Properties

Label 6223.2.a.t.1.29
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $74$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [74,18,0,86,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(74\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.29
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.487212 q^{2} -3.12936 q^{3} -1.76262 q^{4} +1.94942 q^{5} +1.52466 q^{6} +1.83320 q^{8} +6.79290 q^{9} -0.949783 q^{10} -2.93120 q^{11} +5.51589 q^{12} -4.46990 q^{13} -6.10045 q^{15} +2.63209 q^{16} -5.90096 q^{17} -3.30958 q^{18} -7.92999 q^{19} -3.43610 q^{20} +1.42812 q^{22} -4.06312 q^{23} -5.73673 q^{24} -1.19975 q^{25} +2.17779 q^{26} -11.8694 q^{27} -0.270357 q^{29} +2.97221 q^{30} +2.04938 q^{31} -4.94878 q^{32} +9.17279 q^{33} +2.87502 q^{34} -11.9733 q^{36} +5.73409 q^{37} +3.86359 q^{38} +13.9879 q^{39} +3.57367 q^{40} -0.689971 q^{41} -10.5411 q^{43} +5.16661 q^{44} +13.2422 q^{45} +1.97960 q^{46} +4.34888 q^{47} -8.23677 q^{48} +0.584533 q^{50} +18.4662 q^{51} +7.87876 q^{52} -6.13952 q^{53} +5.78290 q^{54} -5.71415 q^{55} +24.8158 q^{57} +0.131721 q^{58} -9.18657 q^{59} +10.7528 q^{60} -10.8520 q^{61} -0.998484 q^{62} -2.85308 q^{64} -8.71373 q^{65} -4.46909 q^{66} -3.47659 q^{67} +10.4012 q^{68} +12.7150 q^{69} +8.18612 q^{71} +12.4527 q^{72} +12.3028 q^{73} -2.79372 q^{74} +3.75445 q^{75} +13.9776 q^{76} -6.81509 q^{78} -12.7087 q^{79} +5.13106 q^{80} +16.7648 q^{81} +0.336162 q^{82} -14.7939 q^{83} -11.5035 q^{85} +5.13577 q^{86} +0.846045 q^{87} -5.37347 q^{88} -6.04620 q^{89} -6.45178 q^{90} +7.16176 q^{92} -6.41326 q^{93} -2.11883 q^{94} -15.4589 q^{95} +15.4865 q^{96} +7.38376 q^{97} -19.9114 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 74 q + 18 q^{2} + 86 q^{4} + 54 q^{8} + 114 q^{9} + 28 q^{11} + 32 q^{15} + 118 q^{16} + 54 q^{18} + 20 q^{22} + 64 q^{23} + 130 q^{25} + 36 q^{29} + 68 q^{30} + 146 q^{32} + 162 q^{36} + 48 q^{37} + 24 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.487212 −0.344511 −0.172256 0.985052i \(-0.555105\pi\)
−0.172256 + 0.985052i \(0.555105\pi\)
\(3\) −3.12936 −1.80674 −0.903369 0.428865i \(-0.858914\pi\)
−0.903369 + 0.428865i \(0.858914\pi\)
\(4\) −1.76262 −0.881312
\(5\) 1.94942 0.871808 0.435904 0.899993i \(-0.356429\pi\)
0.435904 + 0.899993i \(0.356429\pi\)
\(6\) 1.52466 0.622441
\(7\) 0 0
\(8\) 1.83320 0.648133
\(9\) 6.79290 2.26430
\(10\) −0.949783 −0.300348
\(11\) −2.93120 −0.883790 −0.441895 0.897067i \(-0.645694\pi\)
−0.441895 + 0.897067i \(0.645694\pi\)
\(12\) 5.51589 1.59230
\(13\) −4.46990 −1.23973 −0.619864 0.784709i \(-0.712812\pi\)
−0.619864 + 0.784709i \(0.712812\pi\)
\(14\) 0 0
\(15\) −6.10045 −1.57513
\(16\) 2.63209 0.658023
\(17\) −5.90096 −1.43119 −0.715596 0.698514i \(-0.753845\pi\)
−0.715596 + 0.698514i \(0.753845\pi\)
\(18\) −3.30958 −0.780077
\(19\) −7.92999 −1.81927 −0.909633 0.415414i \(-0.863637\pi\)
−0.909633 + 0.415414i \(0.863637\pi\)
\(20\) −3.43610 −0.768335
\(21\) 0 0
\(22\) 1.42812 0.304475
\(23\) −4.06312 −0.847220 −0.423610 0.905845i \(-0.639237\pi\)
−0.423610 + 0.905845i \(0.639237\pi\)
\(24\) −5.73673 −1.17101
\(25\) −1.19975 −0.239950
\(26\) 2.17779 0.427100
\(27\) −11.8694 −2.28426
\(28\) 0 0
\(29\) −0.270357 −0.0502041 −0.0251020 0.999685i \(-0.507991\pi\)
−0.0251020 + 0.999685i \(0.507991\pi\)
\(30\) 2.97221 0.542649
\(31\) 2.04938 0.368080 0.184040 0.982919i \(-0.441082\pi\)
0.184040 + 0.982919i \(0.441082\pi\)
\(32\) −4.94878 −0.874829
\(33\) 9.17279 1.59678
\(34\) 2.87502 0.493062
\(35\) 0 0
\(36\) −11.9733 −1.99556
\(37\) 5.73409 0.942678 0.471339 0.881952i \(-0.343771\pi\)
0.471339 + 0.881952i \(0.343771\pi\)
\(38\) 3.86359 0.626757
\(39\) 13.9879 2.23986
\(40\) 3.57367 0.565048
\(41\) −0.689971 −0.107755 −0.0538776 0.998548i \(-0.517158\pi\)
−0.0538776 + 0.998548i \(0.517158\pi\)
\(42\) 0 0
\(43\) −10.5411 −1.60751 −0.803755 0.594961i \(-0.797168\pi\)
−0.803755 + 0.594961i \(0.797168\pi\)
\(44\) 5.16661 0.778895
\(45\) 13.2422 1.97404
\(46\) 1.97960 0.291876
\(47\) 4.34888 0.634350 0.317175 0.948367i \(-0.397266\pi\)
0.317175 + 0.948367i \(0.397266\pi\)
\(48\) −8.23677 −1.18888
\(49\) 0 0
\(50\) 0.584533 0.0826655
\(51\) 18.4662 2.58579
\(52\) 7.87876 1.09259
\(53\) −6.13952 −0.843328 −0.421664 0.906752i \(-0.638554\pi\)
−0.421664 + 0.906752i \(0.638554\pi\)
\(54\) 5.78290 0.786953
\(55\) −5.71415 −0.770496
\(56\) 0 0
\(57\) 24.8158 3.28694
\(58\) 0.131721 0.0172959
\(59\) −9.18657 −1.19599 −0.597995 0.801500i \(-0.704036\pi\)
−0.597995 + 0.801500i \(0.704036\pi\)
\(60\) 10.7528 1.38818
\(61\) −10.8520 −1.38946 −0.694728 0.719273i \(-0.744475\pi\)
−0.694728 + 0.719273i \(0.744475\pi\)
\(62\) −0.998484 −0.126808
\(63\) 0 0
\(64\) −2.85308 −0.356635
\(65\) −8.71373 −1.08080
\(66\) −4.46909 −0.550107
\(67\) −3.47659 −0.424734 −0.212367 0.977190i \(-0.568117\pi\)
−0.212367 + 0.977190i \(0.568117\pi\)
\(68\) 10.4012 1.26133
\(69\) 12.7150 1.53070
\(70\) 0 0
\(71\) 8.18612 0.971514 0.485757 0.874094i \(-0.338544\pi\)
0.485757 + 0.874094i \(0.338544\pi\)
\(72\) 12.4527 1.46757
\(73\) 12.3028 1.43993 0.719965 0.694010i \(-0.244158\pi\)
0.719965 + 0.694010i \(0.244158\pi\)
\(74\) −2.79372 −0.324763
\(75\) 3.75445 0.433527
\(76\) 13.9776 1.60334
\(77\) 0 0
\(78\) −6.81509 −0.771657
\(79\) −12.7087 −1.42984 −0.714919 0.699207i \(-0.753537\pi\)
−0.714919 + 0.699207i \(0.753537\pi\)
\(80\) 5.13106 0.573670
\(81\) 16.7648 1.86276
\(82\) 0.336162 0.0371229
\(83\) −14.7939 −1.62384 −0.811918 0.583771i \(-0.801577\pi\)
−0.811918 + 0.583771i \(0.801577\pi\)
\(84\) 0 0
\(85\) −11.5035 −1.24773
\(86\) 5.13577 0.553805
\(87\) 0.846045 0.0907056
\(88\) −5.37347 −0.572813
\(89\) −6.04620 −0.640896 −0.320448 0.947266i \(-0.603833\pi\)
−0.320448 + 0.947266i \(0.603833\pi\)
\(90\) −6.45178 −0.680077
\(91\) 0 0
\(92\) 7.16176 0.746665
\(93\) −6.41326 −0.665024
\(94\) −2.11883 −0.218540
\(95\) −15.4589 −1.58605
\(96\) 15.4865 1.58059
\(97\) 7.38376 0.749708 0.374854 0.927084i \(-0.377693\pi\)
0.374854 + 0.927084i \(0.377693\pi\)
\(98\) 0 0
\(99\) −19.9114 −2.00117
\(100\) 2.11471 0.211471
\(101\) −2.70009 −0.268669 −0.134334 0.990936i \(-0.542890\pi\)
−0.134334 + 0.990936i \(0.542890\pi\)
\(102\) −8.99697 −0.890833
\(103\) −8.54458 −0.841923 −0.420961 0.907079i \(-0.638307\pi\)
−0.420961 + 0.907079i \(0.638307\pi\)
\(104\) −8.19421 −0.803508
\(105\) 0 0
\(106\) 2.99125 0.290536
\(107\) 16.7345 1.61779 0.808893 0.587956i \(-0.200067\pi\)
0.808893 + 0.587956i \(0.200067\pi\)
\(108\) 20.9212 2.01315
\(109\) −8.30584 −0.795555 −0.397778 0.917482i \(-0.630218\pi\)
−0.397778 + 0.917482i \(0.630218\pi\)
\(110\) 2.78400 0.265444
\(111\) −17.9440 −1.70317
\(112\) 0 0
\(113\) 14.7041 1.38324 0.691622 0.722260i \(-0.256896\pi\)
0.691622 + 0.722260i \(0.256896\pi\)
\(114\) −12.0906 −1.13239
\(115\) −7.92074 −0.738613
\(116\) 0.476538 0.0442454
\(117\) −30.3636 −2.80712
\(118\) 4.47581 0.412032
\(119\) 0 0
\(120\) −11.1833 −1.02089
\(121\) −2.40806 −0.218915
\(122\) 5.28722 0.478683
\(123\) 2.15917 0.194686
\(124\) −3.61229 −0.324393
\(125\) −12.0859 −1.08100
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) 11.2876 0.997694
\(129\) 32.9870 2.90435
\(130\) 4.24543 0.372349
\(131\) −15.0892 −1.31835 −0.659173 0.751991i \(-0.729093\pi\)
−0.659173 + 0.751991i \(0.729093\pi\)
\(132\) −16.1682 −1.40726
\(133\) 0 0
\(134\) 1.69384 0.146325
\(135\) −23.1384 −1.99144
\(136\) −10.8176 −0.927603
\(137\) 2.52659 0.215862 0.107931 0.994158i \(-0.465578\pi\)
0.107931 + 0.994158i \(0.465578\pi\)
\(138\) −6.19489 −0.527344
\(139\) −15.2877 −1.29669 −0.648344 0.761348i \(-0.724538\pi\)
−0.648344 + 0.761348i \(0.724538\pi\)
\(140\) 0 0
\(141\) −13.6092 −1.14610
\(142\) −3.98838 −0.334697
\(143\) 13.1022 1.09566
\(144\) 17.8796 1.48996
\(145\) −0.527040 −0.0437683
\(146\) −5.99406 −0.496072
\(147\) 0 0
\(148\) −10.1070 −0.830794
\(149\) 0.741156 0.0607179 0.0303590 0.999539i \(-0.490335\pi\)
0.0303590 + 0.999539i \(0.490335\pi\)
\(150\) −1.82922 −0.149355
\(151\) −9.85028 −0.801604 −0.400802 0.916165i \(-0.631269\pi\)
−0.400802 + 0.916165i \(0.631269\pi\)
\(152\) −14.5372 −1.17913
\(153\) −40.0846 −3.24065
\(154\) 0 0
\(155\) 3.99511 0.320895
\(156\) −24.6555 −1.97402
\(157\) 3.45496 0.275736 0.137868 0.990451i \(-0.455975\pi\)
0.137868 + 0.990451i \(0.455975\pi\)
\(158\) 6.19183 0.492595
\(159\) 19.2128 1.52367
\(160\) −9.64727 −0.762683
\(161\) 0 0
\(162\) −8.16802 −0.641740
\(163\) 9.81989 0.769153 0.384577 0.923093i \(-0.374347\pi\)
0.384577 + 0.923093i \(0.374347\pi\)
\(164\) 1.21616 0.0949660
\(165\) 17.8816 1.39208
\(166\) 7.20775 0.559430
\(167\) −16.0396 −1.24118 −0.620590 0.784135i \(-0.713107\pi\)
−0.620590 + 0.784135i \(0.713107\pi\)
\(168\) 0 0
\(169\) 6.98002 0.536924
\(170\) 5.60463 0.429855
\(171\) −53.8677 −4.11936
\(172\) 18.5801 1.41672
\(173\) −20.5728 −1.56412 −0.782059 0.623204i \(-0.785831\pi\)
−0.782059 + 0.623204i \(0.785831\pi\)
\(174\) −0.412204 −0.0312491
\(175\) 0 0
\(176\) −7.71519 −0.581555
\(177\) 28.7481 2.16084
\(178\) 2.94578 0.220796
\(179\) −5.96103 −0.445548 −0.222774 0.974870i \(-0.571511\pi\)
−0.222774 + 0.974870i \(0.571511\pi\)
\(180\) −23.3411 −1.73974
\(181\) −8.44643 −0.627818 −0.313909 0.949453i \(-0.601639\pi\)
−0.313909 + 0.949453i \(0.601639\pi\)
\(182\) 0 0
\(183\) 33.9598 2.51038
\(184\) −7.44850 −0.549111
\(185\) 11.1782 0.821835
\(186\) 3.12462 0.229108
\(187\) 17.2969 1.26487
\(188\) −7.66544 −0.559060
\(189\) 0 0
\(190\) 7.53177 0.546412
\(191\) −25.2932 −1.83015 −0.915075 0.403285i \(-0.867868\pi\)
−0.915075 + 0.403285i \(0.867868\pi\)
\(192\) 8.92832 0.644346
\(193\) −18.3105 −1.31802 −0.659010 0.752134i \(-0.729025\pi\)
−0.659010 + 0.752134i \(0.729025\pi\)
\(194\) −3.59746 −0.258283
\(195\) 27.2684 1.95273
\(196\) 0 0
\(197\) −1.42059 −0.101213 −0.0506063 0.998719i \(-0.516115\pi\)
−0.0506063 + 0.998719i \(0.516115\pi\)
\(198\) 9.70106 0.689424
\(199\) −6.83535 −0.484545 −0.242273 0.970208i \(-0.577893\pi\)
−0.242273 + 0.970208i \(0.577893\pi\)
\(200\) −2.19938 −0.155520
\(201\) 10.8795 0.767382
\(202\) 1.31552 0.0925593
\(203\) 0 0
\(204\) −32.5490 −2.27889
\(205\) −1.34504 −0.0939420
\(206\) 4.16303 0.290052
\(207\) −27.6004 −1.91836
\(208\) −11.7652 −0.815770
\(209\) 23.2444 1.60785
\(210\) 0 0
\(211\) 25.4738 1.75369 0.876843 0.480776i \(-0.159645\pi\)
0.876843 + 0.480776i \(0.159645\pi\)
\(212\) 10.8217 0.743235
\(213\) −25.6173 −1.75527
\(214\) −8.15326 −0.557345
\(215\) −20.5491 −1.40144
\(216\) −21.7589 −1.48050
\(217\) 0 0
\(218\) 4.04671 0.274078
\(219\) −38.4998 −2.60158
\(220\) 10.0719 0.679047
\(221\) 26.3767 1.77429
\(222\) 8.74255 0.586762
\(223\) 26.6886 1.78720 0.893600 0.448865i \(-0.148172\pi\)
0.893600 + 0.448865i \(0.148172\pi\)
\(224\) 0 0
\(225\) −8.14979 −0.543319
\(226\) −7.16401 −0.476543
\(227\) −26.8645 −1.78306 −0.891530 0.452961i \(-0.850368\pi\)
−0.891530 + 0.452961i \(0.850368\pi\)
\(228\) −43.7410 −2.89682
\(229\) 3.87878 0.256317 0.128159 0.991754i \(-0.459093\pi\)
0.128159 + 0.991754i \(0.459093\pi\)
\(230\) 3.85908 0.254460
\(231\) 0 0
\(232\) −0.495618 −0.0325389
\(233\) 13.3694 0.875860 0.437930 0.899009i \(-0.355712\pi\)
0.437930 + 0.899009i \(0.355712\pi\)
\(234\) 14.7935 0.967082
\(235\) 8.47781 0.553031
\(236\) 16.1925 1.05404
\(237\) 39.7701 2.58334
\(238\) 0 0
\(239\) 4.59873 0.297467 0.148733 0.988877i \(-0.452480\pi\)
0.148733 + 0.988877i \(0.452480\pi\)
\(240\) −16.0569 −1.03647
\(241\) 13.4732 0.867886 0.433943 0.900940i \(-0.357122\pi\)
0.433943 + 0.900940i \(0.357122\pi\)
\(242\) 1.17324 0.0754186
\(243\) −16.8551 −1.08125
\(244\) 19.1280 1.22454
\(245\) 0 0
\(246\) −1.05197 −0.0670713
\(247\) 35.4463 2.25539
\(248\) 3.75692 0.238565
\(249\) 46.2953 2.93385
\(250\) 5.88841 0.372416
\(251\) 27.0338 1.70636 0.853179 0.521617i \(-0.174671\pi\)
0.853179 + 0.521617i \(0.174671\pi\)
\(252\) 0 0
\(253\) 11.9098 0.748764
\(254\) −0.487212 −0.0305704
\(255\) 35.9985 2.25431
\(256\) 0.206696 0.0129185
\(257\) −3.34236 −0.208491 −0.104245 0.994552i \(-0.533243\pi\)
−0.104245 + 0.994552i \(0.533243\pi\)
\(258\) −16.0717 −1.00058
\(259\) 0 0
\(260\) 15.3590 0.952526
\(261\) −1.83651 −0.113677
\(262\) 7.35162 0.454185
\(263\) 6.83074 0.421201 0.210601 0.977572i \(-0.432458\pi\)
0.210601 + 0.977572i \(0.432458\pi\)
\(264\) 16.8155 1.03492
\(265\) −11.9685 −0.735220
\(266\) 0 0
\(267\) 18.9207 1.15793
\(268\) 6.12793 0.374323
\(269\) −13.6114 −0.829904 −0.414952 0.909843i \(-0.636202\pi\)
−0.414952 + 0.909843i \(0.636202\pi\)
\(270\) 11.2733 0.686072
\(271\) −16.6620 −1.01215 −0.506073 0.862491i \(-0.668903\pi\)
−0.506073 + 0.862491i \(0.668903\pi\)
\(272\) −15.5319 −0.941758
\(273\) 0 0
\(274\) −1.23099 −0.0743667
\(275\) 3.51671 0.212066
\(276\) −22.4117 −1.34903
\(277\) 6.51350 0.391359 0.195679 0.980668i \(-0.437309\pi\)
0.195679 + 0.980668i \(0.437309\pi\)
\(278\) 7.44836 0.446723
\(279\) 13.9212 0.833443
\(280\) 0 0
\(281\) 11.2016 0.668233 0.334116 0.942532i \(-0.391562\pi\)
0.334116 + 0.942532i \(0.391562\pi\)
\(282\) 6.63058 0.394845
\(283\) 4.15129 0.246768 0.123384 0.992359i \(-0.460625\pi\)
0.123384 + 0.992359i \(0.460625\pi\)
\(284\) −14.4291 −0.856207
\(285\) 48.3765 2.86558
\(286\) −6.38354 −0.377467
\(287\) 0 0
\(288\) −33.6166 −1.98088
\(289\) 17.8213 1.04831
\(290\) 0.256780 0.0150787
\(291\) −23.1065 −1.35453
\(292\) −21.6852 −1.26903
\(293\) −21.9452 −1.28205 −0.641025 0.767520i \(-0.721490\pi\)
−0.641025 + 0.767520i \(0.721490\pi\)
\(294\) 0 0
\(295\) −17.9085 −1.04267
\(296\) 10.5117 0.610981
\(297\) 34.7915 2.01881
\(298\) −0.361100 −0.0209180
\(299\) 18.1618 1.05032
\(300\) −6.61769 −0.382072
\(301\) 0 0
\(302\) 4.79918 0.276162
\(303\) 8.44955 0.485414
\(304\) −20.8725 −1.19712
\(305\) −21.1551 −1.21134
\(306\) 19.5297 1.11644
\(307\) 3.32170 0.189580 0.0947898 0.995497i \(-0.469782\pi\)
0.0947898 + 0.995497i \(0.469782\pi\)
\(308\) 0 0
\(309\) 26.7391 1.52113
\(310\) −1.94647 −0.110552
\(311\) −5.52835 −0.313484 −0.156742 0.987640i \(-0.550099\pi\)
−0.156742 + 0.987640i \(0.550099\pi\)
\(312\) 25.6426 1.45173
\(313\) 17.6066 0.995182 0.497591 0.867412i \(-0.334218\pi\)
0.497591 + 0.867412i \(0.334218\pi\)
\(314\) −1.68330 −0.0949939
\(315\) 0 0
\(316\) 22.4006 1.26013
\(317\) −24.1894 −1.35861 −0.679305 0.733856i \(-0.737719\pi\)
−0.679305 + 0.733856i \(0.737719\pi\)
\(318\) −9.36069 −0.524922
\(319\) 0.792471 0.0443699
\(320\) −5.56186 −0.310917
\(321\) −52.3683 −2.92292
\(322\) 0 0
\(323\) 46.7946 2.60372
\(324\) −29.5501 −1.64167
\(325\) 5.36277 0.297473
\(326\) −4.78437 −0.264982
\(327\) 25.9920 1.43736
\(328\) −1.26485 −0.0698397
\(329\) 0 0
\(330\) −8.71215 −0.479588
\(331\) 0.874401 0.0480614 0.0240307 0.999711i \(-0.492350\pi\)
0.0240307 + 0.999711i \(0.492350\pi\)
\(332\) 26.0760 1.43111
\(333\) 38.9511 2.13451
\(334\) 7.81468 0.427600
\(335\) −6.77735 −0.370286
\(336\) 0 0
\(337\) 9.93486 0.541186 0.270593 0.962694i \(-0.412780\pi\)
0.270593 + 0.962694i \(0.412780\pi\)
\(338\) −3.40075 −0.184976
\(339\) −46.0144 −2.49916
\(340\) 20.2763 1.09964
\(341\) −6.00715 −0.325305
\(342\) 26.2450 1.41917
\(343\) 0 0
\(344\) −19.3240 −1.04188
\(345\) 24.7869 1.33448
\(346\) 10.0233 0.538856
\(347\) 11.6505 0.625432 0.312716 0.949847i \(-0.398761\pi\)
0.312716 + 0.949847i \(0.398761\pi\)
\(348\) −1.49126 −0.0799399
\(349\) −24.4120 −1.30675 −0.653373 0.757036i \(-0.726647\pi\)
−0.653373 + 0.757036i \(0.726647\pi\)
\(350\) 0 0
\(351\) 53.0549 2.83186
\(352\) 14.5059 0.773165
\(353\) 0.401347 0.0213615 0.0106808 0.999943i \(-0.496600\pi\)
0.0106808 + 0.999943i \(0.496600\pi\)
\(354\) −14.0064 −0.744433
\(355\) 15.9582 0.846974
\(356\) 10.6572 0.564829
\(357\) 0 0
\(358\) 2.90428 0.153496
\(359\) −27.9197 −1.47354 −0.736772 0.676141i \(-0.763651\pi\)
−0.736772 + 0.676141i \(0.763651\pi\)
\(360\) 24.2756 1.27944
\(361\) 43.8848 2.30973
\(362\) 4.11520 0.216290
\(363\) 7.53570 0.395522
\(364\) 0 0
\(365\) 23.9833 1.25534
\(366\) −16.5456 −0.864854
\(367\) 10.0533 0.524778 0.262389 0.964962i \(-0.415490\pi\)
0.262389 + 0.964962i \(0.415490\pi\)
\(368\) −10.6945 −0.557490
\(369\) −4.68690 −0.243990
\(370\) −5.44614 −0.283131
\(371\) 0 0
\(372\) 11.3042 0.586093
\(373\) 26.1519 1.35409 0.677047 0.735940i \(-0.263259\pi\)
0.677047 + 0.735940i \(0.263259\pi\)
\(374\) −8.42726 −0.435763
\(375\) 37.8213 1.95308
\(376\) 7.97235 0.411143
\(377\) 1.20847 0.0622394
\(378\) 0 0
\(379\) −22.6948 −1.16575 −0.582876 0.812561i \(-0.698073\pi\)
−0.582876 + 0.812561i \(0.698073\pi\)
\(380\) 27.2483 1.39781
\(381\) −3.12936 −0.160322
\(382\) 12.3231 0.630507
\(383\) −1.01626 −0.0519283 −0.0259641 0.999663i \(-0.508266\pi\)
−0.0259641 + 0.999663i \(0.508266\pi\)
\(384\) −35.3230 −1.80257
\(385\) 0 0
\(386\) 8.92111 0.454073
\(387\) −71.6050 −3.63988
\(388\) −13.0148 −0.660726
\(389\) −15.3857 −0.780087 −0.390044 0.920796i \(-0.627540\pi\)
−0.390044 + 0.920796i \(0.627540\pi\)
\(390\) −13.2855 −0.672737
\(391\) 23.9763 1.21253
\(392\) 0 0
\(393\) 47.2194 2.38191
\(394\) 0.692127 0.0348688
\(395\) −24.7746 −1.24655
\(396\) 35.0962 1.76365
\(397\) 18.6680 0.936920 0.468460 0.883485i \(-0.344809\pi\)
0.468460 + 0.883485i \(0.344809\pi\)
\(398\) 3.33027 0.166931
\(399\) 0 0
\(400\) −3.15785 −0.157893
\(401\) 22.1798 1.10761 0.553804 0.832647i \(-0.313176\pi\)
0.553804 + 0.832647i \(0.313176\pi\)
\(402\) −5.30064 −0.264372
\(403\) −9.16053 −0.456319
\(404\) 4.75924 0.236781
\(405\) 32.6817 1.62397
\(406\) 0 0
\(407\) −16.8078 −0.833130
\(408\) 33.8522 1.67594
\(409\) −17.9815 −0.889128 −0.444564 0.895747i \(-0.646641\pi\)
−0.444564 + 0.895747i \(0.646641\pi\)
\(410\) 0.655322 0.0323640
\(411\) −7.90663 −0.390005
\(412\) 15.0609 0.741997
\(413\) 0 0
\(414\) 13.4472 0.660896
\(415\) −28.8395 −1.41567
\(416\) 22.1206 1.08455
\(417\) 47.8408 2.34277
\(418\) −11.3250 −0.553922
\(419\) 2.51341 0.122788 0.0613940 0.998114i \(-0.480445\pi\)
0.0613940 + 0.998114i \(0.480445\pi\)
\(420\) 0 0
\(421\) 6.65174 0.324186 0.162093 0.986775i \(-0.448176\pi\)
0.162093 + 0.986775i \(0.448176\pi\)
\(422\) −12.4111 −0.604164
\(423\) 29.5415 1.43636
\(424\) −11.2549 −0.546588
\(425\) 7.07968 0.343415
\(426\) 12.4811 0.604710
\(427\) 0 0
\(428\) −29.4967 −1.42577
\(429\) −41.0014 −1.97957
\(430\) 10.0118 0.482812
\(431\) 9.62036 0.463397 0.231698 0.972788i \(-0.425572\pi\)
0.231698 + 0.972788i \(0.425572\pi\)
\(432\) −31.2413 −1.50310
\(433\) −5.50278 −0.264447 −0.132223 0.991220i \(-0.542212\pi\)
−0.132223 + 0.991220i \(0.542212\pi\)
\(434\) 0 0
\(435\) 1.64930 0.0790779
\(436\) 14.6401 0.701133
\(437\) 32.2205 1.54132
\(438\) 18.7576 0.896271
\(439\) 11.3503 0.541721 0.270860 0.962619i \(-0.412692\pi\)
0.270860 + 0.962619i \(0.412692\pi\)
\(440\) −10.4752 −0.499384
\(441\) 0 0
\(442\) −12.8511 −0.611262
\(443\) 28.6618 1.36177 0.680883 0.732392i \(-0.261596\pi\)
0.680883 + 0.732392i \(0.261596\pi\)
\(444\) 31.6286 1.50103
\(445\) −11.7866 −0.558738
\(446\) −13.0030 −0.615710
\(447\) −2.31935 −0.109701
\(448\) 0 0
\(449\) 0.290000 0.0136859 0.00684297 0.999977i \(-0.497822\pi\)
0.00684297 + 0.999977i \(0.497822\pi\)
\(450\) 3.97068 0.187179
\(451\) 2.02244 0.0952331
\(452\) −25.9178 −1.21907
\(453\) 30.8251 1.44829
\(454\) 13.0887 0.614284
\(455\) 0 0
\(456\) 45.4923 2.13037
\(457\) −29.8701 −1.39726 −0.698631 0.715482i \(-0.746207\pi\)
−0.698631 + 0.715482i \(0.746207\pi\)
\(458\) −1.88979 −0.0883041
\(459\) 70.0406 3.26922
\(460\) 13.9613 0.650949
\(461\) 33.4965 1.56009 0.780044 0.625725i \(-0.215197\pi\)
0.780044 + 0.625725i \(0.215197\pi\)
\(462\) 0 0
\(463\) −33.7046 −1.56639 −0.783193 0.621778i \(-0.786411\pi\)
−0.783193 + 0.621778i \(0.786411\pi\)
\(464\) −0.711605 −0.0330354
\(465\) −12.5021 −0.579773
\(466\) −6.51375 −0.301743
\(467\) 34.8687 1.61353 0.806765 0.590872i \(-0.201216\pi\)
0.806765 + 0.590872i \(0.201216\pi\)
\(468\) 53.5196 2.47395
\(469\) 0 0
\(470\) −4.13049 −0.190525
\(471\) −10.8118 −0.498182
\(472\) −16.8408 −0.775160
\(473\) 30.8982 1.42070
\(474\) −19.3765 −0.889990
\(475\) 9.51401 0.436533
\(476\) 0 0
\(477\) −41.7051 −1.90955
\(478\) −2.24056 −0.102481
\(479\) 10.0174 0.457705 0.228852 0.973461i \(-0.426503\pi\)
0.228852 + 0.973461i \(0.426503\pi\)
\(480\) 30.1898 1.37797
\(481\) −25.6308 −1.16866
\(482\) −6.56431 −0.298996
\(483\) 0 0
\(484\) 4.24451 0.192932
\(485\) 14.3941 0.653601
\(486\) 8.21200 0.372504
\(487\) −41.0784 −1.86144 −0.930719 0.365735i \(-0.880818\pi\)
−0.930719 + 0.365735i \(0.880818\pi\)
\(488\) −19.8938 −0.900552
\(489\) −30.7300 −1.38966
\(490\) 0 0
\(491\) −36.8842 −1.66456 −0.832281 0.554353i \(-0.812966\pi\)
−0.832281 + 0.554353i \(0.812966\pi\)
\(492\) −3.80580 −0.171579
\(493\) 1.59537 0.0718517
\(494\) −17.2699 −0.777008
\(495\) −38.8157 −1.74463
\(496\) 5.39416 0.242205
\(497\) 0 0
\(498\) −22.5556 −1.01074
\(499\) 7.42065 0.332194 0.166097 0.986109i \(-0.446884\pi\)
0.166097 + 0.986109i \(0.446884\pi\)
\(500\) 21.3030 0.952697
\(501\) 50.1937 2.24249
\(502\) −13.1712 −0.587859
\(503\) −14.2514 −0.635440 −0.317720 0.948185i \(-0.602917\pi\)
−0.317720 + 0.948185i \(0.602917\pi\)
\(504\) 0 0
\(505\) −5.26361 −0.234228
\(506\) −5.80261 −0.257958
\(507\) −21.8430 −0.970081
\(508\) −1.76262 −0.0782038
\(509\) 5.33791 0.236599 0.118299 0.992978i \(-0.462256\pi\)
0.118299 + 0.992978i \(0.462256\pi\)
\(510\) −17.5389 −0.776636
\(511\) 0 0
\(512\) −22.6759 −1.00214
\(513\) 94.1240 4.15567
\(514\) 1.62844 0.0718273
\(515\) −16.6570 −0.733995
\(516\) −58.1438 −2.55964
\(517\) −12.7474 −0.560632
\(518\) 0 0
\(519\) 64.3796 2.82595
\(520\) −15.9740 −0.700505
\(521\) −3.09969 −0.135800 −0.0679000 0.997692i \(-0.521630\pi\)
−0.0679000 + 0.997692i \(0.521630\pi\)
\(522\) 0.894770 0.0391630
\(523\) −10.4788 −0.458206 −0.229103 0.973402i \(-0.573579\pi\)
−0.229103 + 0.973402i \(0.573579\pi\)
\(524\) 26.5965 1.16187
\(525\) 0 0
\(526\) −3.32802 −0.145109
\(527\) −12.0933 −0.526793
\(528\) 24.1436 1.05072
\(529\) −6.49104 −0.282219
\(530\) 5.83121 0.253291
\(531\) −62.4035 −2.70808
\(532\) 0 0
\(533\) 3.08410 0.133587
\(534\) −9.21841 −0.398920
\(535\) 32.6226 1.41040
\(536\) −6.37328 −0.275284
\(537\) 18.6542 0.804988
\(538\) 6.63166 0.285911
\(539\) 0 0
\(540\) 40.7843 1.75508
\(541\) −25.1403 −1.08086 −0.540432 0.841387i \(-0.681739\pi\)
−0.540432 + 0.841387i \(0.681739\pi\)
\(542\) 8.11794 0.348695
\(543\) 26.4319 1.13430
\(544\) 29.2026 1.25205
\(545\) −16.1916 −0.693572
\(546\) 0 0
\(547\) 8.00878 0.342431 0.171215 0.985234i \(-0.445231\pi\)
0.171215 + 0.985234i \(0.445231\pi\)
\(548\) −4.45344 −0.190241
\(549\) −73.7165 −3.14615
\(550\) −1.71338 −0.0730589
\(551\) 2.14393 0.0913345
\(552\) 23.3091 0.992099
\(553\) 0 0
\(554\) −3.17346 −0.134827
\(555\) −34.9805 −1.48484
\(556\) 26.9465 1.14279
\(557\) 17.5786 0.744831 0.372415 0.928066i \(-0.378530\pi\)
0.372415 + 0.928066i \(0.378530\pi\)
\(558\) −6.78260 −0.287130
\(559\) 47.1179 1.99287
\(560\) 0 0
\(561\) −54.1282 −2.28530
\(562\) −5.45757 −0.230214
\(563\) −15.9436 −0.671944 −0.335972 0.941872i \(-0.609065\pi\)
−0.335972 + 0.941872i \(0.609065\pi\)
\(564\) 23.9879 1.01007
\(565\) 28.6645 1.20592
\(566\) −2.02256 −0.0850145
\(567\) 0 0
\(568\) 15.0068 0.629670
\(569\) −23.3560 −0.979136 −0.489568 0.871965i \(-0.662845\pi\)
−0.489568 + 0.871965i \(0.662845\pi\)
\(570\) −23.5696 −0.987223
\(571\) −1.75673 −0.0735168 −0.0367584 0.999324i \(-0.511703\pi\)
−0.0367584 + 0.999324i \(0.511703\pi\)
\(572\) −23.0942 −0.965618
\(573\) 79.1515 3.30660
\(574\) 0 0
\(575\) 4.87473 0.203290
\(576\) −19.3807 −0.807529
\(577\) 6.36994 0.265184 0.132592 0.991171i \(-0.457670\pi\)
0.132592 + 0.991171i \(0.457670\pi\)
\(578\) −8.68276 −0.361155
\(579\) 57.3002 2.38132
\(580\) 0.928974 0.0385736
\(581\) 0 0
\(582\) 11.2578 0.466649
\(583\) 17.9962 0.745325
\(584\) 22.5534 0.933266
\(585\) −59.1915 −2.44727
\(586\) 10.6919 0.441680
\(587\) −39.1239 −1.61481 −0.807407 0.589994i \(-0.799130\pi\)
−0.807407 + 0.589994i \(0.799130\pi\)
\(588\) 0 0
\(589\) −16.2516 −0.669635
\(590\) 8.72525 0.359213
\(591\) 4.44553 0.182865
\(592\) 15.0927 0.620304
\(593\) −4.40855 −0.181037 −0.0905187 0.995895i \(-0.528852\pi\)
−0.0905187 + 0.995895i \(0.528852\pi\)
\(594\) −16.9508 −0.695501
\(595\) 0 0
\(596\) −1.30638 −0.0535114
\(597\) 21.3903 0.875446
\(598\) −8.84863 −0.361847
\(599\) −13.6284 −0.556842 −0.278421 0.960459i \(-0.589811\pi\)
−0.278421 + 0.960459i \(0.589811\pi\)
\(600\) 6.88265 0.280983
\(601\) 9.40876 0.383791 0.191896 0.981415i \(-0.438536\pi\)
0.191896 + 0.981415i \(0.438536\pi\)
\(602\) 0 0
\(603\) −23.6162 −0.961725
\(604\) 17.3623 0.706464
\(605\) −4.69433 −0.190852
\(606\) −4.11672 −0.167230
\(607\) 44.6157 1.81089 0.905447 0.424458i \(-0.139535\pi\)
0.905447 + 0.424458i \(0.139535\pi\)
\(608\) 39.2438 1.59155
\(609\) 0 0
\(610\) 10.3070 0.417320
\(611\) −19.4391 −0.786421
\(612\) 70.6542 2.85602
\(613\) 4.48586 0.181182 0.0905911 0.995888i \(-0.471124\pi\)
0.0905911 + 0.995888i \(0.471124\pi\)
\(614\) −1.61837 −0.0653123
\(615\) 4.20913 0.169728
\(616\) 0 0
\(617\) −0.109855 −0.00442260 −0.00221130 0.999998i \(-0.500704\pi\)
−0.00221130 + 0.999998i \(0.500704\pi\)
\(618\) −13.0276 −0.524047
\(619\) −25.6036 −1.02909 −0.514547 0.857462i \(-0.672040\pi\)
−0.514547 + 0.857462i \(0.672040\pi\)
\(620\) −7.04188 −0.282809
\(621\) 48.2267 1.93527
\(622\) 2.69348 0.107999
\(623\) 0 0
\(624\) 36.8175 1.47388
\(625\) −17.5618 −0.702474
\(626\) −8.57814 −0.342851
\(627\) −72.7401 −2.90496
\(628\) −6.08979 −0.243009
\(629\) −33.8366 −1.34915
\(630\) 0 0
\(631\) −18.3712 −0.731344 −0.365672 0.930744i \(-0.619161\pi\)
−0.365672 + 0.930744i \(0.619161\pi\)
\(632\) −23.2975 −0.926725
\(633\) −79.7166 −3.16845
\(634\) 11.7853 0.468056
\(635\) 1.94942 0.0773605
\(636\) −33.8649 −1.34283
\(637\) 0 0
\(638\) −0.386102 −0.0152859
\(639\) 55.6075 2.19980
\(640\) 22.0043 0.869798
\(641\) 12.0560 0.476184 0.238092 0.971243i \(-0.423478\pi\)
0.238092 + 0.971243i \(0.423478\pi\)
\(642\) 25.5145 1.00698
\(643\) −9.37553 −0.369735 −0.184867 0.982763i \(-0.559186\pi\)
−0.184867 + 0.982763i \(0.559186\pi\)
\(644\) 0 0
\(645\) 64.3057 2.53203
\(646\) −22.7989 −0.897010
\(647\) −37.1619 −1.46099 −0.730493 0.682920i \(-0.760710\pi\)
−0.730493 + 0.682920i \(0.760710\pi\)
\(648\) 30.7332 1.20731
\(649\) 26.9277 1.05700
\(650\) −2.61280 −0.102483
\(651\) 0 0
\(652\) −17.3088 −0.677864
\(653\) −9.38565 −0.367289 −0.183644 0.982993i \(-0.558790\pi\)
−0.183644 + 0.982993i \(0.558790\pi\)
\(654\) −12.6636 −0.495186
\(655\) −29.4151 −1.14935
\(656\) −1.81607 −0.0709055
\(657\) 83.5715 3.26043
\(658\) 0 0
\(659\) −27.1795 −1.05876 −0.529381 0.848384i \(-0.677576\pi\)
−0.529381 + 0.848384i \(0.677576\pi\)
\(660\) −31.5186 −1.22686
\(661\) 32.7142 1.27243 0.636217 0.771510i \(-0.280498\pi\)
0.636217 + 0.771510i \(0.280498\pi\)
\(662\) −0.426019 −0.0165577
\(663\) −82.5422 −3.20567
\(664\) −27.1200 −1.05246
\(665\) 0 0
\(666\) −18.9774 −0.735361
\(667\) 1.09849 0.0425339
\(668\) 28.2718 1.09387
\(669\) −83.5182 −3.22900
\(670\) 3.30201 0.127568
\(671\) 31.8094 1.22799
\(672\) 0 0
\(673\) 20.8849 0.805056 0.402528 0.915408i \(-0.368132\pi\)
0.402528 + 0.915408i \(0.368132\pi\)
\(674\) −4.84038 −0.186445
\(675\) 14.2403 0.548108
\(676\) −12.3031 −0.473198
\(677\) 14.1437 0.543588 0.271794 0.962355i \(-0.412383\pi\)
0.271794 + 0.962355i \(0.412383\pi\)
\(678\) 22.4188 0.860988
\(679\) 0 0
\(680\) −21.0881 −0.808692
\(681\) 84.0688 3.22152
\(682\) 2.92676 0.112071
\(683\) −22.6385 −0.866239 −0.433119 0.901337i \(-0.642587\pi\)
−0.433119 + 0.901337i \(0.642587\pi\)
\(684\) 94.9485 3.63045
\(685\) 4.92540 0.188190
\(686\) 0 0
\(687\) −12.1381 −0.463098
\(688\) −27.7453 −1.05778
\(689\) 27.4430 1.04550
\(690\) −12.0765 −0.459743
\(691\) 0.730142 0.0277759 0.0138880 0.999904i \(-0.495579\pi\)
0.0138880 + 0.999904i \(0.495579\pi\)
\(692\) 36.2621 1.37848
\(693\) 0 0
\(694\) −5.67627 −0.215468
\(695\) −29.8022 −1.13046
\(696\) 1.55097 0.0587893
\(697\) 4.07149 0.154219
\(698\) 11.8938 0.450189
\(699\) −41.8378 −1.58245
\(700\) 0 0
\(701\) 28.5503 1.07833 0.539165 0.842200i \(-0.318740\pi\)
0.539165 + 0.842200i \(0.318740\pi\)
\(702\) −25.8490 −0.975607
\(703\) −45.4713 −1.71498
\(704\) 8.36295 0.315191
\(705\) −26.5301 −0.999182
\(706\) −0.195541 −0.00735928
\(707\) 0 0
\(708\) −50.6721 −1.90437
\(709\) 32.5286 1.22164 0.610818 0.791771i \(-0.290841\pi\)
0.610818 + 0.791771i \(0.290841\pi\)
\(710\) −7.77504 −0.291792
\(711\) −86.3288 −3.23758
\(712\) −11.0839 −0.415385
\(713\) −8.32689 −0.311844
\(714\) 0 0
\(715\) 25.5417 0.955205
\(716\) 10.5070 0.392667
\(717\) −14.3911 −0.537444
\(718\) 13.6028 0.507652
\(719\) 25.5471 0.952748 0.476374 0.879243i \(-0.341951\pi\)
0.476374 + 0.879243i \(0.341951\pi\)
\(720\) 34.8548 1.29896
\(721\) 0 0
\(722\) −21.3812 −0.795726
\(723\) −42.1625 −1.56804
\(724\) 14.8879 0.553304
\(725\) 0.324361 0.0120465
\(726\) −3.67148 −0.136262
\(727\) 21.8717 0.811176 0.405588 0.914056i \(-0.367067\pi\)
0.405588 + 0.914056i \(0.367067\pi\)
\(728\) 0 0
\(729\) 2.45119 0.0907847
\(730\) −11.6850 −0.432480
\(731\) 62.2029 2.30066
\(732\) −59.8584 −2.21243
\(733\) −25.1299 −0.928195 −0.464097 0.885784i \(-0.653621\pi\)
−0.464097 + 0.885784i \(0.653621\pi\)
\(734\) −4.89809 −0.180792
\(735\) 0 0
\(736\) 20.1075 0.741172
\(737\) 10.1906 0.375375
\(738\) 2.28352 0.0840574
\(739\) 41.0024 1.50830 0.754149 0.656703i \(-0.228050\pi\)
0.754149 + 0.656703i \(0.228050\pi\)
\(740\) −19.7029 −0.724293
\(741\) −110.924 −4.07490
\(742\) 0 0
\(743\) 15.1924 0.557356 0.278678 0.960385i \(-0.410104\pi\)
0.278678 + 0.960385i \(0.410104\pi\)
\(744\) −11.7568 −0.431024
\(745\) 1.44483 0.0529344
\(746\) −12.7415 −0.466500
\(747\) −100.493 −3.67685
\(748\) −30.4879 −1.11475
\(749\) 0 0
\(750\) −18.4270 −0.672858
\(751\) −6.47338 −0.236217 −0.118108 0.993001i \(-0.537683\pi\)
−0.118108 + 0.993001i \(0.537683\pi\)
\(752\) 11.4467 0.417417
\(753\) −84.5986 −3.08294
\(754\) −0.588781 −0.0214421
\(755\) −19.2024 −0.698845
\(756\) 0 0
\(757\) 47.6567 1.73211 0.866057 0.499946i \(-0.166647\pi\)
0.866057 + 0.499946i \(0.166647\pi\)
\(758\) 11.0572 0.401615
\(759\) −37.2702 −1.35282
\(760\) −28.3392 −1.02797
\(761\) −28.4280 −1.03051 −0.515257 0.857036i \(-0.672304\pi\)
−0.515257 + 0.857036i \(0.672304\pi\)
\(762\) 1.52466 0.0552327
\(763\) 0 0
\(764\) 44.5823 1.61293
\(765\) −78.1419 −2.82523
\(766\) 0.495133 0.0178899
\(767\) 41.0631 1.48270
\(768\) −0.646825 −0.0233403
\(769\) −50.3189 −1.81455 −0.907274 0.420541i \(-0.861840\pi\)
−0.907274 + 0.420541i \(0.861840\pi\)
\(770\) 0 0
\(771\) 10.4594 0.376688
\(772\) 32.2746 1.16159
\(773\) 49.6267 1.78495 0.892474 0.451100i \(-0.148968\pi\)
0.892474 + 0.451100i \(0.148968\pi\)
\(774\) 34.8868 1.25398
\(775\) −2.45875 −0.0883208
\(776\) 13.5359 0.485910
\(777\) 0 0
\(778\) 7.49611 0.268749
\(779\) 5.47146 0.196035
\(780\) −48.0639 −1.72097
\(781\) −23.9952 −0.858615
\(782\) −11.6816 −0.417732
\(783\) 3.20897 0.114679
\(784\) 0 0
\(785\) 6.73517 0.240389
\(786\) −23.0059 −0.820593
\(787\) 51.2377 1.82643 0.913214 0.407481i \(-0.133593\pi\)
0.913214 + 0.407481i \(0.133593\pi\)
\(788\) 2.50396 0.0891999
\(789\) −21.3758 −0.761000
\(790\) 12.0705 0.429449
\(791\) 0 0
\(792\) −36.5014 −1.29702
\(793\) 48.5073 1.72255
\(794\) −9.09528 −0.322779
\(795\) 37.4538 1.32835
\(796\) 12.0482 0.427036
\(797\) −0.672658 −0.0238268 −0.0119134 0.999929i \(-0.503792\pi\)
−0.0119134 + 0.999929i \(0.503792\pi\)
\(798\) 0 0
\(799\) −25.6626 −0.907877
\(800\) 5.93730 0.209915
\(801\) −41.0712 −1.45118
\(802\) −10.8063 −0.381583
\(803\) −36.0619 −1.27260
\(804\) −19.1765 −0.676303
\(805\) 0 0
\(806\) 4.46312 0.157207
\(807\) 42.5951 1.49942
\(808\) −4.94979 −0.174133
\(809\) 5.71038 0.200766 0.100383 0.994949i \(-0.467993\pi\)
0.100383 + 0.994949i \(0.467993\pi\)
\(810\) −15.9229 −0.559475
\(811\) 14.5296 0.510204 0.255102 0.966914i \(-0.417891\pi\)
0.255102 + 0.966914i \(0.417891\pi\)
\(812\) 0 0
\(813\) 52.1415 1.82868
\(814\) 8.18895 0.287022
\(815\) 19.1431 0.670554
\(816\) 48.6048 1.70151
\(817\) 83.5912 2.92449
\(818\) 8.76081 0.306315
\(819\) 0 0
\(820\) 2.37081 0.0827922
\(821\) 48.5350 1.69388 0.846941 0.531686i \(-0.178441\pi\)
0.846941 + 0.531686i \(0.178441\pi\)
\(822\) 3.85220 0.134361
\(823\) −30.1898 −1.05235 −0.526175 0.850376i \(-0.676374\pi\)
−0.526175 + 0.850376i \(0.676374\pi\)
\(824\) −15.6639 −0.545678
\(825\) −11.0051 −0.383147
\(826\) 0 0
\(827\) 4.67682 0.162629 0.0813144 0.996688i \(-0.474088\pi\)
0.0813144 + 0.996688i \(0.474088\pi\)
\(828\) 48.6491 1.69067
\(829\) −11.2623 −0.391155 −0.195577 0.980688i \(-0.562658\pi\)
−0.195577 + 0.980688i \(0.562658\pi\)
\(830\) 14.0509 0.487715
\(831\) −20.3831 −0.707082
\(832\) 12.7530 0.442130
\(833\) 0 0
\(834\) −23.3086 −0.807111
\(835\) −31.2679 −1.08207
\(836\) −40.9711 −1.41702
\(837\) −24.3249 −0.840790
\(838\) −1.22456 −0.0423018
\(839\) 45.7068 1.57798 0.788988 0.614409i \(-0.210605\pi\)
0.788988 + 0.614409i \(0.210605\pi\)
\(840\) 0 0
\(841\) −28.9269 −0.997480
\(842\) −3.24081 −0.111686
\(843\) −35.0539 −1.20732
\(844\) −44.9007 −1.54555
\(845\) 13.6070 0.468095
\(846\) −14.3930 −0.494841
\(847\) 0 0
\(848\) −16.1598 −0.554929
\(849\) −12.9909 −0.445846
\(850\) −3.44931 −0.118310
\(851\) −23.2983 −0.798655
\(852\) 45.1537 1.54694
\(853\) 43.0308 1.47335 0.736674 0.676248i \(-0.236395\pi\)
0.736674 + 0.676248i \(0.236395\pi\)
\(854\) 0 0
\(855\) −105.011 −3.59130
\(856\) 30.6776 1.04854
\(857\) −0.992817 −0.0339140 −0.0169570 0.999856i \(-0.505398\pi\)
−0.0169570 + 0.999856i \(0.505398\pi\)
\(858\) 19.9764 0.681983
\(859\) 41.9473 1.43122 0.715612 0.698498i \(-0.246148\pi\)
0.715612 + 0.698498i \(0.246148\pi\)
\(860\) 36.2204 1.23511
\(861\) 0 0
\(862\) −4.68716 −0.159645
\(863\) −4.49436 −0.152990 −0.0764949 0.997070i \(-0.524373\pi\)
−0.0764949 + 0.997070i \(0.524373\pi\)
\(864\) 58.7389 1.99834
\(865\) −40.1050 −1.36361
\(866\) 2.68102 0.0911048
\(867\) −55.7693 −1.89403
\(868\) 0 0
\(869\) 37.2517 1.26368
\(870\) −0.803559 −0.0272432
\(871\) 15.5400 0.526554
\(872\) −15.2262 −0.515625
\(873\) 50.1572 1.69756
\(874\) −15.6982 −0.531001
\(875\) 0 0
\(876\) 67.8607 2.29280
\(877\) 18.4253 0.622178 0.311089 0.950381i \(-0.399306\pi\)
0.311089 + 0.950381i \(0.399306\pi\)
\(878\) −5.53001 −0.186629
\(879\) 68.6743 2.31633
\(880\) −15.0402 −0.507004
\(881\) 32.5195 1.09561 0.547805 0.836606i \(-0.315464\pi\)
0.547805 + 0.836606i \(0.315464\pi\)
\(882\) 0 0
\(883\) −41.8716 −1.40909 −0.704546 0.709658i \(-0.748849\pi\)
−0.704546 + 0.709658i \(0.748849\pi\)
\(884\) −46.4922 −1.56370
\(885\) 56.0422 1.88384
\(886\) −13.9644 −0.469143
\(887\) 25.8805 0.868981 0.434491 0.900676i \(-0.356928\pi\)
0.434491 + 0.900676i \(0.356928\pi\)
\(888\) −32.8949 −1.10388
\(889\) 0 0
\(890\) 5.74257 0.192491
\(891\) −49.1410 −1.64629
\(892\) −47.0419 −1.57508
\(893\) −34.4866 −1.15405
\(894\) 1.13001 0.0377933
\(895\) −11.6206 −0.388433
\(896\) 0 0
\(897\) −56.8347 −1.89766
\(898\) −0.141291 −0.00471496
\(899\) −0.554065 −0.0184791
\(900\) 14.3650 0.478834
\(901\) 36.2290 1.20696
\(902\) −0.985358 −0.0328088
\(903\) 0 0
\(904\) 26.9555 0.896526
\(905\) −16.4657 −0.547337
\(906\) −15.0184 −0.498951
\(907\) 51.2392 1.70137 0.850685 0.525676i \(-0.176187\pi\)
0.850685 + 0.525676i \(0.176187\pi\)
\(908\) 47.3520 1.57143
\(909\) −18.3414 −0.608347
\(910\) 0 0
\(911\) −34.3190 −1.13704 −0.568520 0.822669i \(-0.692484\pi\)
−0.568520 + 0.822669i \(0.692484\pi\)
\(912\) 65.3175 2.16288
\(913\) 43.3638 1.43513
\(914\) 14.5531 0.481372
\(915\) 66.2020 2.18857
\(916\) −6.83683 −0.225895
\(917\) 0 0
\(918\) −34.1246 −1.12628
\(919\) 51.0333 1.68343 0.841717 0.539919i \(-0.181545\pi\)
0.841717 + 0.539919i \(0.181545\pi\)
\(920\) −14.5203 −0.478719
\(921\) −10.3948 −0.342521
\(922\) −16.3199 −0.537467
\(923\) −36.5912 −1.20441
\(924\) 0 0
\(925\) −6.87947 −0.226196
\(926\) 16.4213 0.539638
\(927\) −58.0425 −1.90637
\(928\) 1.33794 0.0439200
\(929\) 21.9450 0.719991 0.359995 0.932954i \(-0.382778\pi\)
0.359995 + 0.932954i \(0.382778\pi\)
\(930\) 6.09120 0.199738
\(931\) 0 0
\(932\) −23.5653 −0.771906
\(933\) 17.3002 0.566383
\(934\) −16.9885 −0.555879
\(935\) 33.7190 1.10273
\(936\) −55.6624 −1.81938
\(937\) −51.8886 −1.69513 −0.847564 0.530693i \(-0.821932\pi\)
−0.847564 + 0.530693i \(0.821932\pi\)
\(938\) 0 0
\(939\) −55.0973 −1.79803
\(940\) −14.9432 −0.487393
\(941\) 48.9451 1.59557 0.797783 0.602945i \(-0.206006\pi\)
0.797783 + 0.602945i \(0.206006\pi\)
\(942\) 5.26764 0.171629
\(943\) 2.80343 0.0912924
\(944\) −24.1799 −0.786989
\(945\) 0 0
\(946\) −15.0540 −0.489447
\(947\) −19.1634 −0.622726 −0.311363 0.950291i \(-0.600786\pi\)
−0.311363 + 0.950291i \(0.600786\pi\)
\(948\) −70.0997 −2.27673
\(949\) −54.9922 −1.78512
\(950\) −4.63534 −0.150390
\(951\) 75.6972 2.45465
\(952\) 0 0
\(953\) −24.3027 −0.787240 −0.393620 0.919273i \(-0.628777\pi\)
−0.393620 + 0.919273i \(0.628777\pi\)
\(954\) 20.3193 0.657860
\(955\) −49.3071 −1.59554
\(956\) −8.10583 −0.262161
\(957\) −2.47993 −0.0801647
\(958\) −4.88058 −0.157684
\(959\) 0 0
\(960\) 17.4051 0.561746
\(961\) −26.8000 −0.864517
\(962\) 12.4876 0.402618
\(963\) 113.676 3.66315
\(964\) −23.7482 −0.764878
\(965\) −35.6950 −1.14906
\(966\) 0 0
\(967\) 53.9167 1.73384 0.866922 0.498444i \(-0.166095\pi\)
0.866922 + 0.498444i \(0.166095\pi\)
\(968\) −4.41445 −0.141886
\(969\) −146.437 −4.70424
\(970\) −7.01297 −0.225173
\(971\) −24.5164 −0.786769 −0.393385 0.919374i \(-0.628696\pi\)
−0.393385 + 0.919374i \(0.628696\pi\)
\(972\) 29.7092 0.952922
\(973\) 0 0
\(974\) 20.0139 0.641286
\(975\) −16.7820 −0.537455
\(976\) −28.5635 −0.914294
\(977\) 6.22997 0.199314 0.0996572 0.995022i \(-0.468225\pi\)
0.0996572 + 0.995022i \(0.468225\pi\)
\(978\) 14.9720 0.478753
\(979\) 17.7226 0.566417
\(980\) 0 0
\(981\) −56.4208 −1.80138
\(982\) 17.9705 0.573460
\(983\) 32.3189 1.03081 0.515406 0.856946i \(-0.327641\pi\)
0.515406 + 0.856946i \(0.327641\pi\)
\(984\) 3.95818 0.126182
\(985\) −2.76932 −0.0882380
\(986\) −0.777282 −0.0247537
\(987\) 0 0
\(988\) −62.4785 −1.98771
\(989\) 42.8300 1.36191
\(990\) 18.9115 0.601046
\(991\) −22.2893 −0.708042 −0.354021 0.935238i \(-0.615186\pi\)
−0.354021 + 0.935238i \(0.615186\pi\)
\(992\) −10.1419 −0.322007
\(993\) −2.73632 −0.0868344
\(994\) 0 0
\(995\) −13.3250 −0.422431
\(996\) −81.6012 −2.58563
\(997\) −2.84934 −0.0902394 −0.0451197 0.998982i \(-0.514367\pi\)
−0.0451197 + 0.998982i \(0.514367\pi\)
\(998\) −3.61543 −0.114444
\(999\) −68.0600 −2.15332
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.t.1.29 74
7.6 odd 2 inner 6223.2.a.t.1.30 yes 74
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6223.2.a.t.1.29 74 1.1 even 1 trivial
6223.2.a.t.1.30 yes 74 7.6 odd 2 inner