i 0.548925π0.548925\pi
500500 0 0
501501 −2.39671e6 −0.426600
502502 0 0
503503 8.17306e6 1.44034 0.720170 0.693798i 0.244064π-0.244064\pi
0.720170 + 0.693798i 0.244064π0.244064\pi
504504 0 0
505505 −5.10071e6 −0.890025
506506 0 0
507507 −257049. −0.0444116
508508 0 0
509509 −5.84045e6 −0.999198 −0.499599 0.866257i 0.666519π-0.666519\pi
−0.499599 + 0.866257i 0.666519π0.666519\pi
510510 0 0
511511 4.09151e6 0.693157
512512 0 0
513513 818316. 0.137286
514514 0 0
515515 846640. 0.140663
516516 0 0
517517 5.59738e6 0.920997
518518 0 0
519519 3.71775e6 0.605845
520520 0 0
521521 4.06221e6 0.655644 0.327822 0.944740i 0.393685π-0.393685\pi
0.327822 + 0.944740i 0.393685π0.393685\pi
522522 0 0
523523 −2.72472e6 −0.435580 −0.217790 0.975996i 0.569885π-0.569885\pi
−0.217790 + 0.975996i 0.569885π0.569885\pi
524524 0 0
525525 2.37524e6 0.376105
526526 0 0
527527 982093. 0.154037
528528 0 0
529529 3.80197e6 0.590703
530530 0 0
531531 1.83877e6 0.283003
532532 0 0
533533 574630. 0.0876133
534534 0 0
535535 4.97528e6 0.751507
536536 0 0
537537 −7778.08 −0.00116396
538538 0 0
539539 1.43363e6 0.212551
540540 0 0
541541 1.11651e7 1.64010 0.820050 0.572291i 0.193945π-0.193945\pi
0.820050 + 0.572291i 0.193945π0.193945\pi
542542 0 0
543543 −3.01185e6 −0.438362
544544 0 0
545545 −3.77178e6 −0.543945
546546 0 0
547547 −8.72639e6 −1.24700 −0.623500 0.781824i 0.714290π-0.714290\pi
−0.623500 + 0.781824i 0.714290π0.714290\pi
548548 0 0
549549 3.35361e6 0.474878
550550 0 0
551551 169105. 0.0237289
552552 0 0
553553 −3.04585e6 −0.423542
554554 0 0
555555 −2.68007e6 −0.369329
556556 0 0
557557 −4.63674e6 −0.633250 −0.316625 0.948551i 0.602550π-0.602550\pi
−0.316625 + 0.948551i 0.602550π0.602550\pi
558558 0 0
559559 −2.16603e6 −0.293181
560560 0 0
561561 2.47869e6 0.332518
562562 0 0
563563 9.08393e6 1.20782 0.603911 0.797052i 0.293608π-0.293608\pi
0.603911 + 0.797052i 0.293608π0.293608\pi
564564 0 0
565565 −3.30399e6 −0.435429
566566 0 0
567567 712330. 0.0930515
568568 0 0
569569 −4.73177e6 −0.612694 −0.306347 0.951920i 0.599107π-0.599107\pi
−0.306347 + 0.951920i 0.599107π0.599107\pi
570570 0 0
571571 1.38030e7 1.77167 0.885834 0.464002i 0.153587π-0.153587\pi
0.885834 + 0.464002i 0.153587π0.153587\pi
572572 0 0
573573 7.30428e6 0.929375
574574 0 0
575575 7.77799e6 0.981065
576576 0 0
577577 1.20728e7 1.50962 0.754811 0.655942i 0.227728π-0.227728\pi
0.754811 + 0.655942i 0.227728π0.227728\pi
578578 0 0
579579 265157. 0.0328705
580580 0 0
581581 3.31371e6 0.407263
582582 0 0
583583 2.77251e6 0.337833
584584 0 0
585585 360667. 0.0435730
586586 0 0
587587 1.57937e7 1.89186 0.945928 0.324378i 0.105155π-0.105155\pi
0.945928 + 0.324378i 0.105155π0.105155\pi
588588 0 0
589589 −1.14325e6 −0.135786
590590 0 0
591591 3.01062e6 0.354558
592592 0 0
593593 −1.30721e7 −1.52654 −0.763269 0.646080i 0.776407π-0.776407\pi
−0.763269 + 0.646080i 0.776407π0.776407\pi
594594 0 0
595595 2.75835e6 0.319417
596596 0 0
597597 −4.26398e6 −0.489643
598598 0 0
599599 −3.75229e6 −0.427296 −0.213648 0.976911i 0.568535π-0.568535\pi
−0.213648 + 0.976911i 0.568535π0.568535\pi
600600 0 0
601601 −1.07459e7 −1.21355 −0.606775 0.794873i 0.707537π-0.707537\pi
−0.606775 + 0.794873i 0.707537π0.707537\pi
602602 0 0
603603 1.24384e6 0.139306
604604 0 0
605605 −2.09399e6 −0.232588
606606 0 0
607607 1.30469e7 1.43726 0.718628 0.695394i 0.244770π-0.244770\pi
0.718628 + 0.695394i 0.244770π0.244770\pi
608608 0 0
609609 147203. 0.0160832
610610 0 0
611611 −3.31203e6 −0.358915
612612 0 0
613613 699071. 0.0751398 0.0375699 0.999294i 0.488038π-0.488038\pi
0.0375699 + 0.999294i 0.488038π0.488038\pi
614614 0 0
615615 −806267. −0.0859589
616616 0 0
617617 −1.41603e7 −1.49748 −0.748738 0.662866i 0.769340π-0.769340\pi
−0.748738 + 0.662866i 0.769340π0.769340\pi
618618 0 0
619619 877757. 0.0920763 0.0460381 0.998940i 0.485340π-0.485340\pi
0.0460381 + 0.998940i 0.485340π0.485340\pi
620620 0 0
621621 2.33261e6 0.242724
622622 0 0
623623 722888. 0.0746192
624624 0 0
625625 3.73960e6 0.382935
626626 0 0
627627 −2.88544e6 −0.293119
628628 0 0
629629 1.08986e7 1.09836
630630 0 0
631631 −1.48609e7 −1.48584 −0.742921 0.669379i 0.766560π-0.766560\pi
−0.742921 + 0.669379i 0.766560π0.766560\pi
632632 0 0
633633 −1.61780e6 −0.160478
634634 0 0
635635 −2.54248e6 −0.250221
636636 0 0
637637 −848293. −0.0828319
638638 0 0
639639 −2.42003e6 −0.234460
640640 0 0
641641 −1.93523e7 −1.86032 −0.930160 0.367155i 0.880332π-0.880332\pi
−0.930160 + 0.367155i 0.880332π0.880332\pi
642642 0 0
643643 −4.09314e6 −0.390418 −0.195209 0.980762i 0.562538π-0.562538\pi
−0.195209 + 0.980762i 0.562538π0.562538\pi
644644 0 0
645645 3.03918e6 0.287645
646646 0 0
647647 −3.02321e6 −0.283928 −0.141964 0.989872i 0.545342π-0.545342\pi
−0.141964 + 0.989872i 0.545342π0.545342\pi
648648 0 0
649649 −6.48365e6 −0.604238
650650 0 0
651651 −995182. −0.0920343
652652 0 0
653653 −1.67741e7 −1.53942 −0.769709 0.638395i 0.779599π-0.779599\pi
−0.769709 + 0.638395i 0.779599π0.779599\pi
654654 0 0
655655 −263794. −0.0240249
656656 0 0
657657 3.05251e6 0.275895
658658 0 0
659659 −1.86700e6 −0.167468 −0.0837340 0.996488i 0.526685π-0.526685\pi
−0.0837340 + 0.996488i 0.526685π0.526685\pi
660660 0 0
661661 4.11497e6 0.366322 0.183161 0.983083i 0.441367π-0.441367\pi
0.183161 + 0.983083i 0.441367π0.441367\pi
662662 0 0
663663 −1.46667e6 −0.129583
664664 0 0
665665 −3.21099e6 −0.281569
666666 0 0
667667 482033. 0.0419529
668668 0 0
669669 8.33857e6 0.720321
670670 0 0
671671 −1.18251e7 −1.01391
672672 0 0
673673 1.07014e7 0.910755 0.455377 0.890298i 0.349504π-0.349504\pi
0.455377 + 0.890298i 0.349504π0.349504\pi
674674 0 0
675675 1.77207e6 0.149700
676676 0 0
677677 −3.73378e6 −0.313096 −0.156548 0.987670i 0.550037π-0.550037\pi
−0.156548 + 0.987670i 0.550037π0.550037\pi
678678 0 0
679679 −7.44869e6 −0.620020
680680 0 0
681681 5.25307e6 0.434056
682682 0 0
683683 −2.33008e7 −1.91126 −0.955628 0.294577i 0.904821π-0.904821\pi
−0.955628 + 0.294577i 0.904821π0.904821\pi
684684 0 0
685685 −4.98562e6 −0.405969
686686 0 0
687687 3.36378e6 0.271917
688688 0 0
689689 −1.64053e6 −0.131654
690690 0 0
691691 3.66731e6 0.292181 0.146091 0.989271i 0.453331π-0.453331\pi
0.146091 + 0.989271i 0.453331π0.453331\pi
692692 0 0
693693 −2.51173e6 −0.198673
694694 0 0
695695 −1.67501e6 −0.131539
696696 0 0
697697 3.27872e6 0.255637
698698 0 0
699699 1.25719e7 0.973215
700700 0 0
701701 6.26713e6 0.481697 0.240848 0.970563i 0.422574π-0.422574\pi
0.240848 + 0.970563i 0.422574π0.422574\pi
702702 0 0
703703 −1.26871e7 −0.968219
704704 0 0
705705 4.64714e6 0.352138
706706 0 0
707707 −2.10187e7 −1.58146
708708 0 0
709709 1.67388e7 1.25057 0.625284 0.780397i 0.284983π-0.284983\pi
0.625284 + 0.780397i 0.284983π0.284983\pi
710710 0 0
711711 −2.27239e6 −0.168581
712712 0 0
713713 −3.25884e6 −0.240071
714714 0 0
715715 −1.27174e6 −0.0930322
716716 0 0
717717 −5.26074e6 −0.382163
718718 0 0
719719 1.45447e6 0.104926 0.0524631 0.998623i 0.483293π-0.483293\pi
0.0524631 + 0.998623i 0.483293π0.483293\pi
720720 0 0
721721 3.48879e6 0.249941
722722 0 0
723723 −1.01029e7 −0.718790
724724 0 0
725725 366198. 0.0258744
726726 0 0
727727 2.27668e7 1.59759 0.798795 0.601603i 0.205471π-0.205471\pi
0.798795 + 0.601603i 0.205471π0.205471\pi
728728 0 0
729729 531441. 0.0370370
730730 0 0
731731 −1.23590e7 −0.855438
732732 0 0
733733 −5.66897e6 −0.389712 −0.194856 0.980832i 0.562424π-0.562424\pi
−0.194856 + 0.980832i 0.562424π0.562424\pi
734734 0 0
735735 1.19025e6 0.0812678
736736 0 0
737737 −4.38586e6 −0.297431
738738 0 0
739739 −1.65419e7 −1.11423 −0.557113 0.830437i 0.688091π-0.688091\pi
−0.557113 + 0.830437i 0.688091π0.688091\pi
740740 0 0
741741 1.70735e6 0.114229
742742 0 0
743743 2.51152e7 1.66903 0.834514 0.550986i 0.185748π-0.185748\pi
0.834514 + 0.550986i 0.185748π0.185748\pi
744744 0 0
745745 −63580.9 −0.00419697
746746 0 0
747747 2.47223e6 0.162102
748748 0 0
749749 2.05019e7 1.33533
750750 0 0
751751 1.02904e7 0.665784 0.332892 0.942965i 0.391976π-0.391976\pi
0.332892 + 0.942965i 0.391976π0.391976\pi
752752 0 0
753753 6.54544e6 0.420679
754754 0 0
755755 −1.19152e7 −0.760734
756756 0 0
757757 1.14246e7 0.724606 0.362303 0.932060i 0.381991π-0.381991\pi
0.362303 + 0.932060i 0.381991π0.381991\pi
758758 0 0
759759 −8.22495e6 −0.518237
760760 0 0
761761 −1.12573e7 −0.704646 −0.352323 0.935878i 0.614608π-0.614608\pi
−0.352323 + 0.935878i 0.614608π0.614608\pi
762762 0 0
763763 −1.55426e7 −0.966521
764764 0 0
765765 2.05790e6 0.127136
766766 0 0
767767 3.83645e6 0.235473
768768 0 0
769769 −2.63365e7 −1.60599 −0.802994 0.595987i 0.796761π-0.796761\pi
−0.802994 + 0.595987i 0.796761π0.796761\pi
770770 0 0
771771 −5.85419e6 −0.354675
772772 0 0
773773 2.33227e7 1.40388 0.701941 0.712235i 0.252317π-0.252317\pi
0.701941 + 0.712235i 0.252317π0.252317\pi
774774 0 0
775775 −2.47572e6 −0.148063
776776 0 0
777777 −1.10439e7 −0.656251
778778 0 0
779779 −3.81676e6 −0.225347
780780 0 0
781781 8.53321e6 0.500593
782782 0 0
783783 109822. 0.00640156
784784 0 0
785785 −5.14820e6 −0.298182
786786 0 0
787787 5.48266e6 0.315540 0.157770 0.987476i 0.449570π-0.449570\pi
0.157770 + 0.987476i 0.449570π0.449570\pi
788788 0 0
789789 8.81898e6 0.504343
790790 0 0
791791 −1.36149e7 −0.773701
792792 0 0
793793 6.99704e6 0.395122
794794 0 0
795795 2.30184e6 0.129168
796796 0 0
797797 −1.67574e7 −0.934462 −0.467231 0.884135i 0.654748π-0.654748\pi
−0.467231 + 0.884135i 0.654748π0.654748\pi
798798 0 0
799799 −1.88978e7 −1.04724
800800 0 0
801801 539318. 0.0297005
802802 0 0
803803 −1.07634e7 −0.589061
804804 0 0
805805 −9.15293e6 −0.497818
806806 0 0
807807 2.18516e6 0.118114
808808 0 0
809809 −3.29903e7 −1.77221 −0.886104 0.463487i 0.846598π-0.846598\pi
−0.886104 + 0.463487i 0.846598π0.846598\pi
810810 0 0
811811 −1.12019e7 −0.598052 −0.299026 0.954245i 0.596662π-0.596662\pi
−0.299026 + 0.954245i 0.596662π0.596662\pi
812812 0 0
813813 −8.25958e6 −0.438260
814814 0 0
815815 −8.84841e6 −0.466629
816816 0 0
817817 1.43871e7 0.754079
818818 0 0
819819 1.48622e6 0.0774235
820820 0 0
821821 −7.15858e6 −0.370654 −0.185327 0.982677i 0.559334π-0.559334\pi
−0.185327 + 0.982677i 0.559334π0.559334\pi
822822 0 0
823823 1.87301e7 0.963918 0.481959 0.876194i 0.339925π-0.339925\pi
0.481959 + 0.876194i 0.339925π0.339925\pi
824824 0 0
825825 −6.24845e6 −0.319623
826826 0 0
827827 2.33449e7 1.18694 0.593468 0.804857i 0.297758π-0.297758\pi
0.593468 + 0.804857i 0.297758π0.297758\pi
828828 0 0
829829 1.66953e7 0.843740 0.421870 0.906656i 0.361374π-0.361374\pi
0.421870 + 0.906656i 0.361374π0.361374\pi
830830 0 0
831831 1.53703e7 0.772113
832832 0 0
833833 −4.84020e6 −0.241686
834834 0 0
835835 7.01629e6 0.348250
836836 0 0
837837 −742466. −0.0366322
838838 0 0
839839 −2.95646e7 −1.45000 −0.724998 0.688751i 0.758159π-0.758159\pi
−0.724998 + 0.688751i 0.758159π0.758159\pi
840840 0 0
841841 −2.04885e7 −0.998894
842842 0 0
843843 706120. 0.0342223
844844 0 0
845845 752503. 0.0362549
846846 0 0
847847 −8.62882e6 −0.413278
848848 0 0
849849 −1.01255e7 −0.482110
850850 0 0
851851 −3.61645e7 −1.71182
852852 0 0
853853 1.25512e7 0.590626 0.295313 0.955401i 0.404576π-0.404576\pi
0.295313 + 0.955401i 0.404576π0.404576\pi
854854 0 0
855855 −2.39559e6 −0.112072
856856 0 0
857857 −2.22431e7 −1.03453 −0.517266 0.855825i 0.673050π-0.673050\pi
−0.517266 + 0.855825i 0.673050π0.673050\pi
858858 0 0
859859 1.58384e7 0.732368 0.366184 0.930542i 0.380664π-0.380664\pi
0.366184 + 0.930542i 0.380664π0.380664\pi
860860 0 0
861861 −3.32242e6 −0.152738
862862 0 0
863863 −3.55005e6 −0.162259 −0.0811293 0.996704i 0.525853π-0.525853\pi
−0.0811293 + 0.996704i 0.525853π0.525853\pi
864864 0 0
865865 −1.08836e7 −0.494575
866866 0 0
867867 4.41017e6 0.199254
868868 0 0
869869 8.01262e6 0.359936
870870 0 0
871871 2.59516e6 0.115910
872872 0 0
873873 −5.55717e6 −0.246785
874874 0 0
875875 −1.58926e7 −0.701737
876876 0 0
877877 −2.90118e7 −1.27372 −0.636861 0.770978i 0.719768π-0.719768\pi
−0.636861 + 0.770978i 0.719768π0.719768\pi
878878 0 0
879879 1.04077e7 0.454340
880880 0 0
881881 −1.87411e7 −0.813494 −0.406747 0.913541i 0.633337π-0.633337\pi
−0.406747 + 0.913541i 0.633337π0.633337\pi
882882 0 0
883883 −907252. −0.0391585 −0.0195793 0.999808i 0.506233π-0.506233\pi
−0.0195793 + 0.999808i 0.506233π0.506233\pi
884884 0 0
885885 −5.38295e6 −0.231027
886886 0 0
887887 −4.40390e6 −0.187944 −0.0939720 0.995575i 0.529956π-0.529956\pi
−0.0939720 + 0.995575i 0.529956π0.529956\pi
888888 0 0
889889 −1.04769e7 −0.444611
890890 0 0
891891 −1.87390e6 −0.0790774
892892 0 0
893893 2.19989e7 0.923151
894894 0 0
895895 22770.1 0.000950183 0
896896 0 0
897897 4.86680e6 0.201959
898898 0 0
899899 −153430. −0.00633158
900900 0 0
901901 −9.36053e6 −0.384139
902902 0 0
903903 1.25237e7 0.511108
904904 0 0
905905 8.81709e6 0.357852
906906 0 0
907907 4.22081e7 1.70364 0.851820 0.523835i 0.175499π-0.175499\pi
0.851820 + 0.523835i 0.175499π0.175499\pi
908908 0 0
909909 −1.56813e7 −0.629464
910910 0 0
911911 −1.78418e7 −0.712266 −0.356133 0.934435i 0.615905π-0.615905\pi
−0.356133 + 0.934435i 0.615905π0.615905\pi
912912 0 0
913913 −8.71726e6 −0.346101
914914 0 0
915915 −9.81760e6 −0.387661
916916 0 0
917917 −1.08703e6 −0.0426892
918918 0 0
919919 −2.46819e6 −0.0964030 −0.0482015 0.998838i 0.515349π-0.515349\pi
−0.0482015 + 0.998838i 0.515349π0.515349\pi
920920 0 0
921921 −803782. −0.0312240
922922 0 0
923923 −5.04920e6 −0.195083
924924 0 0
925925 −2.74740e7 −1.05577
926926 0 0
927927 2.60285e6 0.0994832
928928 0 0
929929 3.76239e7 1.43029 0.715146 0.698975i 0.246360π-0.246360\pi
0.715146 + 0.698975i 0.246360π0.246360\pi
930930 0 0
931931 5.63447e6 0.213049
932932 0 0
933933 2.10794e6 0.0792782
934934 0 0
935935 −7.25630e6 −0.271448
936936 0 0
937937 −2.72154e7 −1.01266 −0.506332 0.862339i 0.668999π-0.668999\pi
−0.506332 + 0.862339i 0.668999π0.668999\pi
938938 0 0
939939 4.32215e6 0.159969
940940 0 0
941941 5.51883e6 0.203176 0.101588 0.994827i 0.467608π-0.467608\pi
0.101588 + 0.994827i 0.467608π0.467608\pi
942942 0 0
943943 −1.08797e7 −0.398415
944944 0 0
945945 −2.08532e6 −0.0759616
946946 0 0
947947 4.03933e7 1.46364 0.731819 0.681499i 0.238671π-0.238671\pi
0.731819 + 0.681499i 0.238671π0.238671\pi
948948 0 0
949949 6.36883e6 0.229559
950950 0 0
951951 −2.44615e7 −0.877065
952952 0 0
953953 −3.42332e6 −0.122100 −0.0610499 0.998135i 0.519445π-0.519445\pi
−0.0610499 + 0.998135i 0.519445π0.519445\pi
954954 0 0
955955 −2.13831e7 −0.758685
956956 0 0
957957 −387241. −0.0136679
958958 0 0
959959 −2.05445e7 −0.721354
960960 0 0
961961 −2.75919e7 −0.963768
962962 0 0
963963 1.52956e7 0.531498
964964 0 0
965965 −776239. −0.0268335
966966 0 0
967967 1.18244e7 0.406642 0.203321 0.979112i 0.434827π-0.434827\pi
0.203321 + 0.979112i 0.434827π0.434827\pi
968968 0 0
969969 9.74181e6 0.333296
970970 0 0
971971 3.02651e6 0.103013 0.0515067 0.998673i 0.483598π-0.483598\pi
0.0515067 + 0.998673i 0.483598π0.483598\pi
972972 0 0
973973 −6.90230e6 −0.233729
974974 0 0
975975 3.69728e6 0.124558
976976 0 0
977977 −7.03356e6 −0.235743 −0.117871 0.993029i 0.537607π-0.537607\pi
−0.117871 + 0.993029i 0.537607π0.537607\pi
978978 0 0
979979 −1.90168e6 −0.0634132
980980 0 0
981981 −1.15957e7 −0.384702
982982 0 0
983983 2.26337e7 0.747086 0.373543 0.927613i 0.378143π-0.378143\pi
0.373543 + 0.927613i 0.378143π0.378143\pi
984984 0 0
985985 −8.81351e6 −0.289440
986986 0 0
987987 1.91497e7 0.625704
988988 0 0
989989 4.10103e7 1.33322
990990 0 0
991991 −5.45429e6 −0.176423 −0.0882113 0.996102i 0.528115π-0.528115\pi
−0.0882113 + 0.996102i 0.528115π0.528115\pi
992992 0 0
993993 −2.69909e7 −0.868649
994994 0 0
995995 1.24827e7 0.399715
996996 0 0
997997 −6.16465e6 −0.196413 −0.0982066 0.995166i 0.531311π-0.531311\pi
−0.0982066 + 0.995166i 0.531311π0.531311\pi
998998 0 0
999999 −8.23942e6 −0.261206
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.r.1.2 3
4.3 odd 2 156.6.a.d.1.2 3
12.11 even 2 468.6.a.f.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.6.a.d.1.2 3 4.3 odd 2
468.6.a.f.1.2 3 12.11 even 2
624.6.a.r.1.2 3 1.1 even 1 trivial