gp: [N,k,chi] = [6223,2,Mod(1,6223)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6223.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [40,-3,-6,39,-24]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(7\)
\( +1 \)
\(127\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6223))\):
\( T_{2}^{40} + 3 T_{2}^{39} - 55 T_{2}^{38} - 167 T_{2}^{37} + 1381 T_{2}^{36} + 4255 T_{2}^{35} + \cdots + 789 \)
T2^40 + 3*T2^39 - 55*T2^38 - 167*T2^37 + 1381*T2^36 + 4255*T2^35 - 20981*T2^34 - 65808*T2^33 + 215491*T2^32 + 690831*T2^31 - 1583353*T2^30 - 5214379*T2^29 + 8589234*T2^28 + 29244011*T2^27 - 34993757*T2^26 - 124186150*T2^25 + 107861656*T2^24 + 403182705*T2^23 - 251429813*T2^22 - 1003366220*T2^21 + 440092503*T2^20 + 1907242127*T2^19 - 571053270*T2^18 - 2742331768*T2^17 + 541332594*T2^16 + 2933263461*T2^15 - 374626447*T2^14 - 2275317112*T2^13 + 200900464*T2^12 + 1232686133*T2^11 - 97543965*T2^10 - 440759840*T2^9 + 44521238*T2^8 + 94888704*T2^7 - 14403197*T2^6 - 10281069*T2^5 + 2215176*T2^4 + 318450*T2^3 - 80643*T2^2 - 3216*T2 + 789
\( T_{3}^{40} + 6 T_{3}^{39} - 63 T_{3}^{38} - 420 T_{3}^{37} + 1764 T_{3}^{36} + 13397 T_{3}^{35} + \cdots - 16527 \)
T3^40 + 6*T3^39 - 63*T3^38 - 420*T3^37 + 1764*T3^36 + 13397*T3^35 - 28836*T3^34 - 258096*T3^33 + 303084*T3^32 + 3355607*T3^31 - 2111913*T3^30 - 31160278*T3^29 + 9518206*T3^28 + 213319928*T3^27 - 23722916*T3^26 - 1095501411*T3^25 + 15976*T3^24 + 4253142330*T3^23 + 235781204*T3^22 - 12485757394*T3^21 - 917825048*T3^20 + 27536912610*T3^19 + 1883391275*T3^18 - 45036316691*T3^17 - 2363225075*T3^16 + 53557337199*T3^15 + 1997103759*T3^14 - 45106712917*T3^13 - 1495725959*T3^12 + 26030420640*T3^11 + 1218374426*T3^10 - 9860089699*T3^9 - 763616103*T3^8 + 2283947124*T3^7 + 267779557*T3^6 - 280897992*T3^5 - 42621699*T3^4 + 13044417*T3^3 + 1935927*T3^2 - 116040*T3 - 16527
\( T_{5}^{40} + 24 T_{5}^{39} + 164 T_{5}^{38} - 556 T_{5}^{37} - 12110 T_{5}^{36} - 31411 T_{5}^{35} + \cdots + 25258724 \)
T5^40 + 24*T5^39 + 164*T5^38 - 556*T5^37 - 12110*T5^36 - 31411*T5^35 + 281786*T5^34 + 1708727*T5^33 - 1695607*T5^32 - 35590161*T5^31 - 45471957*T5^30 + 396751798*T5^29 + 1163769733*T5^28 - 2279234474*T5^27 - 13043981123*T5^26 + 1662463636*T5^25 + 86904626582*T5^24 + 76047229872*T5^23 - 359786492196*T5^22 - 621637740740*T5^21 + 861570380322*T5^20 + 2585748069230*T5^19 - 716468327660*T5^18 - 6513881616596*T5^17 - 2089769809127*T5^16 + 10037266066264*T5^15 + 7592691575754*T5^14 - 8775989776902*T5^13 - 10866574938504*T5^12 + 3245652648705*T5^11 + 8090776743209*T5^10 + 626950173278*T5^9 - 3114235015081*T5^8 - 867009694630*T5^7 + 575543236784*T5^6 + 235657588469*T5^5 - 45022965199*T5^4 - 24664868891*T5^3 + 912809273*T5^2 + 880032926*T5 + 25258724