Properties

Label 6223.2.a.t.1.53
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $74$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [74,18,0,86,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(74\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.53
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.75327 q^{2} -3.28812 q^{3} +1.07397 q^{4} -1.87758 q^{5} -5.76498 q^{6} -1.62359 q^{8} +7.81176 q^{9} -3.29190 q^{10} -2.70975 q^{11} -3.53134 q^{12} -3.71676 q^{13} +6.17370 q^{15} -4.99453 q^{16} +2.05065 q^{17} +13.6962 q^{18} -7.60959 q^{19} -2.01645 q^{20} -4.75092 q^{22} +4.81105 q^{23} +5.33856 q^{24} -1.47471 q^{25} -6.51650 q^{26} -15.8217 q^{27} -8.01094 q^{29} +10.8242 q^{30} +0.938179 q^{31} -5.50959 q^{32} +8.90998 q^{33} +3.59535 q^{34} +8.38958 q^{36} +4.23700 q^{37} -13.3417 q^{38} +12.2212 q^{39} +3.04841 q^{40} -7.94113 q^{41} -5.32646 q^{43} -2.91018 q^{44} -14.6672 q^{45} +8.43508 q^{46} -7.32875 q^{47} +16.4226 q^{48} -2.58557 q^{50} -6.74279 q^{51} -3.99168 q^{52} -8.15367 q^{53} -27.7397 q^{54} +5.08775 q^{55} +25.0213 q^{57} -14.0454 q^{58} +13.7515 q^{59} +6.63035 q^{60} -8.43911 q^{61} +1.64488 q^{62} +0.329233 q^{64} +6.97851 q^{65} +15.6216 q^{66} -10.8139 q^{67} +2.20233 q^{68} -15.8193 q^{69} -3.70175 q^{71} -12.6831 q^{72} -2.98643 q^{73} +7.42861 q^{74} +4.84902 q^{75} -8.17245 q^{76} +21.4271 q^{78} -0.365977 q^{79} +9.37761 q^{80} +28.5884 q^{81} -13.9230 q^{82} -15.4825 q^{83} -3.85025 q^{85} -9.33874 q^{86} +26.3410 q^{87} +4.39951 q^{88} -5.66403 q^{89} -25.7156 q^{90} +5.16690 q^{92} -3.08485 q^{93} -12.8493 q^{94} +14.2876 q^{95} +18.1162 q^{96} +2.08128 q^{97} -21.1679 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 74 q + 18 q^{2} + 86 q^{4} + 54 q^{8} + 114 q^{9} + 28 q^{11} + 32 q^{15} + 118 q^{16} + 54 q^{18} + 20 q^{22} + 64 q^{23} + 130 q^{25} + 36 q^{29} + 68 q^{30} + 146 q^{32} + 162 q^{36} + 48 q^{37} + 24 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75327 1.23975 0.619876 0.784700i \(-0.287183\pi\)
0.619876 + 0.784700i \(0.287183\pi\)
\(3\) −3.28812 −1.89840 −0.949200 0.314674i \(-0.898105\pi\)
−0.949200 + 0.314674i \(0.898105\pi\)
\(4\) 1.07397 0.536983
\(5\) −1.87758 −0.839678 −0.419839 0.907599i \(-0.637913\pi\)
−0.419839 + 0.907599i \(0.637913\pi\)
\(6\) −5.76498 −2.35354
\(7\) 0 0
\(8\) −1.62359 −0.574025
\(9\) 7.81176 2.60392
\(10\) −3.29190 −1.04099
\(11\) −2.70975 −0.817019 −0.408509 0.912754i \(-0.633951\pi\)
−0.408509 + 0.912754i \(0.633951\pi\)
\(12\) −3.53134 −1.01941
\(13\) −3.71676 −1.03084 −0.515422 0.856936i \(-0.672365\pi\)
−0.515422 + 0.856936i \(0.672365\pi\)
\(14\) 0 0
\(15\) 6.17370 1.59404
\(16\) −4.99453 −1.24863
\(17\) 2.05065 0.497356 0.248678 0.968586i \(-0.420004\pi\)
0.248678 + 0.968586i \(0.420004\pi\)
\(18\) 13.6962 3.22822
\(19\) −7.60959 −1.74576 −0.872880 0.487935i \(-0.837750\pi\)
−0.872880 + 0.487935i \(0.837750\pi\)
\(20\) −2.01645 −0.450893
\(21\) 0 0
\(22\) −4.75092 −1.01290
\(23\) 4.81105 1.00317 0.501586 0.865108i \(-0.332750\pi\)
0.501586 + 0.865108i \(0.332750\pi\)
\(24\) 5.33856 1.08973
\(25\) −1.47471 −0.294942
\(26\) −6.51650 −1.27799
\(27\) −15.8217 −3.04488
\(28\) 0 0
\(29\) −8.01094 −1.48759 −0.743797 0.668405i \(-0.766977\pi\)
−0.743797 + 0.668405i \(0.766977\pi\)
\(30\) 10.8242 1.97622
\(31\) 0.938179 0.168502 0.0842510 0.996445i \(-0.473150\pi\)
0.0842510 + 0.996445i \(0.473150\pi\)
\(32\) −5.50959 −0.973968
\(33\) 8.90998 1.55103
\(34\) 3.59535 0.616597
\(35\) 0 0
\(36\) 8.38958 1.39826
\(37\) 4.23700 0.696558 0.348279 0.937391i \(-0.386766\pi\)
0.348279 + 0.937391i \(0.386766\pi\)
\(38\) −13.3417 −2.16431
\(39\) 12.2212 1.95696
\(40\) 3.04841 0.481996
\(41\) −7.94113 −1.24020 −0.620098 0.784524i \(-0.712907\pi\)
−0.620098 + 0.784524i \(0.712907\pi\)
\(42\) 0 0
\(43\) −5.32646 −0.812278 −0.406139 0.913811i \(-0.633125\pi\)
−0.406139 + 0.913811i \(0.633125\pi\)
\(44\) −2.91018 −0.438726
\(45\) −14.6672 −2.18645
\(46\) 8.43508 1.24368
\(47\) −7.32875 −1.06901 −0.534504 0.845166i \(-0.679502\pi\)
−0.534504 + 0.845166i \(0.679502\pi\)
\(48\) 16.4226 2.37040
\(49\) 0 0
\(50\) −2.58557 −0.365654
\(51\) −6.74279 −0.944180
\(52\) −3.99168 −0.553546
\(53\) −8.15367 −1.11999 −0.559996 0.828495i \(-0.689197\pi\)
−0.559996 + 0.828495i \(0.689197\pi\)
\(54\) −27.7397 −3.77490
\(55\) 5.08775 0.686032
\(56\) 0 0
\(57\) 25.0213 3.31415
\(58\) −14.0454 −1.84425
\(59\) 13.7515 1.79029 0.895143 0.445779i \(-0.147073\pi\)
0.895143 + 0.445779i \(0.147073\pi\)
\(60\) 6.63035 0.855975
\(61\) −8.43911 −1.08052 −0.540259 0.841499i \(-0.681674\pi\)
−0.540259 + 0.841499i \(0.681674\pi\)
\(62\) 1.64488 0.208901
\(63\) 0 0
\(64\) 0.329233 0.0411541
\(65\) 6.97851 0.865577
\(66\) 15.6216 1.92289
\(67\) −10.8139 −1.32113 −0.660565 0.750769i \(-0.729683\pi\)
−0.660565 + 0.750769i \(0.729683\pi\)
\(68\) 2.20233 0.267072
\(69\) −15.8193 −1.90442
\(70\) 0 0
\(71\) −3.70175 −0.439317 −0.219658 0.975577i \(-0.570494\pi\)
−0.219658 + 0.975577i \(0.570494\pi\)
\(72\) −12.6831 −1.49472
\(73\) −2.98643 −0.349535 −0.174768 0.984610i \(-0.555917\pi\)
−0.174768 + 0.984610i \(0.555917\pi\)
\(74\) 7.42861 0.863559
\(75\) 4.84902 0.559917
\(76\) −8.17245 −0.937444
\(77\) 0 0
\(78\) 21.4271 2.42614
\(79\) −0.365977 −0.0411756 −0.0205878 0.999788i \(-0.506554\pi\)
−0.0205878 + 0.999788i \(0.506554\pi\)
\(80\) 9.37761 1.04845
\(81\) 28.5884 3.17649
\(82\) −13.9230 −1.53754
\(83\) −15.4825 −1.69942 −0.849711 0.527248i \(-0.823224\pi\)
−0.849711 + 0.527248i \(0.823224\pi\)
\(84\) 0 0
\(85\) −3.85025 −0.417618
\(86\) −9.33874 −1.00702
\(87\) 26.3410 2.82405
\(88\) 4.39951 0.468990
\(89\) −5.66403 −0.600386 −0.300193 0.953878i \(-0.597051\pi\)
−0.300193 + 0.953878i \(0.597051\pi\)
\(90\) −25.7156 −2.71066
\(91\) 0 0
\(92\) 5.16690 0.538687
\(93\) −3.08485 −0.319884
\(94\) −12.8493 −1.32530
\(95\) 14.2876 1.46588
\(96\) 18.1162 1.84898
\(97\) 2.08128 0.211322 0.105661 0.994402i \(-0.466304\pi\)
0.105661 + 0.994402i \(0.466304\pi\)
\(98\) 0 0
\(99\) −21.1679 −2.12745
\(100\) −1.58379 −0.158379
\(101\) 6.21607 0.618522 0.309261 0.950977i \(-0.399918\pi\)
0.309261 + 0.950977i \(0.399918\pi\)
\(102\) −11.8220 −1.17055
\(103\) 14.0549 1.38487 0.692434 0.721481i \(-0.256538\pi\)
0.692434 + 0.721481i \(0.256538\pi\)
\(104\) 6.03450 0.591731
\(105\) 0 0
\(106\) −14.2956 −1.38851
\(107\) −18.3549 −1.77443 −0.887216 0.461355i \(-0.847364\pi\)
−0.887216 + 0.461355i \(0.847364\pi\)
\(108\) −16.9920 −1.63505
\(109\) 13.7838 1.32025 0.660123 0.751158i \(-0.270504\pi\)
0.660123 + 0.751158i \(0.270504\pi\)
\(110\) 8.92022 0.850510
\(111\) −13.9318 −1.32235
\(112\) 0 0
\(113\) 8.19499 0.770919 0.385460 0.922725i \(-0.374043\pi\)
0.385460 + 0.922725i \(0.374043\pi\)
\(114\) 43.8691 4.10872
\(115\) −9.03311 −0.842341
\(116\) −8.60348 −0.798813
\(117\) −29.0345 −2.68424
\(118\) 24.1101 2.21951
\(119\) 0 0
\(120\) −10.0236 −0.915022
\(121\) −3.65728 −0.332480
\(122\) −14.7961 −1.33957
\(123\) 26.1114 2.35439
\(124\) 1.00757 0.0904827
\(125\) 12.1568 1.08733
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) 11.5964 1.02499
\(129\) 17.5141 1.54203
\(130\) 12.2352 1.07310
\(131\) 15.8959 1.38883 0.694417 0.719573i \(-0.255663\pi\)
0.694417 + 0.719573i \(0.255663\pi\)
\(132\) 9.56902 0.832876
\(133\) 0 0
\(134\) −18.9597 −1.63787
\(135\) 29.7064 2.55672
\(136\) −3.32941 −0.285495
\(137\) −0.634025 −0.0541684 −0.0270842 0.999633i \(-0.508622\pi\)
−0.0270842 + 0.999633i \(0.508622\pi\)
\(138\) −27.7356 −2.36101
\(139\) −1.89489 −0.160723 −0.0803613 0.996766i \(-0.525607\pi\)
−0.0803613 + 0.996766i \(0.525607\pi\)
\(140\) 0 0
\(141\) 24.0979 2.02941
\(142\) −6.49018 −0.544644
\(143\) 10.0715 0.842220
\(144\) −39.0161 −3.25134
\(145\) 15.0412 1.24910
\(146\) −5.23603 −0.433337
\(147\) 0 0
\(148\) 4.55039 0.374040
\(149\) 0.813532 0.0666471 0.0333236 0.999445i \(-0.489391\pi\)
0.0333236 + 0.999445i \(0.489391\pi\)
\(150\) 8.50166 0.694158
\(151\) −15.1759 −1.23500 −0.617500 0.786571i \(-0.711855\pi\)
−0.617500 + 0.786571i \(0.711855\pi\)
\(152\) 12.3548 1.00211
\(153\) 16.0192 1.29508
\(154\) 0 0
\(155\) −1.76150 −0.141487
\(156\) 13.1251 1.05085
\(157\) 13.7481 1.09722 0.548608 0.836080i \(-0.315158\pi\)
0.548608 + 0.836080i \(0.315158\pi\)
\(158\) −0.641657 −0.0510475
\(159\) 26.8103 2.12619
\(160\) 10.3447 0.817819
\(161\) 0 0
\(162\) 50.1232 3.93805
\(163\) −6.04408 −0.473409 −0.236704 0.971582i \(-0.576067\pi\)
−0.236704 + 0.971582i \(0.576067\pi\)
\(164\) −8.52851 −0.665965
\(165\) −16.7292 −1.30236
\(166\) −27.1450 −2.10686
\(167\) −13.1442 −1.01713 −0.508566 0.861023i \(-0.669824\pi\)
−0.508566 + 0.861023i \(0.669824\pi\)
\(168\) 0 0
\(169\) 0.814327 0.0626405
\(170\) −6.75054 −0.517743
\(171\) −59.4443 −4.54582
\(172\) −5.72044 −0.436180
\(173\) −13.9027 −1.05700 −0.528502 0.848932i \(-0.677246\pi\)
−0.528502 + 0.848932i \(0.677246\pi\)
\(174\) 46.1829 3.50112
\(175\) 0 0
\(176\) 13.5339 1.02016
\(177\) −45.2165 −3.39868
\(178\) −9.93060 −0.744330
\(179\) −0.526339 −0.0393404 −0.0196702 0.999807i \(-0.506262\pi\)
−0.0196702 + 0.999807i \(0.506262\pi\)
\(180\) −15.7521 −1.17409
\(181\) 3.81393 0.283487 0.141743 0.989903i \(-0.454729\pi\)
0.141743 + 0.989903i \(0.454729\pi\)
\(182\) 0 0
\(183\) 27.7489 2.05125
\(184\) −7.81116 −0.575847
\(185\) −7.95528 −0.584884
\(186\) −5.40858 −0.396577
\(187\) −5.55674 −0.406349
\(188\) −7.87084 −0.574040
\(189\) 0 0
\(190\) 25.0500 1.81732
\(191\) 17.7280 1.28275 0.641376 0.767227i \(-0.278364\pi\)
0.641376 + 0.767227i \(0.278364\pi\)
\(192\) −1.08256 −0.0781269
\(193\) 19.1342 1.37731 0.688656 0.725088i \(-0.258201\pi\)
0.688656 + 0.725088i \(0.258201\pi\)
\(194\) 3.64906 0.261987
\(195\) −22.9462 −1.64321
\(196\) 0 0
\(197\) 9.96740 0.710148 0.355074 0.934838i \(-0.384456\pi\)
0.355074 + 0.934838i \(0.384456\pi\)
\(198\) −37.1131 −2.63751
\(199\) −3.94001 −0.279300 −0.139650 0.990201i \(-0.544598\pi\)
−0.139650 + 0.990201i \(0.544598\pi\)
\(200\) 2.39432 0.169304
\(201\) 35.5575 2.50803
\(202\) 10.8985 0.766813
\(203\) 0 0
\(204\) −7.24154 −0.507009
\(205\) 14.9101 1.04137
\(206\) 24.6420 1.71689
\(207\) 37.5828 2.61218
\(208\) 18.5635 1.28715
\(209\) 20.6201 1.42632
\(210\) 0 0
\(211\) −12.6786 −0.872834 −0.436417 0.899745i \(-0.643753\pi\)
−0.436417 + 0.899745i \(0.643753\pi\)
\(212\) −8.75677 −0.601417
\(213\) 12.1718 0.833999
\(214\) −32.1811 −2.19985
\(215\) 10.0008 0.682051
\(216\) 25.6879 1.74784
\(217\) 0 0
\(218\) 24.1667 1.63678
\(219\) 9.81976 0.663558
\(220\) 5.46408 0.368388
\(221\) −7.62178 −0.512696
\(222\) −24.4262 −1.63938
\(223\) 14.0427 0.940368 0.470184 0.882568i \(-0.344188\pi\)
0.470184 + 0.882568i \(0.344188\pi\)
\(224\) 0 0
\(225\) −11.5201 −0.768004
\(226\) 14.3680 0.955748
\(227\) 9.37755 0.622410 0.311205 0.950343i \(-0.399267\pi\)
0.311205 + 0.950343i \(0.399267\pi\)
\(228\) 26.8720 1.77964
\(229\) 29.2694 1.93418 0.967089 0.254440i \(-0.0818912\pi\)
0.967089 + 0.254440i \(0.0818912\pi\)
\(230\) −15.8375 −1.04429
\(231\) 0 0
\(232\) 13.0065 0.853917
\(233\) 18.7377 1.22755 0.613775 0.789481i \(-0.289650\pi\)
0.613775 + 0.789481i \(0.289650\pi\)
\(234\) −50.9054 −3.32779
\(235\) 13.7603 0.897622
\(236\) 14.7686 0.961354
\(237\) 1.20338 0.0781677
\(238\) 0 0
\(239\) −0.286738 −0.0185476 −0.00927378 0.999957i \(-0.502952\pi\)
−0.00927378 + 0.999957i \(0.502952\pi\)
\(240\) −30.8347 −1.99037
\(241\) 0.0989937 0.00637674 0.00318837 0.999995i \(-0.498985\pi\)
0.00318837 + 0.999995i \(0.498985\pi\)
\(242\) −6.41221 −0.412193
\(243\) −46.5371 −2.98535
\(244\) −9.06333 −0.580220
\(245\) 0 0
\(246\) 45.7805 2.91886
\(247\) 28.2830 1.79961
\(248\) −1.52322 −0.0967244
\(249\) 50.9083 3.22618
\(250\) 21.3141 1.34802
\(251\) −21.4397 −1.35326 −0.676632 0.736321i \(-0.736561\pi\)
−0.676632 + 0.736321i \(0.736561\pi\)
\(252\) 0 0
\(253\) −13.0367 −0.819611
\(254\) 1.75327 0.110010
\(255\) 12.6601 0.792807
\(256\) 19.6732 1.22958
\(257\) −10.1539 −0.633386 −0.316693 0.948528i \(-0.602572\pi\)
−0.316693 + 0.948528i \(0.602572\pi\)
\(258\) 30.7069 1.91173
\(259\) 0 0
\(260\) 7.49468 0.464801
\(261\) −62.5796 −3.87358
\(262\) 27.8699 1.72181
\(263\) −0.170410 −0.0105079 −0.00525397 0.999986i \(-0.501672\pi\)
−0.00525397 + 0.999986i \(0.501672\pi\)
\(264\) −14.4661 −0.890330
\(265\) 15.3091 0.940432
\(266\) 0 0
\(267\) 18.6240 1.13977
\(268\) −11.6138 −0.709424
\(269\) 23.4143 1.42759 0.713797 0.700352i \(-0.246974\pi\)
0.713797 + 0.700352i \(0.246974\pi\)
\(270\) 52.0835 3.16970
\(271\) −10.7567 −0.653424 −0.326712 0.945124i \(-0.605941\pi\)
−0.326712 + 0.945124i \(0.605941\pi\)
\(272\) −10.2420 −0.621014
\(273\) 0 0
\(274\) −1.11162 −0.0671554
\(275\) 3.99608 0.240973
\(276\) −16.9894 −1.02264
\(277\) −25.3150 −1.52103 −0.760516 0.649319i \(-0.775054\pi\)
−0.760516 + 0.649319i \(0.775054\pi\)
\(278\) −3.32226 −0.199256
\(279\) 7.32883 0.438766
\(280\) 0 0
\(281\) −12.4718 −0.744004 −0.372002 0.928232i \(-0.621328\pi\)
−0.372002 + 0.928232i \(0.621328\pi\)
\(282\) 42.2501 2.51596
\(283\) 20.5940 1.22418 0.612092 0.790787i \(-0.290328\pi\)
0.612092 + 0.790787i \(0.290328\pi\)
\(284\) −3.97555 −0.235906
\(285\) −46.9794 −2.78282
\(286\) 17.6581 1.04414
\(287\) 0 0
\(288\) −43.0397 −2.53614
\(289\) −12.7948 −0.752637
\(290\) 26.3712 1.54857
\(291\) −6.84352 −0.401174
\(292\) −3.20733 −0.187695
\(293\) 9.80199 0.572638 0.286319 0.958134i \(-0.407568\pi\)
0.286319 + 0.958134i \(0.407568\pi\)
\(294\) 0 0
\(295\) −25.8194 −1.50326
\(296\) −6.87914 −0.399842
\(297\) 42.8727 2.48773
\(298\) 1.42634 0.0826259
\(299\) −17.8815 −1.03411
\(300\) 5.20769 0.300666
\(301\) 0 0
\(302\) −26.6076 −1.53109
\(303\) −20.4392 −1.17420
\(304\) 38.0063 2.17981
\(305\) 15.8451 0.907287
\(306\) 28.0860 1.60557
\(307\) 14.7492 0.841781 0.420890 0.907112i \(-0.361718\pi\)
0.420890 + 0.907112i \(0.361718\pi\)
\(308\) 0 0
\(309\) −46.2142 −2.62903
\(310\) −3.08840 −0.175409
\(311\) −16.1745 −0.917174 −0.458587 0.888649i \(-0.651644\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(312\) −19.8422 −1.12334
\(313\) 0.701554 0.0396542 0.0198271 0.999803i \(-0.493688\pi\)
0.0198271 + 0.999803i \(0.493688\pi\)
\(314\) 24.1041 1.36028
\(315\) 0 0
\(316\) −0.393047 −0.0221106
\(317\) 21.6294 1.21483 0.607415 0.794385i \(-0.292207\pi\)
0.607415 + 0.794385i \(0.292207\pi\)
\(318\) 47.0057 2.63595
\(319\) 21.7076 1.21539
\(320\) −0.618160 −0.0345562
\(321\) 60.3531 3.36858
\(322\) 0 0
\(323\) −15.6046 −0.868264
\(324\) 30.7030 1.70572
\(325\) 5.48114 0.304039
\(326\) −10.5969 −0.586909
\(327\) −45.3227 −2.50635
\(328\) 12.8931 0.711904
\(329\) 0 0
\(330\) −29.3308 −1.61461
\(331\) 19.5706 1.07570 0.537850 0.843041i \(-0.319237\pi\)
0.537850 + 0.843041i \(0.319237\pi\)
\(332\) −16.6277 −0.912562
\(333\) 33.0984 1.81378
\(334\) −23.0454 −1.26099
\(335\) 20.3039 1.10932
\(336\) 0 0
\(337\) −18.5193 −1.00881 −0.504404 0.863468i \(-0.668288\pi\)
−0.504404 + 0.863468i \(0.668288\pi\)
\(338\) 1.42774 0.0776587
\(339\) −26.9461 −1.46351
\(340\) −4.13504 −0.224254
\(341\) −2.54223 −0.137669
\(342\) −104.222 −5.63569
\(343\) 0 0
\(344\) 8.64799 0.466268
\(345\) 29.7020 1.59910
\(346\) −24.3752 −1.31042
\(347\) −35.5600 −1.90896 −0.954481 0.298272i \(-0.903590\pi\)
−0.954481 + 0.298272i \(0.903590\pi\)
\(348\) 28.2893 1.51647
\(349\) 9.31611 0.498680 0.249340 0.968416i \(-0.419786\pi\)
0.249340 + 0.968416i \(0.419786\pi\)
\(350\) 0 0
\(351\) 58.8054 3.13880
\(352\) 14.9296 0.795750
\(353\) −7.76581 −0.413332 −0.206666 0.978412i \(-0.566261\pi\)
−0.206666 + 0.978412i \(0.566261\pi\)
\(354\) −79.2769 −4.21352
\(355\) 6.95032 0.368884
\(356\) −6.08298 −0.322397
\(357\) 0 0
\(358\) −0.922816 −0.0487723
\(359\) −9.11633 −0.481142 −0.240571 0.970632i \(-0.577335\pi\)
−0.240571 + 0.970632i \(0.577335\pi\)
\(360\) 23.8135 1.25508
\(361\) 38.9059 2.04768
\(362\) 6.68686 0.351453
\(363\) 12.0256 0.631180
\(364\) 0 0
\(365\) 5.60725 0.293497
\(366\) 48.6513 2.54305
\(367\) 6.61489 0.345294 0.172647 0.984984i \(-0.444768\pi\)
0.172647 + 0.984984i \(0.444768\pi\)
\(368\) −24.0289 −1.25259
\(369\) −62.0343 −3.22937
\(370\) −13.9478 −0.725111
\(371\) 0 0
\(372\) −3.31303 −0.171772
\(373\) −19.4162 −1.00533 −0.502666 0.864481i \(-0.667647\pi\)
−0.502666 + 0.864481i \(0.667647\pi\)
\(374\) −9.74248 −0.503772
\(375\) −39.9729 −2.06419
\(376\) 11.8989 0.613638
\(377\) 29.7748 1.53348
\(378\) 0 0
\(379\) −6.00616 −0.308516 −0.154258 0.988031i \(-0.549299\pi\)
−0.154258 + 0.988031i \(0.549299\pi\)
\(380\) 15.3444 0.787151
\(381\) −3.28812 −0.168456
\(382\) 31.0820 1.59029
\(383\) −27.5205 −1.40623 −0.703117 0.711074i \(-0.748209\pi\)
−0.703117 + 0.711074i \(0.748209\pi\)
\(384\) −38.1305 −1.94584
\(385\) 0 0
\(386\) 33.5475 1.70752
\(387\) −41.6091 −2.11511
\(388\) 2.23523 0.113477
\(389\) 14.1529 0.717578 0.358789 0.933419i \(-0.383190\pi\)
0.358789 + 0.933419i \(0.383190\pi\)
\(390\) −40.2310 −2.03717
\(391\) 9.86577 0.498933
\(392\) 0 0
\(393\) −52.2678 −2.63656
\(394\) 17.4756 0.880407
\(395\) 0.687149 0.0345742
\(396\) −22.7336 −1.14241
\(397\) 34.8688 1.75001 0.875006 0.484112i \(-0.160857\pi\)
0.875006 + 0.484112i \(0.160857\pi\)
\(398\) −6.90792 −0.346263
\(399\) 0 0
\(400\) 7.36547 0.368273
\(401\) 17.4112 0.869474 0.434737 0.900558i \(-0.356841\pi\)
0.434737 + 0.900558i \(0.356841\pi\)
\(402\) 62.3420 3.10933
\(403\) −3.48699 −0.173699
\(404\) 6.67585 0.332136
\(405\) −53.6768 −2.66722
\(406\) 0 0
\(407\) −11.4812 −0.569101
\(408\) 10.9475 0.541983
\(409\) −12.9475 −0.640212 −0.320106 0.947382i \(-0.603719\pi\)
−0.320106 + 0.947382i \(0.603719\pi\)
\(410\) 26.1414 1.29103
\(411\) 2.08475 0.102833
\(412\) 15.0945 0.743651
\(413\) 0 0
\(414\) 65.8928 3.23846
\(415\) 29.0695 1.42697
\(416\) 20.4779 1.00401
\(417\) 6.23064 0.305116
\(418\) 36.1526 1.76828
\(419\) −28.3893 −1.38691 −0.693455 0.720500i \(-0.743912\pi\)
−0.693455 + 0.720500i \(0.743912\pi\)
\(420\) 0 0
\(421\) −34.9959 −1.70560 −0.852798 0.522241i \(-0.825096\pi\)
−0.852798 + 0.522241i \(0.825096\pi\)
\(422\) −22.2291 −1.08210
\(423\) −57.2505 −2.78361
\(424\) 13.2382 0.642904
\(425\) −3.02411 −0.146691
\(426\) 21.3405 1.03395
\(427\) 0 0
\(428\) −19.7125 −0.952840
\(429\) −33.1163 −1.59887
\(430\) 17.5342 0.845574
\(431\) −19.3699 −0.933017 −0.466508 0.884517i \(-0.654488\pi\)
−0.466508 + 0.884517i \(0.654488\pi\)
\(432\) 79.0218 3.80194
\(433\) 11.7846 0.566330 0.283165 0.959071i \(-0.408616\pi\)
0.283165 + 0.959071i \(0.408616\pi\)
\(434\) 0 0
\(435\) −49.4572 −2.37129
\(436\) 14.8033 0.708950
\(437\) −36.6101 −1.75130
\(438\) 17.2167 0.822647
\(439\) −18.7778 −0.896214 −0.448107 0.893980i \(-0.647902\pi\)
−0.448107 + 0.893980i \(0.647902\pi\)
\(440\) −8.26042 −0.393800
\(441\) 0 0
\(442\) −13.3631 −0.635616
\(443\) 32.3556 1.53726 0.768630 0.639694i \(-0.220939\pi\)
0.768630 + 0.639694i \(0.220939\pi\)
\(444\) −14.9623 −0.710077
\(445\) 10.6347 0.504131
\(446\) 24.6207 1.16582
\(447\) −2.67499 −0.126523
\(448\) 0 0
\(449\) 10.5288 0.496886 0.248443 0.968647i \(-0.420081\pi\)
0.248443 + 0.968647i \(0.420081\pi\)
\(450\) −20.1978 −0.952135
\(451\) 21.5184 1.01326
\(452\) 8.80114 0.413971
\(453\) 49.9004 2.34452
\(454\) 16.4414 0.771633
\(455\) 0 0
\(456\) −40.6243 −1.90241
\(457\) −0.338624 −0.0158402 −0.00792008 0.999969i \(-0.502521\pi\)
−0.00792008 + 0.999969i \(0.502521\pi\)
\(458\) 51.3173 2.39790
\(459\) −32.4447 −1.51439
\(460\) −9.70125 −0.452323
\(461\) 10.1873 0.474472 0.237236 0.971452i \(-0.423759\pi\)
0.237236 + 0.971452i \(0.423759\pi\)
\(462\) 0 0
\(463\) 34.5047 1.60357 0.801785 0.597612i \(-0.203884\pi\)
0.801785 + 0.597612i \(0.203884\pi\)
\(464\) 40.0109 1.85746
\(465\) 5.79204 0.268599
\(466\) 32.8524 1.52186
\(467\) −1.87037 −0.0865505 −0.0432752 0.999063i \(-0.513779\pi\)
−0.0432752 + 0.999063i \(0.513779\pi\)
\(468\) −31.1821 −1.44139
\(469\) 0 0
\(470\) 24.1255 1.11283
\(471\) −45.2054 −2.08296
\(472\) −22.3267 −1.02767
\(473\) 14.4334 0.663646
\(474\) 2.10985 0.0969086
\(475\) 11.2219 0.514897
\(476\) 0 0
\(477\) −63.6945 −2.91637
\(478\) −0.502731 −0.0229944
\(479\) −29.5238 −1.34898 −0.674489 0.738285i \(-0.735636\pi\)
−0.674489 + 0.738285i \(0.735636\pi\)
\(480\) −34.0146 −1.55255
\(481\) −15.7479 −0.718043
\(482\) 0.173563 0.00790558
\(483\) 0 0
\(484\) −3.92780 −0.178536
\(485\) −3.90777 −0.177443
\(486\) −81.5922 −3.70110
\(487\) −19.8864 −0.901137 −0.450569 0.892742i \(-0.648779\pi\)
−0.450569 + 0.892742i \(0.648779\pi\)
\(488\) 13.7017 0.620245
\(489\) 19.8737 0.898719
\(490\) 0 0
\(491\) −22.8686 −1.03204 −0.516022 0.856576i \(-0.672588\pi\)
−0.516022 + 0.856576i \(0.672588\pi\)
\(492\) 28.0428 1.26427
\(493\) −16.4276 −0.739863
\(494\) 49.5879 2.23107
\(495\) 39.7443 1.78637
\(496\) −4.68576 −0.210397
\(497\) 0 0
\(498\) 89.2562 3.99967
\(499\) −26.5633 −1.18914 −0.594569 0.804044i \(-0.702677\pi\)
−0.594569 + 0.804044i \(0.702677\pi\)
\(500\) 13.0560 0.583880
\(501\) 43.2199 1.93092
\(502\) −37.5897 −1.67771
\(503\) −32.0499 −1.42904 −0.714518 0.699617i \(-0.753354\pi\)
−0.714518 + 0.699617i \(0.753354\pi\)
\(504\) 0 0
\(505\) −11.6711 −0.519359
\(506\) −22.8569 −1.01611
\(507\) −2.67761 −0.118917
\(508\) 1.07397 0.0476496
\(509\) 12.7522 0.565230 0.282615 0.959233i \(-0.408798\pi\)
0.282615 + 0.959233i \(0.408798\pi\)
\(510\) 22.1966 0.982883
\(511\) 0 0
\(512\) 11.2997 0.499381
\(513\) 120.397 5.31564
\(514\) −17.8026 −0.785241
\(515\) −26.3891 −1.16284
\(516\) 18.8095 0.828043
\(517\) 19.8591 0.873400
\(518\) 0 0
\(519\) 45.7138 2.00661
\(520\) −11.3302 −0.496863
\(521\) 3.09515 0.135601 0.0678005 0.997699i \(-0.478402\pi\)
0.0678005 + 0.997699i \(0.478402\pi\)
\(522\) −109.719 −4.80227
\(523\) 40.9064 1.78871 0.894356 0.447357i \(-0.147634\pi\)
0.894356 + 0.447357i \(0.147634\pi\)
\(524\) 17.0717 0.745780
\(525\) 0 0
\(526\) −0.298776 −0.0130272
\(527\) 1.92388 0.0838054
\(528\) −44.5012 −1.93666
\(529\) 0.146161 0.00635482
\(530\) 26.8411 1.16590
\(531\) 107.423 4.66177
\(532\) 0 0
\(533\) 29.5153 1.27845
\(534\) 32.6530 1.41304
\(535\) 34.4627 1.48995
\(536\) 17.5573 0.758362
\(537\) 1.73067 0.0746838
\(538\) 41.0517 1.76986
\(539\) 0 0
\(540\) 31.9037 1.37292
\(541\) −5.45110 −0.234361 −0.117181 0.993111i \(-0.537386\pi\)
−0.117181 + 0.993111i \(0.537386\pi\)
\(542\) −18.8595 −0.810083
\(543\) −12.5407 −0.538172
\(544\) −11.2983 −0.484408
\(545\) −25.8801 −1.10858
\(546\) 0 0
\(547\) −21.9805 −0.939820 −0.469910 0.882714i \(-0.655714\pi\)
−0.469910 + 0.882714i \(0.655714\pi\)
\(548\) −0.680922 −0.0290876
\(549\) −65.9244 −2.81358
\(550\) 7.00622 0.298746
\(551\) 60.9600 2.59698
\(552\) 25.6841 1.09319
\(553\) 0 0
\(554\) −44.3841 −1.88570
\(555\) 26.1580 1.11034
\(556\) −2.03505 −0.0863054
\(557\) 15.4277 0.653692 0.326846 0.945078i \(-0.394014\pi\)
0.326846 + 0.945078i \(0.394014\pi\)
\(558\) 12.8494 0.543961
\(559\) 19.7972 0.837332
\(560\) 0 0
\(561\) 18.2712 0.771413
\(562\) −21.8664 −0.922379
\(563\) 6.21949 0.262120 0.131060 0.991374i \(-0.458162\pi\)
0.131060 + 0.991374i \(0.458162\pi\)
\(564\) 25.8803 1.08976
\(565\) −15.3867 −0.647324
\(566\) 36.1068 1.51768
\(567\) 0 0
\(568\) 6.01012 0.252179
\(569\) 5.05757 0.212024 0.106012 0.994365i \(-0.466192\pi\)
0.106012 + 0.994365i \(0.466192\pi\)
\(570\) −82.3677 −3.45000
\(571\) 27.9872 1.17123 0.585614 0.810590i \(-0.300853\pi\)
0.585614 + 0.810590i \(0.300853\pi\)
\(572\) 10.8164 0.452258
\(573\) −58.2918 −2.43518
\(574\) 0 0
\(575\) −7.09489 −0.295877
\(576\) 2.57189 0.107162
\(577\) −30.1732 −1.25613 −0.628063 0.778162i \(-0.716152\pi\)
−0.628063 + 0.778162i \(0.716152\pi\)
\(578\) −22.4328 −0.933083
\(579\) −62.9157 −2.61469
\(580\) 16.1537 0.670746
\(581\) 0 0
\(582\) −11.9986 −0.497356
\(583\) 22.0944 0.915055
\(584\) 4.84874 0.200642
\(585\) 54.5144 2.25389
\(586\) 17.1856 0.709929
\(587\) −23.8119 −0.982821 −0.491411 0.870928i \(-0.663519\pi\)
−0.491411 + 0.870928i \(0.663519\pi\)
\(588\) 0 0
\(589\) −7.13916 −0.294164
\(590\) −45.2685 −1.86367
\(591\) −32.7741 −1.34814
\(592\) −21.1618 −0.869745
\(593\) −8.57484 −0.352126 −0.176063 0.984379i \(-0.556336\pi\)
−0.176063 + 0.984379i \(0.556336\pi\)
\(594\) 75.1676 3.08416
\(595\) 0 0
\(596\) 0.873706 0.0357884
\(597\) 12.9553 0.530223
\(598\) −31.3512 −1.28205
\(599\) −14.6458 −0.598412 −0.299206 0.954189i \(-0.596722\pi\)
−0.299206 + 0.954189i \(0.596722\pi\)
\(600\) −7.87282 −0.321407
\(601\) −8.46937 −0.345473 −0.172736 0.984968i \(-0.555261\pi\)
−0.172736 + 0.984968i \(0.555261\pi\)
\(602\) 0 0
\(603\) −84.4757 −3.44012
\(604\) −16.2985 −0.663175
\(605\) 6.86682 0.279176
\(606\) −35.8355 −1.45572
\(607\) −39.7008 −1.61140 −0.805702 0.592321i \(-0.798212\pi\)
−0.805702 + 0.592321i \(0.798212\pi\)
\(608\) 41.9258 1.70031
\(609\) 0 0
\(610\) 27.7808 1.12481
\(611\) 27.2392 1.10198
\(612\) 17.2041 0.695434
\(613\) −22.4593 −0.907122 −0.453561 0.891225i \(-0.649847\pi\)
−0.453561 + 0.891225i \(0.649847\pi\)
\(614\) 25.8594 1.04360
\(615\) −49.0262 −1.97693
\(616\) 0 0
\(617\) 27.2386 1.09658 0.548291 0.836287i \(-0.315278\pi\)
0.548291 + 0.836287i \(0.315278\pi\)
\(618\) −81.0261 −3.25935
\(619\) −41.2808 −1.65921 −0.829607 0.558347i \(-0.811436\pi\)
−0.829607 + 0.558347i \(0.811436\pi\)
\(620\) −1.89180 −0.0759763
\(621\) −76.1188 −3.05454
\(622\) −28.3584 −1.13707
\(623\) 0 0
\(624\) −61.0390 −2.44352
\(625\) −15.4517 −0.618068
\(626\) 1.23002 0.0491613
\(627\) −67.8013 −2.70772
\(628\) 14.7650 0.589187
\(629\) 8.68860 0.346437
\(630\) 0 0
\(631\) 20.4482 0.814029 0.407014 0.913422i \(-0.366570\pi\)
0.407014 + 0.913422i \(0.366570\pi\)
\(632\) 0.594196 0.0236358
\(633\) 41.6890 1.65699
\(634\) 37.9223 1.50609
\(635\) −1.87758 −0.0745093
\(636\) 28.7933 1.14173
\(637\) 0 0
\(638\) 38.0594 1.50678
\(639\) −28.9172 −1.14395
\(640\) −21.7732 −0.860660
\(641\) −9.51793 −0.375936 −0.187968 0.982175i \(-0.560190\pi\)
−0.187968 + 0.982175i \(0.560190\pi\)
\(642\) 105.815 4.17620
\(643\) −22.0482 −0.869498 −0.434749 0.900552i \(-0.643163\pi\)
−0.434749 + 0.900552i \(0.643163\pi\)
\(644\) 0 0
\(645\) −32.8840 −1.29481
\(646\) −27.3591 −1.07643
\(647\) 46.6585 1.83433 0.917167 0.398503i \(-0.130470\pi\)
0.917167 + 0.398503i \(0.130470\pi\)
\(648\) −46.4158 −1.82338
\(649\) −37.2629 −1.46270
\(650\) 9.60993 0.376933
\(651\) 0 0
\(652\) −6.49114 −0.254213
\(653\) 14.3345 0.560951 0.280475 0.959861i \(-0.409508\pi\)
0.280475 + 0.959861i \(0.409508\pi\)
\(654\) −79.4631 −3.10725
\(655\) −29.8458 −1.16617
\(656\) 39.6622 1.54855
\(657\) −23.3293 −0.910163
\(658\) 0 0
\(659\) −37.1916 −1.44878 −0.724389 0.689391i \(-0.757878\pi\)
−0.724389 + 0.689391i \(0.757878\pi\)
\(660\) −17.9666 −0.699348
\(661\) −0.139390 −0.00542165 −0.00271082 0.999996i \(-0.500863\pi\)
−0.00271082 + 0.999996i \(0.500863\pi\)
\(662\) 34.3127 1.33360
\(663\) 25.0614 0.973303
\(664\) 25.1372 0.975512
\(665\) 0 0
\(666\) 58.0306 2.24864
\(667\) −38.5410 −1.49231
\(668\) −14.1165 −0.546183
\(669\) −46.1741 −1.78519
\(670\) 35.5983 1.37528
\(671\) 22.8679 0.882804
\(672\) 0 0
\(673\) −48.9422 −1.88658 −0.943291 0.331966i \(-0.892288\pi\)
−0.943291 + 0.331966i \(0.892288\pi\)
\(674\) −32.4693 −1.25067
\(675\) 23.3324 0.898063
\(676\) 0.874560 0.0336369
\(677\) 26.0416 1.00086 0.500430 0.865777i \(-0.333175\pi\)
0.500430 + 0.865777i \(0.333175\pi\)
\(678\) −47.2439 −1.81439
\(679\) 0 0
\(680\) 6.25123 0.239724
\(681\) −30.8346 −1.18158
\(682\) −4.45722 −0.170676
\(683\) 40.6990 1.55730 0.778651 0.627457i \(-0.215904\pi\)
0.778651 + 0.627457i \(0.215904\pi\)
\(684\) −63.8412 −2.44103
\(685\) 1.19043 0.0454840
\(686\) 0 0
\(687\) −96.2415 −3.67184
\(688\) 26.6032 1.01424
\(689\) 30.3052 1.15454
\(690\) 52.0757 1.98249
\(691\) 34.5133 1.31295 0.656473 0.754350i \(-0.272048\pi\)
0.656473 + 0.754350i \(0.272048\pi\)
\(692\) −14.9310 −0.567593
\(693\) 0 0
\(694\) −62.3464 −2.36664
\(695\) 3.55780 0.134955
\(696\) −42.7669 −1.62108
\(697\) −16.2845 −0.616819
\(698\) 16.3337 0.618239
\(699\) −61.6120 −2.33038
\(700\) 0 0
\(701\) −6.47321 −0.244490 −0.122245 0.992500i \(-0.539009\pi\)
−0.122245 + 0.992500i \(0.539009\pi\)
\(702\) 103.102 3.89133
\(703\) −32.2418 −1.21602
\(704\) −0.892137 −0.0336237
\(705\) −45.2456 −1.70405
\(706\) −13.6156 −0.512429
\(707\) 0 0
\(708\) −48.5610 −1.82503
\(709\) −3.40874 −0.128018 −0.0640090 0.997949i \(-0.520389\pi\)
−0.0640090 + 0.997949i \(0.520389\pi\)
\(710\) 12.1858 0.457325
\(711\) −2.85892 −0.107218
\(712\) 9.19606 0.344637
\(713\) 4.51362 0.169037
\(714\) 0 0
\(715\) −18.9100 −0.707193
\(716\) −0.565270 −0.0211251
\(717\) 0.942832 0.0352107
\(718\) −15.9834 −0.596496
\(719\) −30.9697 −1.15498 −0.577488 0.816399i \(-0.695967\pi\)
−0.577488 + 0.816399i \(0.695967\pi\)
\(720\) 73.2557 2.73008
\(721\) 0 0
\(722\) 68.2126 2.53861
\(723\) −0.325504 −0.0121056
\(724\) 4.09603 0.152228
\(725\) 11.8138 0.438753
\(726\) 21.0842 0.782506
\(727\) −19.3050 −0.715985 −0.357992 0.933725i \(-0.616539\pi\)
−0.357992 + 0.933725i \(0.616539\pi\)
\(728\) 0 0
\(729\) 67.2546 2.49091
\(730\) 9.83105 0.363863
\(731\) −10.9227 −0.403991
\(732\) 29.8014 1.10149
\(733\) −8.16857 −0.301713 −0.150856 0.988556i \(-0.548203\pi\)
−0.150856 + 0.988556i \(0.548203\pi\)
\(734\) 11.5977 0.428079
\(735\) 0 0
\(736\) −26.5069 −0.977058
\(737\) 29.3029 1.07939
\(738\) −108.763 −4.00362
\(739\) −20.0774 −0.738561 −0.369280 0.929318i \(-0.620396\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(740\) −8.54371 −0.314073
\(741\) −92.9982 −3.41637
\(742\) 0 0
\(743\) 12.8439 0.471198 0.235599 0.971850i \(-0.424295\pi\)
0.235599 + 0.971850i \(0.424295\pi\)
\(744\) 5.00853 0.183622
\(745\) −1.52747 −0.0559621
\(746\) −34.0419 −1.24636
\(747\) −120.945 −4.42516
\(748\) −5.96775 −0.218203
\(749\) 0 0
\(750\) −70.0835 −2.55909
\(751\) −28.8402 −1.05239 −0.526197 0.850363i \(-0.676383\pi\)
−0.526197 + 0.850363i \(0.676383\pi\)
\(752\) 36.6037 1.33480
\(753\) 70.4965 2.56904
\(754\) 52.2033 1.90113
\(755\) 28.4940 1.03700
\(756\) 0 0
\(757\) 14.1748 0.515192 0.257596 0.966253i \(-0.417070\pi\)
0.257596 + 0.966253i \(0.417070\pi\)
\(758\) −10.5304 −0.382483
\(759\) 42.8663 1.55595
\(760\) −23.1972 −0.841450
\(761\) 23.1893 0.840612 0.420306 0.907382i \(-0.361923\pi\)
0.420306 + 0.907382i \(0.361923\pi\)
\(762\) −5.76498 −0.208843
\(763\) 0 0
\(764\) 19.0393 0.688816
\(765\) −30.0773 −1.08745
\(766\) −48.2510 −1.74338
\(767\) −51.1109 −1.84551
\(768\) −64.6881 −2.33423
\(769\) −8.59536 −0.309957 −0.154978 0.987918i \(-0.549531\pi\)
−0.154978 + 0.987918i \(0.549531\pi\)
\(770\) 0 0
\(771\) 33.3874 1.20242
\(772\) 20.5495 0.739594
\(773\) −18.8578 −0.678269 −0.339135 0.940738i \(-0.610134\pi\)
−0.339135 + 0.940738i \(0.610134\pi\)
\(774\) −72.9520 −2.62221
\(775\) −1.38354 −0.0496982
\(776\) −3.37915 −0.121304
\(777\) 0 0
\(778\) 24.8138 0.889618
\(779\) 60.4288 2.16509
\(780\) −24.6435 −0.882377
\(781\) 10.0308 0.358930
\(782\) 17.2974 0.618553
\(783\) 126.747 4.52955
\(784\) 0 0
\(785\) −25.8131 −0.921308
\(786\) −91.6397 −3.26868
\(787\) −25.2512 −0.900108 −0.450054 0.893001i \(-0.648595\pi\)
−0.450054 + 0.893001i \(0.648595\pi\)
\(788\) 10.7047 0.381338
\(789\) 0.560330 0.0199483
\(790\) 1.20476 0.0428634
\(791\) 0 0
\(792\) 34.3680 1.22121
\(793\) 31.3662 1.11385
\(794\) 61.1344 2.16958
\(795\) −50.3383 −1.78532
\(796\) −4.23144 −0.149980
\(797\) 36.4067 1.28959 0.644796 0.764355i \(-0.276943\pi\)
0.644796 + 0.764355i \(0.276943\pi\)
\(798\) 0 0
\(799\) −15.0287 −0.531677
\(800\) 8.12504 0.287264
\(801\) −44.2461 −1.56336
\(802\) 30.5266 1.07793
\(803\) 8.09247 0.285577
\(804\) 38.1875 1.34677
\(805\) 0 0
\(806\) −6.11365 −0.215344
\(807\) −76.9891 −2.71015
\(808\) −10.0923 −0.355047
\(809\) 28.2036 0.991586 0.495793 0.868441i \(-0.334877\pi\)
0.495793 + 0.868441i \(0.334877\pi\)
\(810\) −94.1102 −3.30669
\(811\) −46.5628 −1.63504 −0.817520 0.575900i \(-0.804652\pi\)
−0.817520 + 0.575900i \(0.804652\pi\)
\(812\) 0 0
\(813\) 35.3694 1.24046
\(814\) −20.1296 −0.705544
\(815\) 11.3482 0.397511
\(816\) 33.6771 1.17893
\(817\) 40.5322 1.41804
\(818\) −22.7005 −0.793704
\(819\) 0 0
\(820\) 16.0129 0.559196
\(821\) 9.20580 0.321285 0.160642 0.987013i \(-0.448643\pi\)
0.160642 + 0.987013i \(0.448643\pi\)
\(822\) 3.65514 0.127488
\(823\) −48.6812 −1.69692 −0.848460 0.529259i \(-0.822470\pi\)
−0.848460 + 0.529259i \(0.822470\pi\)
\(824\) −22.8194 −0.794950
\(825\) −13.1396 −0.457463
\(826\) 0 0
\(827\) −41.6871 −1.44960 −0.724801 0.688959i \(-0.758068\pi\)
−0.724801 + 0.688959i \(0.758068\pi\)
\(828\) 40.3626 1.40270
\(829\) −16.8859 −0.586472 −0.293236 0.956040i \(-0.594732\pi\)
−0.293236 + 0.956040i \(0.594732\pi\)
\(830\) 50.9668 1.76908
\(831\) 83.2389 2.88753
\(832\) −1.22368 −0.0424235
\(833\) 0 0
\(834\) 10.9240 0.378268
\(835\) 24.6793 0.854063
\(836\) 22.1453 0.765910
\(837\) −14.8436 −0.513069
\(838\) −49.7742 −1.71942
\(839\) −20.5719 −0.710220 −0.355110 0.934824i \(-0.615557\pi\)
−0.355110 + 0.934824i \(0.615557\pi\)
\(840\) 0 0
\(841\) 35.1752 1.21294
\(842\) −61.3574 −2.11451
\(843\) 41.0087 1.41242
\(844\) −13.6164 −0.468697
\(845\) −1.52896 −0.0525978
\(846\) −100.376 −3.45099
\(847\) 0 0
\(848\) 40.7237 1.39846
\(849\) −67.7155 −2.32399
\(850\) −5.30209 −0.181860
\(851\) 20.3844 0.698768
\(852\) 13.0721 0.447843
\(853\) −16.4923 −0.564685 −0.282342 0.959314i \(-0.591111\pi\)
−0.282342 + 0.959314i \(0.591111\pi\)
\(854\) 0 0
\(855\) 111.611 3.81702
\(856\) 29.8008 1.01857
\(857\) −48.0788 −1.64234 −0.821169 0.570684i \(-0.806678\pi\)
−0.821169 + 0.570684i \(0.806678\pi\)
\(858\) −58.0619 −1.98220
\(859\) −17.7113 −0.604303 −0.302151 0.953260i \(-0.597705\pi\)
−0.302151 + 0.953260i \(0.597705\pi\)
\(860\) 10.7406 0.366250
\(861\) 0 0
\(862\) −33.9608 −1.15671
\(863\) 22.1323 0.753393 0.376697 0.926337i \(-0.377060\pi\)
0.376697 + 0.926337i \(0.377060\pi\)
\(864\) 87.1711 2.96562
\(865\) 26.1034 0.887542
\(866\) 20.6616 0.702109
\(867\) 42.0710 1.42881
\(868\) 0 0
\(869\) 0.991704 0.0336412
\(870\) −86.7119 −2.93981
\(871\) 40.1927 1.36188
\(872\) −22.3792 −0.757854
\(873\) 16.2585 0.550267
\(874\) −64.1875 −2.17117
\(875\) 0 0
\(876\) 10.5461 0.356320
\(877\) −10.0761 −0.340244 −0.170122 0.985423i \(-0.554416\pi\)
−0.170122 + 0.985423i \(0.554416\pi\)
\(878\) −32.9226 −1.11108
\(879\) −32.2302 −1.08710
\(880\) −25.4109 −0.856602
\(881\) −38.0263 −1.28114 −0.640569 0.767901i \(-0.721301\pi\)
−0.640569 + 0.767901i \(0.721301\pi\)
\(882\) 0 0
\(883\) 46.8196 1.57561 0.787803 0.615928i \(-0.211219\pi\)
0.787803 + 0.615928i \(0.211219\pi\)
\(884\) −8.18554 −0.275309
\(885\) 84.8974 2.85380
\(886\) 56.7282 1.90582
\(887\) 44.7914 1.50395 0.751975 0.659192i \(-0.229102\pi\)
0.751975 + 0.659192i \(0.229102\pi\)
\(888\) 22.6195 0.759060
\(889\) 0 0
\(890\) 18.6455 0.624997
\(891\) −77.4672 −2.59525
\(892\) 15.0814 0.504962
\(893\) 55.7688 1.86623
\(894\) −4.69000 −0.156857
\(895\) 0.988241 0.0330333
\(896\) 0 0
\(897\) 58.7967 1.96316
\(898\) 18.4599 0.616015
\(899\) −7.51570 −0.250663
\(900\) −12.3722 −0.412406
\(901\) −16.7203 −0.557035
\(902\) 37.7277 1.25620
\(903\) 0 0
\(904\) −13.3053 −0.442527
\(905\) −7.16094 −0.238038
\(906\) 87.4890 2.90663
\(907\) −11.2243 −0.372698 −0.186349 0.982484i \(-0.559666\pi\)
−0.186349 + 0.982484i \(0.559666\pi\)
\(908\) 10.0712 0.334224
\(909\) 48.5584 1.61058
\(910\) 0 0
\(911\) −6.23132 −0.206453 −0.103226 0.994658i \(-0.532917\pi\)
−0.103226 + 0.994658i \(0.532917\pi\)
\(912\) −124.970 −4.13815
\(913\) 41.9536 1.38846
\(914\) −0.593700 −0.0196379
\(915\) −52.1006 −1.72239
\(916\) 31.4344 1.03862
\(917\) 0 0
\(918\) −56.8845 −1.87747
\(919\) 46.4827 1.53332 0.766661 0.642052i \(-0.221917\pi\)
0.766661 + 0.642052i \(0.221917\pi\)
\(920\) 14.6661 0.483525
\(921\) −48.4972 −1.59804
\(922\) 17.8612 0.588227
\(923\) 13.7585 0.452867
\(924\) 0 0
\(925\) −6.24833 −0.205444
\(926\) 60.4962 1.98803
\(927\) 109.793 3.60609
\(928\) 44.1370 1.44887
\(929\) 0.578340 0.0189747 0.00948736 0.999955i \(-0.496980\pi\)
0.00948736 + 0.999955i \(0.496980\pi\)
\(930\) 10.1550 0.332997
\(931\) 0 0
\(932\) 20.1237 0.659174
\(933\) 53.1839 1.74116
\(934\) −3.27927 −0.107301
\(935\) 10.4332 0.341202
\(936\) 47.1401 1.54082
\(937\) 8.44113 0.275760 0.137880 0.990449i \(-0.455971\pi\)
0.137880 + 0.990449i \(0.455971\pi\)
\(938\) 0 0
\(939\) −2.30680 −0.0752795
\(940\) 14.7781 0.482008
\(941\) −30.0364 −0.979160 −0.489580 0.871958i \(-0.662850\pi\)
−0.489580 + 0.871958i \(0.662850\pi\)
\(942\) −79.2574 −2.58235
\(943\) −38.2052 −1.24413
\(944\) −68.6820 −2.23541
\(945\) 0 0
\(946\) 25.3056 0.822756
\(947\) −8.40307 −0.273063 −0.136531 0.990636i \(-0.543595\pi\)
−0.136531 + 0.990636i \(0.543595\pi\)
\(948\) 1.29239 0.0419748
\(949\) 11.0999 0.360317
\(950\) 19.6751 0.638344
\(951\) −71.1202 −2.30623
\(952\) 0 0
\(953\) 12.3922 0.401421 0.200711 0.979651i \(-0.435675\pi\)
0.200711 + 0.979651i \(0.435675\pi\)
\(954\) −111.674 −3.61558
\(955\) −33.2856 −1.07710
\(956\) −0.307948 −0.00995974
\(957\) −71.3773 −2.30730
\(958\) −51.7633 −1.67240
\(959\) 0 0
\(960\) 2.03259 0.0656014
\(961\) −30.1198 −0.971607
\(962\) −27.6104 −0.890195
\(963\) −143.384 −4.62048
\(964\) 0.106316 0.00342421
\(965\) −35.9260 −1.15650
\(966\) 0 0
\(967\) −48.1863 −1.54957 −0.774783 0.632227i \(-0.782141\pi\)
−0.774783 + 0.632227i \(0.782141\pi\)
\(968\) 5.93792 0.190852
\(969\) 51.3099 1.64831
\(970\) −6.85138 −0.219985
\(971\) 24.7386 0.793898 0.396949 0.917841i \(-0.370069\pi\)
0.396949 + 0.917841i \(0.370069\pi\)
\(972\) −49.9793 −1.60309
\(973\) 0 0
\(974\) −34.8662 −1.11719
\(975\) −18.0227 −0.577187
\(976\) 42.1494 1.34917
\(977\) 50.2894 1.60890 0.804451 0.594020i \(-0.202460\pi\)
0.804451 + 0.594020i \(0.202460\pi\)
\(978\) 34.8440 1.11419
\(979\) 15.3481 0.490527
\(980\) 0 0
\(981\) 107.676 3.43781
\(982\) −40.0948 −1.27948
\(983\) 46.4876 1.48272 0.741362 0.671105i \(-0.234180\pi\)
0.741362 + 0.671105i \(0.234180\pi\)
\(984\) −42.3942 −1.35148
\(985\) −18.7146 −0.596295
\(986\) −28.8021 −0.917247
\(987\) 0 0
\(988\) 30.3751 0.966359
\(989\) −25.6258 −0.814855
\(990\) 69.6827 2.21466
\(991\) 59.7987 1.89957 0.949784 0.312907i \(-0.101303\pi\)
0.949784 + 0.312907i \(0.101303\pi\)
\(992\) −5.16899 −0.164116
\(993\) −64.3507 −2.04211
\(994\) 0 0
\(995\) 7.39768 0.234522
\(996\) 54.6738 1.73241
\(997\) −8.35771 −0.264691 −0.132346 0.991204i \(-0.542251\pi\)
−0.132346 + 0.991204i \(0.542251\pi\)
\(998\) −46.5728 −1.47424
\(999\) −67.0364 −2.12094
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.t.1.53 74
7.6 odd 2 inner 6223.2.a.t.1.54 yes 74
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6223.2.a.t.1.53 74 1.1 even 1 trivial
6223.2.a.t.1.54 yes 74 7.6 odd 2 inner