Properties

Label 6223.2.a.t.1.38
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $74$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [74,18,0,86,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(74\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.38
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.269622 q^{2} +0.274466 q^{3} -1.92730 q^{4} +2.02179 q^{5} +0.0740019 q^{6} -1.05889 q^{8} -2.92467 q^{9} +0.545119 q^{10} +1.13000 q^{11} -0.528979 q^{12} +2.62058 q^{13} +0.554913 q^{15} +3.56911 q^{16} +4.97662 q^{17} -0.788554 q^{18} +3.40537 q^{19} -3.89661 q^{20} +0.304673 q^{22} -9.12870 q^{23} -0.290628 q^{24} -0.912359 q^{25} +0.706566 q^{26} -1.62612 q^{27} +2.35080 q^{29} +0.149616 q^{30} +3.33264 q^{31} +3.08008 q^{32} +0.310147 q^{33} +1.34180 q^{34} +5.63673 q^{36} +5.10001 q^{37} +0.918163 q^{38} +0.719260 q^{39} -2.14085 q^{40} -0.641924 q^{41} -11.1780 q^{43} -2.17786 q^{44} -5.91307 q^{45} -2.46129 q^{46} +13.3207 q^{47} +0.979598 q^{48} -0.245992 q^{50} +1.36591 q^{51} -5.05066 q^{52} -1.02638 q^{53} -0.438437 q^{54} +2.28463 q^{55} +0.934659 q^{57} +0.633826 q^{58} +1.14787 q^{59} -1.06949 q^{60} +7.80389 q^{61} +0.898552 q^{62} -6.30776 q^{64} +5.29827 q^{65} +0.0836224 q^{66} -8.89439 q^{67} -9.59145 q^{68} -2.50552 q^{69} -13.6617 q^{71} +3.09689 q^{72} +1.48097 q^{73} +1.37507 q^{74} -0.250411 q^{75} -6.56319 q^{76} +0.193928 q^{78} +5.75021 q^{79} +7.21600 q^{80} +8.32769 q^{81} -0.173077 q^{82} -16.0413 q^{83} +10.0617 q^{85} -3.01382 q^{86} +0.645213 q^{87} -1.19654 q^{88} +9.67695 q^{89} -1.59429 q^{90} +17.5938 q^{92} +0.914696 q^{93} +3.59155 q^{94} +6.88496 q^{95} +0.845377 q^{96} +3.42749 q^{97} -3.30488 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 74 q + 18 q^{2} + 86 q^{4} + 54 q^{8} + 114 q^{9} + 28 q^{11} + 32 q^{15} + 118 q^{16} + 54 q^{18} + 20 q^{22} + 64 q^{23} + 130 q^{25} + 36 q^{29} + 68 q^{30} + 146 q^{32} + 162 q^{36} + 48 q^{37} + 24 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.269622 0.190651 0.0953256 0.995446i \(-0.469611\pi\)
0.0953256 + 0.995446i \(0.469611\pi\)
\(3\) 0.274466 0.158463 0.0792314 0.996856i \(-0.474753\pi\)
0.0792314 + 0.996856i \(0.474753\pi\)
\(4\) −1.92730 −0.963652
\(5\) 2.02179 0.904173 0.452086 0.891974i \(-0.350680\pi\)
0.452086 + 0.891974i \(0.350680\pi\)
\(6\) 0.0740019 0.0302112
\(7\) 0 0
\(8\) −1.05889 −0.374373
\(9\) −2.92467 −0.974890
\(10\) 0.545119 0.172382
\(11\) 1.13000 0.340709 0.170354 0.985383i \(-0.445509\pi\)
0.170354 + 0.985383i \(0.445509\pi\)
\(12\) −0.528979 −0.152703
\(13\) 2.62058 0.726819 0.363409 0.931630i \(-0.381613\pi\)
0.363409 + 0.931630i \(0.381613\pi\)
\(14\) 0 0
\(15\) 0.554913 0.143278
\(16\) 3.56911 0.892277
\(17\) 4.97662 1.20701 0.603503 0.797360i \(-0.293771\pi\)
0.603503 + 0.797360i \(0.293771\pi\)
\(18\) −0.788554 −0.185864
\(19\) 3.40537 0.781246 0.390623 0.920551i \(-0.372260\pi\)
0.390623 + 0.920551i \(0.372260\pi\)
\(20\) −3.89661 −0.871308
\(21\) 0 0
\(22\) 0.304673 0.0649565
\(23\) −9.12870 −1.90347 −0.951733 0.306928i \(-0.900699\pi\)
−0.951733 + 0.306928i \(0.900699\pi\)
\(24\) −0.290628 −0.0593242
\(25\) −0.912359 −0.182472
\(26\) 0.706566 0.138569
\(27\) −1.62612 −0.312947
\(28\) 0 0
\(29\) 2.35080 0.436532 0.218266 0.975889i \(-0.429960\pi\)
0.218266 + 0.975889i \(0.429960\pi\)
\(30\) 0.149616 0.0273161
\(31\) 3.33264 0.598560 0.299280 0.954165i \(-0.403254\pi\)
0.299280 + 0.954165i \(0.403254\pi\)
\(32\) 3.08008 0.544487
\(33\) 0.310147 0.0539897
\(34\) 1.34180 0.230117
\(35\) 0 0
\(36\) 5.63673 0.939454
\(37\) 5.10001 0.838436 0.419218 0.907886i \(-0.362304\pi\)
0.419218 + 0.907886i \(0.362304\pi\)
\(38\) 0.918163 0.148946
\(39\) 0.719260 0.115174
\(40\) −2.14085 −0.338498
\(41\) −0.641924 −0.100252 −0.0501259 0.998743i \(-0.515962\pi\)
−0.0501259 + 0.998743i \(0.515962\pi\)
\(42\) 0 0
\(43\) −11.1780 −1.70463 −0.852313 0.523033i \(-0.824800\pi\)
−0.852313 + 0.523033i \(0.824800\pi\)
\(44\) −2.17786 −0.328325
\(45\) −5.91307 −0.881468
\(46\) −2.46129 −0.362898
\(47\) 13.3207 1.94303 0.971513 0.236987i \(-0.0761600\pi\)
0.971513 + 0.236987i \(0.0761600\pi\)
\(48\) 0.979598 0.141393
\(49\) 0 0
\(50\) −0.245992 −0.0347885
\(51\) 1.36591 0.191266
\(52\) −5.05066 −0.700400
\(53\) −1.02638 −0.140985 −0.0704923 0.997512i \(-0.522457\pi\)
−0.0704923 + 0.997512i \(0.522457\pi\)
\(54\) −0.438437 −0.0596637
\(55\) 2.28463 0.308059
\(56\) 0 0
\(57\) 0.934659 0.123799
\(58\) 0.633826 0.0832254
\(59\) 1.14787 0.149440 0.0747198 0.997205i \(-0.476194\pi\)
0.0747198 + 0.997205i \(0.476194\pi\)
\(60\) −1.06949 −0.138070
\(61\) 7.80389 0.999186 0.499593 0.866260i \(-0.333483\pi\)
0.499593 + 0.866260i \(0.333483\pi\)
\(62\) 0.898552 0.114116
\(63\) 0 0
\(64\) −6.30776 −0.788470
\(65\) 5.29827 0.657170
\(66\) 0.0836224 0.0102932
\(67\) −8.89439 −1.08662 −0.543311 0.839531i \(-0.682830\pi\)
−0.543311 + 0.839531i \(0.682830\pi\)
\(68\) −9.59145 −1.16313
\(69\) −2.50552 −0.301629
\(70\) 0 0
\(71\) −13.6617 −1.62134 −0.810670 0.585503i \(-0.800897\pi\)
−0.810670 + 0.585503i \(0.800897\pi\)
\(72\) 3.09689 0.364972
\(73\) 1.48097 0.173334 0.0866669 0.996237i \(-0.472378\pi\)
0.0866669 + 0.996237i \(0.472378\pi\)
\(74\) 1.37507 0.159849
\(75\) −0.250411 −0.0289150
\(76\) −6.56319 −0.752850
\(77\) 0 0
\(78\) 0.193928 0.0219580
\(79\) 5.75021 0.646949 0.323475 0.946237i \(-0.395149\pi\)
0.323475 + 0.946237i \(0.395149\pi\)
\(80\) 7.21600 0.806773
\(81\) 8.32769 0.925299
\(82\) −0.173077 −0.0191131
\(83\) −16.0413 −1.76076 −0.880382 0.474265i \(-0.842714\pi\)
−0.880382 + 0.474265i \(0.842714\pi\)
\(84\) 0 0
\(85\) 10.0617 1.09134
\(86\) −3.01382 −0.324989
\(87\) 0.645213 0.0691741
\(88\) −1.19654 −0.127552
\(89\) 9.67695 1.02575 0.512877 0.858462i \(-0.328580\pi\)
0.512877 + 0.858462i \(0.328580\pi\)
\(90\) −1.59429 −0.168053
\(91\) 0 0
\(92\) 17.5938 1.83428
\(93\) 0.914696 0.0948495
\(94\) 3.59155 0.370440
\(95\) 6.88496 0.706382
\(96\) 0.845377 0.0862809
\(97\) 3.42749 0.348009 0.174004 0.984745i \(-0.444329\pi\)
0.174004 + 0.984745i \(0.444329\pi\)
\(98\) 0 0
\(99\) −3.30488 −0.332153
\(100\) 1.75839 0.175839
\(101\) 3.88185 0.386258 0.193129 0.981173i \(-0.438136\pi\)
0.193129 + 0.981173i \(0.438136\pi\)
\(102\) 0.368279 0.0364651
\(103\) 16.0280 1.57928 0.789641 0.613569i \(-0.210267\pi\)
0.789641 + 0.613569i \(0.210267\pi\)
\(104\) −2.77490 −0.272101
\(105\) 0 0
\(106\) −0.276735 −0.0268789
\(107\) −2.15195 −0.208037 −0.104018 0.994575i \(-0.533170\pi\)
−0.104018 + 0.994575i \(0.533170\pi\)
\(108\) 3.13403 0.301572
\(109\) 11.9139 1.14115 0.570574 0.821246i \(-0.306721\pi\)
0.570574 + 0.821246i \(0.306721\pi\)
\(110\) 0.615986 0.0587319
\(111\) 1.39978 0.132861
\(112\) 0 0
\(113\) 15.1243 1.42277 0.711387 0.702800i \(-0.248067\pi\)
0.711387 + 0.702800i \(0.248067\pi\)
\(114\) 0.252004 0.0236024
\(115\) −18.4563 −1.72106
\(116\) −4.53070 −0.420665
\(117\) −7.66434 −0.708568
\(118\) 0.309490 0.0284909
\(119\) 0 0
\(120\) −0.587589 −0.0536393
\(121\) −9.72309 −0.883918
\(122\) 2.10410 0.190496
\(123\) −0.176186 −0.0158862
\(124\) −6.42301 −0.576803
\(125\) −11.9536 −1.06916
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) −7.86087 −0.694810
\(129\) −3.06797 −0.270120
\(130\) 1.42853 0.125290
\(131\) 12.3055 1.07514 0.537570 0.843219i \(-0.319343\pi\)
0.537570 + 0.843219i \(0.319343\pi\)
\(132\) −0.597748 −0.0520273
\(133\) 0 0
\(134\) −2.39812 −0.207166
\(135\) −3.28767 −0.282958
\(136\) −5.26967 −0.451870
\(137\) 18.7668 1.60335 0.801677 0.597757i \(-0.203941\pi\)
0.801677 + 0.597757i \(0.203941\pi\)
\(138\) −0.675541 −0.0575059
\(139\) −14.1460 −1.19985 −0.599925 0.800056i \(-0.704803\pi\)
−0.599925 + 0.800056i \(0.704803\pi\)
\(140\) 0 0
\(141\) 3.65608 0.307897
\(142\) −3.68348 −0.309111
\(143\) 2.96127 0.247633
\(144\) −10.4385 −0.869872
\(145\) 4.75282 0.394700
\(146\) 0.399300 0.0330463
\(147\) 0 0
\(148\) −9.82927 −0.807961
\(149\) 0.401780 0.0329151 0.0164575 0.999865i \(-0.494761\pi\)
0.0164575 + 0.999865i \(0.494761\pi\)
\(150\) −0.0675163 −0.00551268
\(151\) −10.0522 −0.818038 −0.409019 0.912526i \(-0.634129\pi\)
−0.409019 + 0.912526i \(0.634129\pi\)
\(152\) −3.60590 −0.292477
\(153\) −14.5550 −1.17670
\(154\) 0 0
\(155\) 6.73790 0.541201
\(156\) −1.38623 −0.110987
\(157\) 10.2515 0.818158 0.409079 0.912499i \(-0.365850\pi\)
0.409079 + 0.912499i \(0.365850\pi\)
\(158\) 1.55038 0.123342
\(159\) −0.281707 −0.0223408
\(160\) 6.22728 0.492310
\(161\) 0 0
\(162\) 2.24533 0.176409
\(163\) 13.3515 1.04577 0.522886 0.852403i \(-0.324855\pi\)
0.522886 + 0.852403i \(0.324855\pi\)
\(164\) 1.23718 0.0966078
\(165\) 0.627053 0.0488160
\(166\) −4.32509 −0.335692
\(167\) 17.6154 1.36312 0.681560 0.731763i \(-0.261302\pi\)
0.681560 + 0.731763i \(0.261302\pi\)
\(168\) 0 0
\(169\) −6.13255 −0.471734
\(170\) 2.71285 0.208066
\(171\) −9.95959 −0.761629
\(172\) 21.5434 1.64267
\(173\) 21.2168 1.61308 0.806542 0.591177i \(-0.201337\pi\)
0.806542 + 0.591177i \(0.201337\pi\)
\(174\) 0.173964 0.0131881
\(175\) 0 0
\(176\) 4.03310 0.304007
\(177\) 0.315050 0.0236806
\(178\) 2.60911 0.195561
\(179\) −1.20573 −0.0901207 −0.0450604 0.998984i \(-0.514348\pi\)
−0.0450604 + 0.998984i \(0.514348\pi\)
\(180\) 11.3963 0.849429
\(181\) −0.613845 −0.0456267 −0.0228134 0.999740i \(-0.507262\pi\)
−0.0228134 + 0.999740i \(0.507262\pi\)
\(182\) 0 0
\(183\) 2.14190 0.158334
\(184\) 9.66625 0.712606
\(185\) 10.3112 0.758091
\(186\) 0.246622 0.0180832
\(187\) 5.62359 0.411238
\(188\) −25.6731 −1.87240
\(189\) 0 0
\(190\) 1.85633 0.134673
\(191\) 12.8600 0.930514 0.465257 0.885176i \(-0.345962\pi\)
0.465257 + 0.885176i \(0.345962\pi\)
\(192\) −1.73126 −0.124943
\(193\) −10.4070 −0.749116 −0.374558 0.927204i \(-0.622205\pi\)
−0.374558 + 0.927204i \(0.622205\pi\)
\(194\) 0.924125 0.0663483
\(195\) 1.45419 0.104137
\(196\) 0 0
\(197\) 5.16874 0.368257 0.184129 0.982902i \(-0.441054\pi\)
0.184129 + 0.982902i \(0.441054\pi\)
\(198\) −0.891068 −0.0633255
\(199\) 16.2637 1.15291 0.576453 0.817131i \(-0.304437\pi\)
0.576453 + 0.817131i \(0.304437\pi\)
\(200\) 0.966084 0.0683125
\(201\) −2.44120 −0.172189
\(202\) 1.04663 0.0736407
\(203\) 0 0
\(204\) −2.63253 −0.184314
\(205\) −1.29784 −0.0906449
\(206\) 4.32149 0.301092
\(207\) 26.6984 1.85567
\(208\) 9.35315 0.648524
\(209\) 3.84808 0.266177
\(210\) 0 0
\(211\) 17.0106 1.17106 0.585529 0.810652i \(-0.300887\pi\)
0.585529 + 0.810652i \(0.300887\pi\)
\(212\) 1.97815 0.135860
\(213\) −3.74966 −0.256922
\(214\) −0.580212 −0.0396625
\(215\) −22.5995 −1.54128
\(216\) 1.72187 0.117159
\(217\) 0 0
\(218\) 3.21225 0.217561
\(219\) 0.406474 0.0274670
\(220\) −4.40318 −0.296862
\(221\) 13.0416 0.877275
\(222\) 0.377410 0.0253301
\(223\) 12.1608 0.814346 0.407173 0.913351i \(-0.366515\pi\)
0.407173 + 0.913351i \(0.366515\pi\)
\(224\) 0 0
\(225\) 2.66835 0.177890
\(226\) 4.07784 0.271254
\(227\) −24.3957 −1.61920 −0.809599 0.586983i \(-0.800316\pi\)
−0.809599 + 0.586983i \(0.800316\pi\)
\(228\) −1.80137 −0.119299
\(229\) −1.07917 −0.0713132 −0.0356566 0.999364i \(-0.511352\pi\)
−0.0356566 + 0.999364i \(0.511352\pi\)
\(230\) −4.97622 −0.328123
\(231\) 0 0
\(232\) −2.48923 −0.163426
\(233\) −12.7061 −0.832401 −0.416201 0.909273i \(-0.636639\pi\)
−0.416201 + 0.909273i \(0.636639\pi\)
\(234\) −2.06647 −0.135089
\(235\) 26.9317 1.75683
\(236\) −2.21229 −0.144008
\(237\) 1.57824 0.102517
\(238\) 0 0
\(239\) 21.9779 1.42163 0.710817 0.703377i \(-0.248325\pi\)
0.710817 + 0.703377i \(0.248325\pi\)
\(240\) 1.98054 0.127844
\(241\) −6.16488 −0.397115 −0.198557 0.980089i \(-0.563626\pi\)
−0.198557 + 0.980089i \(0.563626\pi\)
\(242\) −2.62156 −0.168520
\(243\) 7.16402 0.459572
\(244\) −15.0405 −0.962868
\(245\) 0 0
\(246\) −0.0475036 −0.00302872
\(247\) 8.92406 0.567825
\(248\) −3.52889 −0.224085
\(249\) −4.40279 −0.279016
\(250\) −3.22294 −0.203836
\(251\) 12.1683 0.768057 0.384029 0.923321i \(-0.374536\pi\)
0.384029 + 0.923321i \(0.374536\pi\)
\(252\) 0 0
\(253\) −10.3155 −0.648527
\(254\) 0.269622 0.0169176
\(255\) 2.76159 0.172937
\(256\) 10.4961 0.656004
\(257\) −26.9996 −1.68419 −0.842094 0.539331i \(-0.818677\pi\)
−0.842094 + 0.539331i \(0.818677\pi\)
\(258\) −0.827191 −0.0514987
\(259\) 0 0
\(260\) −10.2114 −0.633283
\(261\) −6.87530 −0.425571
\(262\) 3.31784 0.204977
\(263\) 20.6781 1.27506 0.637532 0.770424i \(-0.279955\pi\)
0.637532 + 0.770424i \(0.279955\pi\)
\(264\) −0.328410 −0.0202123
\(265\) −2.07513 −0.127474
\(266\) 0 0
\(267\) 2.65599 0.162544
\(268\) 17.1422 1.04713
\(269\) 14.5531 0.887321 0.443660 0.896195i \(-0.353680\pi\)
0.443660 + 0.896195i \(0.353680\pi\)
\(270\) −0.886428 −0.0539463
\(271\) 2.51912 0.153025 0.0765127 0.997069i \(-0.475621\pi\)
0.0765127 + 0.997069i \(0.475621\pi\)
\(272\) 17.7621 1.07698
\(273\) 0 0
\(274\) 5.05993 0.305682
\(275\) −1.03097 −0.0621697
\(276\) 4.82889 0.290665
\(277\) 21.5468 1.29462 0.647310 0.762227i \(-0.275894\pi\)
0.647310 + 0.762227i \(0.275894\pi\)
\(278\) −3.81407 −0.228753
\(279\) −9.74687 −0.583530
\(280\) 0 0
\(281\) −9.99798 −0.596429 −0.298215 0.954499i \(-0.596391\pi\)
−0.298215 + 0.954499i \(0.596391\pi\)
\(282\) 0.985758 0.0587010
\(283\) −13.4458 −0.799267 −0.399634 0.916675i \(-0.630863\pi\)
−0.399634 + 0.916675i \(0.630863\pi\)
\(284\) 26.3302 1.56241
\(285\) 1.88968 0.111935
\(286\) 0.798421 0.0472116
\(287\) 0 0
\(288\) −9.00822 −0.530814
\(289\) 7.76671 0.456865
\(290\) 1.28146 0.0752502
\(291\) 0.940728 0.0551465
\(292\) −2.85427 −0.167034
\(293\) −0.126038 −0.00736321 −0.00368161 0.999993i \(-0.501172\pi\)
−0.00368161 + 0.999993i \(0.501172\pi\)
\(294\) 0 0
\(295\) 2.32075 0.135119
\(296\) −5.40033 −0.313888
\(297\) −1.83752 −0.106624
\(298\) 0.108329 0.00627530
\(299\) −23.9225 −1.38347
\(300\) 0.482619 0.0278640
\(301\) 0 0
\(302\) −2.71030 −0.155960
\(303\) 1.06543 0.0612076
\(304\) 12.1542 0.697089
\(305\) 15.7778 0.903437
\(306\) −3.92433 −0.224339
\(307\) −12.1097 −0.691135 −0.345567 0.938394i \(-0.612313\pi\)
−0.345567 + 0.938394i \(0.612313\pi\)
\(308\) 0 0
\(309\) 4.39913 0.250258
\(310\) 1.81668 0.103181
\(311\) 31.2146 1.77002 0.885008 0.465576i \(-0.154153\pi\)
0.885008 + 0.465576i \(0.154153\pi\)
\(312\) −0.761615 −0.0431179
\(313\) 17.7500 1.00329 0.501646 0.865073i \(-0.332728\pi\)
0.501646 + 0.865073i \(0.332728\pi\)
\(314\) 2.76402 0.155983
\(315\) 0 0
\(316\) −11.0824 −0.623434
\(317\) 25.1186 1.41080 0.705402 0.708808i \(-0.250767\pi\)
0.705402 + 0.708808i \(0.250767\pi\)
\(318\) −0.0759544 −0.00425931
\(319\) 2.65641 0.148730
\(320\) −12.7530 −0.712913
\(321\) −0.590636 −0.0329661
\(322\) 0 0
\(323\) 16.9472 0.942970
\(324\) −16.0500 −0.891666
\(325\) −2.39091 −0.132624
\(326\) 3.59986 0.199378
\(327\) 3.26997 0.180830
\(328\) 0.679725 0.0375315
\(329\) 0 0
\(330\) 0.169067 0.00930683
\(331\) −31.9329 −1.75519 −0.877594 0.479404i \(-0.840853\pi\)
−0.877594 + 0.479404i \(0.840853\pi\)
\(332\) 30.9165 1.69676
\(333\) −14.9158 −0.817383
\(334\) 4.74949 0.259880
\(335\) −17.9826 −0.982494
\(336\) 0 0
\(337\) 35.3257 1.92432 0.962158 0.272494i \(-0.0878484\pi\)
0.962158 + 0.272494i \(0.0878484\pi\)
\(338\) −1.65347 −0.0899368
\(339\) 4.15110 0.225457
\(340\) −19.3919 −1.05167
\(341\) 3.76589 0.203935
\(342\) −2.68532 −0.145206
\(343\) 0 0
\(344\) 11.8362 0.638165
\(345\) −5.06563 −0.272724
\(346\) 5.72051 0.307536
\(347\) 18.2778 0.981205 0.490603 0.871383i \(-0.336777\pi\)
0.490603 + 0.871383i \(0.336777\pi\)
\(348\) −1.24352 −0.0666598
\(349\) −28.0916 −1.50371 −0.751856 0.659328i \(-0.770841\pi\)
−0.751856 + 0.659328i \(0.770841\pi\)
\(350\) 0 0
\(351\) −4.26138 −0.227456
\(352\) 3.48050 0.185511
\(353\) 4.77508 0.254152 0.127076 0.991893i \(-0.459441\pi\)
0.127076 + 0.991893i \(0.459441\pi\)
\(354\) 0.0849444 0.00451474
\(355\) −27.6210 −1.46597
\(356\) −18.6504 −0.988470
\(357\) 0 0
\(358\) −0.325092 −0.0171816
\(359\) 11.1728 0.589679 0.294840 0.955547i \(-0.404734\pi\)
0.294840 + 0.955547i \(0.404734\pi\)
\(360\) 6.26127 0.329998
\(361\) −7.40342 −0.389654
\(362\) −0.165506 −0.00869880
\(363\) −2.66866 −0.140068
\(364\) 0 0
\(365\) 2.99420 0.156724
\(366\) 0.577503 0.0301866
\(367\) 6.97390 0.364034 0.182017 0.983295i \(-0.441737\pi\)
0.182017 + 0.983295i \(0.441737\pi\)
\(368\) −32.5813 −1.69842
\(369\) 1.87742 0.0977344
\(370\) 2.78011 0.144531
\(371\) 0 0
\(372\) −1.76290 −0.0914019
\(373\) 5.85705 0.303266 0.151633 0.988437i \(-0.451547\pi\)
0.151633 + 0.988437i \(0.451547\pi\)
\(374\) 1.51624 0.0784030
\(375\) −3.28084 −0.169422
\(376\) −14.1051 −0.727416
\(377\) 6.16046 0.317280
\(378\) 0 0
\(379\) −12.7386 −0.654339 −0.327170 0.944966i \(-0.606095\pi\)
−0.327170 + 0.944966i \(0.606095\pi\)
\(380\) −13.2694 −0.680706
\(381\) 0.274466 0.0140613
\(382\) 3.46732 0.177404
\(383\) −27.6769 −1.41422 −0.707111 0.707102i \(-0.750002\pi\)
−0.707111 + 0.707102i \(0.750002\pi\)
\(384\) −2.15754 −0.110102
\(385\) 0 0
\(386\) −2.80597 −0.142820
\(387\) 32.6919 1.66182
\(388\) −6.60581 −0.335359
\(389\) −29.2578 −1.48343 −0.741715 0.670715i \(-0.765987\pi\)
−0.741715 + 0.670715i \(0.765987\pi\)
\(390\) 0.392082 0.0198539
\(391\) −45.4300 −2.29750
\(392\) 0 0
\(393\) 3.37745 0.170370
\(394\) 1.39360 0.0702087
\(395\) 11.6257 0.584954
\(396\) 6.36952 0.320080
\(397\) −19.6387 −0.985638 −0.492819 0.870132i \(-0.664033\pi\)
−0.492819 + 0.870132i \(0.664033\pi\)
\(398\) 4.38505 0.219803
\(399\) 0 0
\(400\) −3.25631 −0.162815
\(401\) −21.7714 −1.08721 −0.543607 0.839340i \(-0.682942\pi\)
−0.543607 + 0.839340i \(0.682942\pi\)
\(402\) −0.658202 −0.0328281
\(403\) 8.73346 0.435045
\(404\) −7.48150 −0.372219
\(405\) 16.8369 0.836630
\(406\) 0 0
\(407\) 5.76302 0.285662
\(408\) −1.44634 −0.0716047
\(409\) 36.5311 1.80635 0.903174 0.429275i \(-0.141231\pi\)
0.903174 + 0.429275i \(0.141231\pi\)
\(410\) −0.349925 −0.0172816
\(411\) 5.15084 0.254072
\(412\) −30.8908 −1.52188
\(413\) 0 0
\(414\) 7.19847 0.353786
\(415\) −32.4322 −1.59203
\(416\) 8.07161 0.395743
\(417\) −3.88260 −0.190132
\(418\) 1.03753 0.0507471
\(419\) 27.3459 1.33593 0.667967 0.744191i \(-0.267165\pi\)
0.667967 + 0.744191i \(0.267165\pi\)
\(420\) 0 0
\(421\) −28.3835 −1.38333 −0.691663 0.722220i \(-0.743122\pi\)
−0.691663 + 0.722220i \(0.743122\pi\)
\(422\) 4.58642 0.223264
\(423\) −38.9587 −1.89424
\(424\) 1.08682 0.0527808
\(425\) −4.54046 −0.220245
\(426\) −1.01099 −0.0489826
\(427\) 0 0
\(428\) 4.14746 0.200475
\(429\) 0.812766 0.0392407
\(430\) −6.09332 −0.293846
\(431\) −39.3867 −1.89719 −0.948595 0.316493i \(-0.897495\pi\)
−0.948595 + 0.316493i \(0.897495\pi\)
\(432\) −5.80380 −0.279235
\(433\) 32.0013 1.53788 0.768942 0.639319i \(-0.220783\pi\)
0.768942 + 0.639319i \(0.220783\pi\)
\(434\) 0 0
\(435\) 1.30449 0.0625454
\(436\) −22.9618 −1.09967
\(437\) −31.0866 −1.48708
\(438\) 0.109594 0.00523662
\(439\) 20.8928 0.997158 0.498579 0.866844i \(-0.333855\pi\)
0.498579 + 0.866844i \(0.333855\pi\)
\(440\) −2.41916 −0.115329
\(441\) 0 0
\(442\) 3.51631 0.167254
\(443\) −15.2798 −0.725964 −0.362982 0.931796i \(-0.618241\pi\)
−0.362982 + 0.931796i \(0.618241\pi\)
\(444\) −2.69780 −0.128032
\(445\) 19.5648 0.927459
\(446\) 3.27881 0.155256
\(447\) 0.110275 0.00521582
\(448\) 0 0
\(449\) 4.20626 0.198506 0.0992528 0.995062i \(-0.468355\pi\)
0.0992528 + 0.995062i \(0.468355\pi\)
\(450\) 0.719444 0.0339149
\(451\) −0.725376 −0.0341566
\(452\) −29.1491 −1.37106
\(453\) −2.75899 −0.129629
\(454\) −6.57761 −0.308702
\(455\) 0 0
\(456\) −0.989697 −0.0463468
\(457\) 15.4413 0.722313 0.361156 0.932505i \(-0.382382\pi\)
0.361156 + 0.932505i \(0.382382\pi\)
\(458\) −0.290966 −0.0135960
\(459\) −8.09257 −0.377729
\(460\) 35.5710 1.65850
\(461\) −15.5490 −0.724189 −0.362095 0.932141i \(-0.617938\pi\)
−0.362095 + 0.932141i \(0.617938\pi\)
\(462\) 0 0
\(463\) −5.76567 −0.267953 −0.133977 0.990984i \(-0.542775\pi\)
−0.133977 + 0.990984i \(0.542775\pi\)
\(464\) 8.39025 0.389508
\(465\) 1.84932 0.0857603
\(466\) −3.42583 −0.158698
\(467\) −14.0411 −0.649742 −0.324871 0.945758i \(-0.605321\pi\)
−0.324871 + 0.945758i \(0.605321\pi\)
\(468\) 14.7715 0.682813
\(469\) 0 0
\(470\) 7.26137 0.334942
\(471\) 2.81368 0.129648
\(472\) −1.21546 −0.0559461
\(473\) −12.6311 −0.580780
\(474\) 0.425527 0.0195451
\(475\) −3.10692 −0.142555
\(476\) 0 0
\(477\) 3.00183 0.137444
\(478\) 5.92573 0.271036
\(479\) 3.09421 0.141378 0.0706890 0.997498i \(-0.477480\pi\)
0.0706890 + 0.997498i \(0.477480\pi\)
\(480\) 1.70918 0.0780129
\(481\) 13.3650 0.609391
\(482\) −1.66218 −0.0757104
\(483\) 0 0
\(484\) 18.7394 0.851789
\(485\) 6.92967 0.314660
\(486\) 1.93158 0.0876180
\(487\) 4.67605 0.211892 0.105946 0.994372i \(-0.466213\pi\)
0.105946 + 0.994372i \(0.466213\pi\)
\(488\) −8.26343 −0.374068
\(489\) 3.66454 0.165716
\(490\) 0 0
\(491\) −1.24709 −0.0562803 −0.0281401 0.999604i \(-0.508958\pi\)
−0.0281401 + 0.999604i \(0.508958\pi\)
\(492\) 0.339564 0.0153087
\(493\) 11.6990 0.526897
\(494\) 2.40612 0.108257
\(495\) −6.68179 −0.300324
\(496\) 11.8946 0.534081
\(497\) 0 0
\(498\) −1.18709 −0.0531947
\(499\) 14.9481 0.669167 0.334583 0.942366i \(-0.391404\pi\)
0.334583 + 0.942366i \(0.391404\pi\)
\(500\) 23.0381 1.03030
\(501\) 4.83482 0.216004
\(502\) 3.28084 0.146431
\(503\) −19.5895 −0.873455 −0.436727 0.899594i \(-0.643863\pi\)
−0.436727 + 0.899594i \(0.643863\pi\)
\(504\) 0 0
\(505\) 7.84829 0.349244
\(506\) −2.78127 −0.123643
\(507\) −1.68317 −0.0747524
\(508\) −1.92730 −0.0855103
\(509\) 1.73063 0.0767090 0.0383545 0.999264i \(-0.487788\pi\)
0.0383545 + 0.999264i \(0.487788\pi\)
\(510\) 0.744584 0.0329707
\(511\) 0 0
\(512\) 18.5517 0.819878
\(513\) −5.53754 −0.244488
\(514\) −7.27967 −0.321093
\(515\) 32.4052 1.42794
\(516\) 5.91291 0.260301
\(517\) 15.0524 0.662006
\(518\) 0 0
\(519\) 5.82329 0.255614
\(520\) −5.61027 −0.246026
\(521\) 10.7776 0.472175 0.236088 0.971732i \(-0.424135\pi\)
0.236088 + 0.971732i \(0.424135\pi\)
\(522\) −1.85373 −0.0811356
\(523\) 45.6385 1.99563 0.997817 0.0660391i \(-0.0210362\pi\)
0.997817 + 0.0660391i \(0.0210362\pi\)
\(524\) −23.7165 −1.03606
\(525\) 0 0
\(526\) 5.57525 0.243093
\(527\) 16.5853 0.722466
\(528\) 1.10695 0.0481738
\(529\) 60.3331 2.62318
\(530\) −0.559501 −0.0243032
\(531\) −3.35713 −0.145687
\(532\) 0 0
\(533\) −1.68222 −0.0728649
\(534\) 0.716113 0.0309892
\(535\) −4.35079 −0.188101
\(536\) 9.41814 0.406802
\(537\) −0.330932 −0.0142808
\(538\) 3.92384 0.169169
\(539\) 0 0
\(540\) 6.33635 0.272673
\(541\) 39.0400 1.67846 0.839231 0.543775i \(-0.183006\pi\)
0.839231 + 0.543775i \(0.183006\pi\)
\(542\) 0.679208 0.0291745
\(543\) −0.168479 −0.00723014
\(544\) 15.3284 0.657199
\(545\) 24.0875 1.03179
\(546\) 0 0
\(547\) −12.7969 −0.547157 −0.273578 0.961850i \(-0.588207\pi\)
−0.273578 + 0.961850i \(0.588207\pi\)
\(548\) −36.1693 −1.54508
\(549\) −22.8238 −0.974096
\(550\) −0.277971 −0.0118527
\(551\) 8.00535 0.341039
\(552\) 2.65306 0.112922
\(553\) 0 0
\(554\) 5.80948 0.246821
\(555\) 2.83006 0.120129
\(556\) 27.2637 1.15624
\(557\) −3.07139 −0.130139 −0.0650694 0.997881i \(-0.520727\pi\)
−0.0650694 + 0.997881i \(0.520727\pi\)
\(558\) −2.62797 −0.111251
\(559\) −29.2928 −1.23895
\(560\) 0 0
\(561\) 1.54348 0.0651659
\(562\) −2.69567 −0.113710
\(563\) −29.7463 −1.25366 −0.626828 0.779157i \(-0.715647\pi\)
−0.626828 + 0.779157i \(0.715647\pi\)
\(564\) −7.04638 −0.296706
\(565\) 30.5782 1.28643
\(566\) −3.62527 −0.152381
\(567\) 0 0
\(568\) 14.4661 0.606986
\(569\) −11.0802 −0.464506 −0.232253 0.972655i \(-0.574610\pi\)
−0.232253 + 0.972655i \(0.574610\pi\)
\(570\) 0.509500 0.0213406
\(571\) 35.3770 1.48048 0.740240 0.672343i \(-0.234712\pi\)
0.740240 + 0.672343i \(0.234712\pi\)
\(572\) −5.70726 −0.238632
\(573\) 3.52962 0.147452
\(574\) 0 0
\(575\) 8.32865 0.347329
\(576\) 18.4481 0.768671
\(577\) −23.8020 −0.990892 −0.495446 0.868639i \(-0.664995\pi\)
−0.495446 + 0.868639i \(0.664995\pi\)
\(578\) 2.09407 0.0871019
\(579\) −2.85638 −0.118707
\(580\) −9.16014 −0.380354
\(581\) 0 0
\(582\) 0.253641 0.0105137
\(583\) −1.15982 −0.0480347
\(584\) −1.56817 −0.0648915
\(585\) −15.4957 −0.640668
\(586\) −0.0339825 −0.00140381
\(587\) −12.1858 −0.502961 −0.251481 0.967862i \(-0.580917\pi\)
−0.251481 + 0.967862i \(0.580917\pi\)
\(588\) 0 0
\(589\) 11.3489 0.467623
\(590\) 0.625724 0.0257607
\(591\) 1.41864 0.0583551
\(592\) 18.2025 0.748118
\(593\) 35.8720 1.47309 0.736543 0.676391i \(-0.236457\pi\)
0.736543 + 0.676391i \(0.236457\pi\)
\(594\) −0.495435 −0.0203279
\(595\) 0 0
\(596\) −0.774352 −0.0317187
\(597\) 4.46384 0.182693
\(598\) −6.45003 −0.263761
\(599\) −14.6586 −0.598934 −0.299467 0.954107i \(-0.596809\pi\)
−0.299467 + 0.954107i \(0.596809\pi\)
\(600\) 0.265157 0.0108250
\(601\) 15.1302 0.617175 0.308587 0.951196i \(-0.400144\pi\)
0.308587 + 0.951196i \(0.400144\pi\)
\(602\) 0 0
\(603\) 26.0131 1.05934
\(604\) 19.3737 0.788304
\(605\) −19.6581 −0.799214
\(606\) 0.287264 0.0116693
\(607\) 18.8277 0.764194 0.382097 0.924122i \(-0.375202\pi\)
0.382097 + 0.924122i \(0.375202\pi\)
\(608\) 10.4888 0.425378
\(609\) 0 0
\(610\) 4.25405 0.172241
\(611\) 34.9080 1.41223
\(612\) 28.0518 1.13393
\(613\) −33.3581 −1.34732 −0.673660 0.739041i \(-0.735279\pi\)
−0.673660 + 0.739041i \(0.735279\pi\)
\(614\) −3.26503 −0.131766
\(615\) −0.356212 −0.0143638
\(616\) 0 0
\(617\) −15.4849 −0.623399 −0.311700 0.950181i \(-0.600898\pi\)
−0.311700 + 0.950181i \(0.600898\pi\)
\(618\) 1.18610 0.0477119
\(619\) 12.9113 0.518947 0.259474 0.965750i \(-0.416451\pi\)
0.259474 + 0.965750i \(0.416451\pi\)
\(620\) −12.9860 −0.521530
\(621\) 14.8443 0.595683
\(622\) 8.41612 0.337456
\(623\) 0 0
\(624\) 2.56712 0.102767
\(625\) −19.6058 −0.784232
\(626\) 4.78580 0.191279
\(627\) 1.05617 0.0421792
\(628\) −19.7577 −0.788420
\(629\) 25.3808 1.01200
\(630\) 0 0
\(631\) −17.9656 −0.715201 −0.357600 0.933875i \(-0.616405\pi\)
−0.357600 + 0.933875i \(0.616405\pi\)
\(632\) −6.08882 −0.242200
\(633\) 4.66882 0.185569
\(634\) 6.77253 0.268971
\(635\) 2.02179 0.0802324
\(636\) 0.542935 0.0215288
\(637\) 0 0
\(638\) 0.716225 0.0283556
\(639\) 39.9558 1.58063
\(640\) −15.8930 −0.628228
\(641\) −19.5113 −0.770650 −0.385325 0.922781i \(-0.625911\pi\)
−0.385325 + 0.922781i \(0.625911\pi\)
\(642\) −0.159248 −0.00628503
\(643\) 30.0465 1.18492 0.592458 0.805601i \(-0.298157\pi\)
0.592458 + 0.805601i \(0.298157\pi\)
\(644\) 0 0
\(645\) −6.20280 −0.244235
\(646\) 4.56934 0.179778
\(647\) −7.90500 −0.310778 −0.155389 0.987853i \(-0.549663\pi\)
−0.155389 + 0.987853i \(0.549663\pi\)
\(648\) −8.81808 −0.346407
\(649\) 1.29709 0.0509154
\(650\) −0.644642 −0.0252849
\(651\) 0 0
\(652\) −25.7324 −1.00776
\(653\) 31.2160 1.22158 0.610788 0.791794i \(-0.290853\pi\)
0.610788 + 0.791794i \(0.290853\pi\)
\(654\) 0.881654 0.0344754
\(655\) 24.8792 0.972111
\(656\) −2.29110 −0.0894524
\(657\) −4.33133 −0.168981
\(658\) 0 0
\(659\) −32.3112 −1.25866 −0.629332 0.777137i \(-0.716671\pi\)
−0.629332 + 0.777137i \(0.716671\pi\)
\(660\) −1.20852 −0.0470416
\(661\) 33.3796 1.29831 0.649157 0.760654i \(-0.275122\pi\)
0.649157 + 0.760654i \(0.275122\pi\)
\(662\) −8.60979 −0.334629
\(663\) 3.57948 0.139016
\(664\) 16.9859 0.659182
\(665\) 0 0
\(666\) −4.02163 −0.155835
\(667\) −21.4597 −0.830924
\(668\) −33.9502 −1.31357
\(669\) 3.33772 0.129044
\(670\) −4.84850 −0.187314
\(671\) 8.81842 0.340431
\(672\) 0 0
\(673\) −28.2936 −1.09064 −0.545318 0.838229i \(-0.683591\pi\)
−0.545318 + 0.838229i \(0.683591\pi\)
\(674\) 9.52458 0.366873
\(675\) 1.48360 0.0571039
\(676\) 11.8193 0.454588
\(677\) 0.357613 0.0137442 0.00687209 0.999976i \(-0.497813\pi\)
0.00687209 + 0.999976i \(0.497813\pi\)
\(678\) 1.11923 0.0429837
\(679\) 0 0
\(680\) −10.6542 −0.408569
\(681\) −6.69578 −0.256583
\(682\) 1.01537 0.0388804
\(683\) −21.2948 −0.814823 −0.407411 0.913245i \(-0.633569\pi\)
−0.407411 + 0.913245i \(0.633569\pi\)
\(684\) 19.1952 0.733945
\(685\) 37.9425 1.44971
\(686\) 0 0
\(687\) −0.296194 −0.0113005
\(688\) −39.8954 −1.52100
\(689\) −2.68972 −0.102470
\(690\) −1.36580 −0.0519952
\(691\) 5.71204 0.217296 0.108648 0.994080i \(-0.465348\pi\)
0.108648 + 0.994080i \(0.465348\pi\)
\(692\) −40.8912 −1.55445
\(693\) 0 0
\(694\) 4.92810 0.187068
\(695\) −28.6003 −1.08487
\(696\) −0.683208 −0.0258969
\(697\) −3.19461 −0.121005
\(698\) −7.57412 −0.286684
\(699\) −3.48738 −0.131905
\(700\) 0 0
\(701\) −13.8087 −0.521546 −0.260773 0.965400i \(-0.583977\pi\)
−0.260773 + 0.965400i \(0.583977\pi\)
\(702\) −1.14896 −0.0433647
\(703\) 17.3674 0.655025
\(704\) −7.12779 −0.268639
\(705\) 7.39183 0.278392
\(706\) 1.28746 0.0484543
\(707\) 0 0
\(708\) −0.607198 −0.0228199
\(709\) 24.6224 0.924712 0.462356 0.886694i \(-0.347004\pi\)
0.462356 + 0.886694i \(0.347004\pi\)
\(710\) −7.44722 −0.279489
\(711\) −16.8175 −0.630704
\(712\) −10.2468 −0.384015
\(713\) −30.4227 −1.13934
\(714\) 0 0
\(715\) 5.98706 0.223903
\(716\) 2.32381 0.0868450
\(717\) 6.03219 0.225276
\(718\) 3.01244 0.112423
\(719\) 22.8206 0.851065 0.425533 0.904943i \(-0.360087\pi\)
0.425533 + 0.904943i \(0.360087\pi\)
\(720\) −21.1044 −0.786514
\(721\) 0 0
\(722\) −1.99612 −0.0742880
\(723\) −1.69205 −0.0629279
\(724\) 1.18307 0.0439683
\(725\) −2.14477 −0.0796548
\(726\) −0.719527 −0.0267042
\(727\) −38.1114 −1.41348 −0.706738 0.707476i \(-0.749834\pi\)
−0.706738 + 0.707476i \(0.749834\pi\)
\(728\) 0 0
\(729\) −23.0168 −0.852474
\(730\) 0.807302 0.0298796
\(731\) −55.6285 −2.05749
\(732\) −4.12810 −0.152579
\(733\) −16.9697 −0.626792 −0.313396 0.949623i \(-0.601467\pi\)
−0.313396 + 0.949623i \(0.601467\pi\)
\(734\) 1.88031 0.0694036
\(735\) 0 0
\(736\) −28.1171 −1.03641
\(737\) −10.0507 −0.370222
\(738\) 0.506192 0.0186332
\(739\) −8.28513 −0.304774 −0.152387 0.988321i \(-0.548696\pi\)
−0.152387 + 0.988321i \(0.548696\pi\)
\(740\) −19.8727 −0.730536
\(741\) 2.44935 0.0899791
\(742\) 0 0
\(743\) 40.9820 1.50349 0.751743 0.659457i \(-0.229214\pi\)
0.751743 + 0.659457i \(0.229214\pi\)
\(744\) −0.968559 −0.0355091
\(745\) 0.812315 0.0297609
\(746\) 1.57919 0.0578181
\(747\) 46.9155 1.71655
\(748\) −10.8384 −0.396290
\(749\) 0 0
\(750\) −0.884586 −0.0323005
\(751\) −11.3363 −0.413668 −0.206834 0.978376i \(-0.566316\pi\)
−0.206834 + 0.978376i \(0.566316\pi\)
\(752\) 47.5431 1.73372
\(753\) 3.33979 0.121709
\(754\) 1.66099 0.0604898
\(755\) −20.3235 −0.739648
\(756\) 0 0
\(757\) −49.9464 −1.81533 −0.907666 0.419692i \(-0.862138\pi\)
−0.907666 + 0.419692i \(0.862138\pi\)
\(758\) −3.43461 −0.124751
\(759\) −2.83124 −0.102767
\(760\) −7.29039 −0.264450
\(761\) −22.8650 −0.828856 −0.414428 0.910082i \(-0.636018\pi\)
−0.414428 + 0.910082i \(0.636018\pi\)
\(762\) 0.0740019 0.00268081
\(763\) 0 0
\(764\) −24.7851 −0.896692
\(765\) −29.4271 −1.06394
\(766\) −7.46229 −0.269623
\(767\) 3.00808 0.108616
\(768\) 2.88081 0.103952
\(769\) 13.3784 0.482438 0.241219 0.970471i \(-0.422453\pi\)
0.241219 + 0.970471i \(0.422453\pi\)
\(770\) 0 0
\(771\) −7.41046 −0.266881
\(772\) 20.0575 0.721887
\(773\) 30.3610 1.09201 0.546005 0.837782i \(-0.316148\pi\)
0.546005 + 0.837782i \(0.316148\pi\)
\(774\) 8.81444 0.316828
\(775\) −3.04056 −0.109220
\(776\) −3.62932 −0.130285
\(777\) 0 0
\(778\) −7.88854 −0.282818
\(779\) −2.18599 −0.0783213
\(780\) −2.80267 −0.100352
\(781\) −15.4377 −0.552405
\(782\) −12.2489 −0.438020
\(783\) −3.82268 −0.136611
\(784\) 0 0
\(785\) 20.7264 0.739756
\(786\) 0.910633 0.0324812
\(787\) 4.90786 0.174946 0.0874731 0.996167i \(-0.472121\pi\)
0.0874731 + 0.996167i \(0.472121\pi\)
\(788\) −9.96173 −0.354872
\(789\) 5.67542 0.202050
\(790\) 3.13455 0.111522
\(791\) 0 0
\(792\) 3.49950 0.124349
\(793\) 20.4507 0.726227
\(794\) −5.29502 −0.187913
\(795\) −0.569553 −0.0202000
\(796\) −31.3452 −1.11100
\(797\) 39.1775 1.38774 0.693869 0.720101i \(-0.255905\pi\)
0.693869 + 0.720101i \(0.255905\pi\)
\(798\) 0 0
\(799\) 66.2921 2.34524
\(800\) −2.81014 −0.0993534
\(801\) −28.3019 −0.999997
\(802\) −5.87005 −0.207279
\(803\) 1.67350 0.0590564
\(804\) 4.70494 0.165931
\(805\) 0 0
\(806\) 2.35473 0.0829418
\(807\) 3.99434 0.140607
\(808\) −4.11044 −0.144605
\(809\) −1.01667 −0.0357441 −0.0178721 0.999840i \(-0.505689\pi\)
−0.0178721 + 0.999840i \(0.505689\pi\)
\(810\) 4.53958 0.159505
\(811\) −21.3848 −0.750922 −0.375461 0.926838i \(-0.622516\pi\)
−0.375461 + 0.926838i \(0.622516\pi\)
\(812\) 0 0
\(813\) 0.691411 0.0242488
\(814\) 1.55384 0.0544619
\(815\) 26.9940 0.945558
\(816\) 4.87509 0.170662
\(817\) −38.0652 −1.33173
\(818\) 9.84958 0.344383
\(819\) 0 0
\(820\) 2.50133 0.0873501
\(821\) 4.95024 0.172765 0.0863823 0.996262i \(-0.472469\pi\)
0.0863823 + 0.996262i \(0.472469\pi\)
\(822\) 1.38878 0.0484392
\(823\) 40.4461 1.40986 0.704931 0.709276i \(-0.250978\pi\)
0.704931 + 0.709276i \(0.250978\pi\)
\(824\) −16.9718 −0.591240
\(825\) −0.282965 −0.00985159
\(826\) 0 0
\(827\) 8.59870 0.299006 0.149503 0.988761i \(-0.452233\pi\)
0.149503 + 0.988761i \(0.452233\pi\)
\(828\) −51.4560 −1.78822
\(829\) 54.5933 1.89610 0.948051 0.318118i \(-0.103051\pi\)
0.948051 + 0.318118i \(0.103051\pi\)
\(830\) −8.74443 −0.303523
\(831\) 5.91385 0.205149
\(832\) −16.5300 −0.573075
\(833\) 0 0
\(834\) −1.04683 −0.0362488
\(835\) 35.6146 1.23250
\(836\) −7.41643 −0.256502
\(837\) −5.41927 −0.187317
\(838\) 7.37304 0.254697
\(839\) −11.9896 −0.413928 −0.206964 0.978349i \(-0.566358\pi\)
−0.206964 + 0.978349i \(0.566358\pi\)
\(840\) 0 0
\(841\) −23.4738 −0.809440
\(842\) −7.65280 −0.263733
\(843\) −2.74410 −0.0945119
\(844\) −32.7846 −1.12849
\(845\) −12.3987 −0.426529
\(846\) −10.5041 −0.361138
\(847\) 0 0
\(848\) −3.66328 −0.125797
\(849\) −3.69040 −0.126654
\(850\) −1.22421 −0.0419899
\(851\) −46.5564 −1.59593
\(852\) 7.22673 0.247584
\(853\) −4.71104 −0.161303 −0.0806515 0.996742i \(-0.525700\pi\)
−0.0806515 + 0.996742i \(0.525700\pi\)
\(854\) 0 0
\(855\) −20.1362 −0.688644
\(856\) 2.27867 0.0778833
\(857\) 15.3452 0.524181 0.262090 0.965043i \(-0.415588\pi\)
0.262090 + 0.965043i \(0.415588\pi\)
\(858\) 0.219139 0.00748129
\(859\) 11.6869 0.398751 0.199376 0.979923i \(-0.436109\pi\)
0.199376 + 0.979923i \(0.436109\pi\)
\(860\) 43.5562 1.48525
\(861\) 0 0
\(862\) −10.6195 −0.361702
\(863\) −41.1279 −1.40001 −0.700005 0.714138i \(-0.746819\pi\)
−0.700005 + 0.714138i \(0.746819\pi\)
\(864\) −5.00858 −0.170395
\(865\) 42.8960 1.45851
\(866\) 8.62824 0.293200
\(867\) 2.13170 0.0723962
\(868\) 0 0
\(869\) 6.49776 0.220421
\(870\) 0.351718 0.0119244
\(871\) −23.3085 −0.789778
\(872\) −12.6155 −0.427215
\(873\) −10.0243 −0.339270
\(874\) −8.38163 −0.283513
\(875\) 0 0
\(876\) −0.783400 −0.0264686
\(877\) 9.69819 0.327485 0.163742 0.986503i \(-0.447643\pi\)
0.163742 + 0.986503i \(0.447643\pi\)
\(878\) 5.63314 0.190109
\(879\) −0.0345931 −0.00116680
\(880\) 8.15410 0.274874
\(881\) 30.8120 1.03808 0.519041 0.854749i \(-0.326289\pi\)
0.519041 + 0.854749i \(0.326289\pi\)
\(882\) 0 0
\(883\) −3.92355 −0.132038 −0.0660190 0.997818i \(-0.521030\pi\)
−0.0660190 + 0.997818i \(0.521030\pi\)
\(884\) −25.1352 −0.845388
\(885\) 0.636966 0.0214114
\(886\) −4.11976 −0.138406
\(887\) −14.2323 −0.477875 −0.238937 0.971035i \(-0.576799\pi\)
−0.238937 + 0.971035i \(0.576799\pi\)
\(888\) −1.48221 −0.0497395
\(889\) 0 0
\(890\) 5.27509 0.176821
\(891\) 9.41031 0.315257
\(892\) −23.4375 −0.784746
\(893\) 45.3620 1.51798
\(894\) 0.0297325 0.000994402 0
\(895\) −2.43774 −0.0814847
\(896\) 0 0
\(897\) −6.56591 −0.219229
\(898\) 1.13410 0.0378453
\(899\) 7.83436 0.261291
\(900\) −5.14272 −0.171424
\(901\) −5.10792 −0.170169
\(902\) −0.195577 −0.00651201
\(903\) 0 0
\(904\) −16.0149 −0.532648
\(905\) −1.24107 −0.0412544
\(906\) −0.743883 −0.0247139
\(907\) −57.8175 −1.91980 −0.959900 0.280344i \(-0.909552\pi\)
−0.959900 + 0.280344i \(0.909552\pi\)
\(908\) 47.0179 1.56034
\(909\) −11.3531 −0.376559
\(910\) 0 0
\(911\) −4.69276 −0.155478 −0.0777390 0.996974i \(-0.524770\pi\)
−0.0777390 + 0.996974i \(0.524770\pi\)
\(912\) 3.33590 0.110463
\(913\) −18.1267 −0.599907
\(914\) 4.16330 0.137710
\(915\) 4.33048 0.143161
\(916\) 2.07988 0.0687211
\(917\) 0 0
\(918\) −2.18193 −0.0720145
\(919\) −47.5378 −1.56813 −0.784064 0.620681i \(-0.786856\pi\)
−0.784064 + 0.620681i \(0.786856\pi\)
\(920\) 19.5431 0.644319
\(921\) −3.32369 −0.109519
\(922\) −4.19235 −0.138068
\(923\) −35.8015 −1.17842
\(924\) 0 0
\(925\) −4.65304 −0.152991
\(926\) −1.55455 −0.0510857
\(927\) −46.8765 −1.53963
\(928\) 7.24065 0.237686
\(929\) −47.2665 −1.55076 −0.775382 0.631492i \(-0.782443\pi\)
−0.775382 + 0.631492i \(0.782443\pi\)
\(930\) 0.498618 0.0163503
\(931\) 0 0
\(932\) 24.4884 0.802145
\(933\) 8.56733 0.280482
\(934\) −3.78577 −0.123874
\(935\) 11.3697 0.371830
\(936\) 8.11566 0.265269
\(937\) 8.54328 0.279097 0.139548 0.990215i \(-0.455435\pi\)
0.139548 + 0.990215i \(0.455435\pi\)
\(938\) 0 0
\(939\) 4.87178 0.158985
\(940\) −51.9056 −1.69297
\(941\) −38.6407 −1.25965 −0.629826 0.776736i \(-0.716874\pi\)
−0.629826 + 0.776736i \(0.716874\pi\)
\(942\) 0.758630 0.0247175
\(943\) 5.85993 0.190826
\(944\) 4.09687 0.133342
\(945\) 0 0
\(946\) −3.40563 −0.110727
\(947\) −6.62023 −0.215129 −0.107564 0.994198i \(-0.534305\pi\)
−0.107564 + 0.994198i \(0.534305\pi\)
\(948\) −3.04174 −0.0987912
\(949\) 3.88099 0.125982
\(950\) −0.837694 −0.0271784
\(951\) 6.89420 0.223560
\(952\) 0 0
\(953\) −23.5338 −0.762335 −0.381167 0.924506i \(-0.624478\pi\)
−0.381167 + 0.924506i \(0.624478\pi\)
\(954\) 0.809359 0.0262040
\(955\) 26.0002 0.841346
\(956\) −42.3582 −1.36996
\(957\) 0.729093 0.0235682
\(958\) 0.834266 0.0269539
\(959\) 0 0
\(960\) −3.50026 −0.112970
\(961\) −19.8935 −0.641726
\(962\) 3.60349 0.116181
\(963\) 6.29374 0.202813
\(964\) 11.8816 0.382680
\(965\) −21.0409 −0.677330
\(966\) 0 0
\(967\) −15.1190 −0.486194 −0.243097 0.970002i \(-0.578163\pi\)
−0.243097 + 0.970002i \(0.578163\pi\)
\(968\) 10.2956 0.330915
\(969\) 4.65144 0.149426
\(970\) 1.86839 0.0599903
\(971\) −14.3014 −0.458953 −0.229476 0.973314i \(-0.573701\pi\)
−0.229476 + 0.973314i \(0.573701\pi\)
\(972\) −13.8072 −0.442868
\(973\) 0 0
\(974\) 1.26076 0.0403975
\(975\) −0.656223 −0.0210160
\(976\) 27.8529 0.891551
\(977\) −26.5923 −0.850763 −0.425381 0.905014i \(-0.639860\pi\)
−0.425381 + 0.905014i \(0.639860\pi\)
\(978\) 0.988038 0.0315940
\(979\) 10.9350 0.349483
\(980\) 0 0
\(981\) −34.8443 −1.11249
\(982\) −0.336242 −0.0107299
\(983\) 44.0252 1.40419 0.702093 0.712085i \(-0.252249\pi\)
0.702093 + 0.712085i \(0.252249\pi\)
\(984\) 0.186561 0.00594735
\(985\) 10.4501 0.332968
\(986\) 3.15431 0.100454
\(987\) 0 0
\(988\) −17.1994 −0.547185
\(989\) 102.040 3.24469
\(990\) −1.80155 −0.0572571
\(991\) −23.3522 −0.741808 −0.370904 0.928671i \(-0.620952\pi\)
−0.370904 + 0.928671i \(0.620952\pi\)
\(992\) 10.2648 0.325908
\(993\) −8.76447 −0.278132
\(994\) 0 0
\(995\) 32.8819 1.04243
\(996\) 8.48552 0.268874
\(997\) −37.0417 −1.17312 −0.586561 0.809905i \(-0.699519\pi\)
−0.586561 + 0.809905i \(0.699519\pi\)
\(998\) 4.03032 0.127577
\(999\) −8.29322 −0.262386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.t.1.38 yes 74
7.6 odd 2 inner 6223.2.a.t.1.37 74
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6223.2.a.t.1.37 74 7.6 odd 2 inner
6223.2.a.t.1.38 yes 74 1.1 even 1 trivial